
sensors

Review

Role of AI and Histopathological Images in Detecting Prostate
Cancer: A Survey

Sarah M. Ayyad 1, Mohamed Shehata 2 , Ahmed Shalaby 2 , Mohamed Abou El-Ghar 3 , Mohammed Ghazal 4 ,
Moumen El-Melegy 5, Nahla B. Abdel-Hamid 1, Labib M. Labib 1, H. Arafat Ali 1 and Ayman El-Baz 2,*

����������
�������

Citation: Ayyad, S.M.; Shehata, M.;

Shalaby, A.; Abou El-Ghar, M.;

Ghazal, M.; El-Melegy, M.;

Abdel-Hamid, N.B.; Labib, L.M.; Ali,

H.A.; El-Baz, A. Role of AI and

Histopathological Images in

Detecting Prostate Cancer: A Survey.

Sensors 2021, 21, 2586.

https://doi.org/10.3390/s21082586

Academic Editor: Evangelia

I. Zacharaki

Received: 5 February 2021

Accepted: 4 April 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35511, Egypt;
sarah.aiyad@gmail.com (S.M.A.); nahla_bishri@mans.edu.eg (N.B.A.-H.); labibm@hotmail.com (L.M.L.);
h.arafat_ali@mans.edu.eg (H.A.A.)

2 BioImaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA;
mohamed.shehata@louisville.edu (M.S.); ahmed.shalaby@louisville.edu (A.S.)

3 Department of Radiology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
maboelghar@yahoo.com

4 Department of Electrical and Computer Engineering, College of Engineering, Abu Dhabi University,
Abu Dhabi 59911, United Arab Emirates; mohammed.ghazal@adu.ac.ae

5 Department of Electrical Engineering, Assiut University, Assiut 71511, Egypt; moumen@aun.edu.eg
* Correspondence: aselba01@louisville.edu

Abstract: Prostate cancer is one of the most identified cancers and second most prevalent among
cancer-related deaths of men worldwide. Early diagnosis and treatment are substantial to stop or
handle the increase and spread of cancer cells in the body. Histopathological image diagnosis is a
gold standard for detecting prostate cancer as it has different visual characteristics but interpreting
those type of images needs a high level of expertise and takes too much time. One of the ways to
accelerate such an analysis is by employing artificial intelligence (AI) through the use of computer-
aided diagnosis (CAD) systems. The recent developments in artificial intelligence along with its
sub-fields of conventional machine learning and deep learning provide new insights to clinicians
and researchers, and an abundance of research is presented specifically for histopathology images
tailored for prostate cancer. However, there is a lack of comprehensive surveys that focus on prostate
cancer using histopathology images. In this paper, we provide a very comprehensive review of
most, if not all, studies that handled the prostate cancer diagnosis using histopathological images.
The survey begins with an overview of histopathological image preparation and its challenges.
We also briefly review the computing techniques that are commonly applied in image processing,
segmentation, feature selection, and classification that can help in detecting prostate malignancies in
histopathological images.

Keywords: prostate cancer; image processing; histopathology images; digital image analysis; compu-
tational pathology; artificial intelligence

1. Introduction

Prostate cancer is one of the most common cancers all over the world and considered
the second cause of cancer deaths in several countries [1,2]. Nearly one in seven men will be
identified to have prostate cancer throughout his life [3,4]. In recent times, statistics show
the number of new patients only identified in the United States for 2021 with prostate cancer
is nearly 248,530 and the number of deaths is nearly 34,130 [5], so prostate cancer represents
a serious healthcare problem in the United States as in many countries. Most tumors do
not induce serious clinical symptoms, hence early detection, and localization of prostate
cancer at a curable stage is significant for making a medical decision in men with prostate
cancer [6].

Because of the lack of progress in the medical field, prostate cancer is increasing as
one of the most endemic diseases in the world. The large developments in computing
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technologies and hardware abilities offer the capability of using computing to tackle issues
in many areas. The medical domain is one such area where nowadays a judicious use of
technology can assist in improving people’s health and to help in tasks including diagnosis.
Medical imaging techniques such as computed tomography (CT), X-rays, magnetic reso-
nance imaging (MRI) and ultrasound imaging (sonography) are great models of computing
applications reliant on images, some examples of medical images are displayed in Figure 1.
In addition to all of these types of images, histopathology images (HI) are another type of
medical image that considered a golden standard to detect cancer and we will focus on it in
this survey. HI can be obtained by tissue microscopy from biopsies that help pathologists
analyze the characteristics of tissues in a cell basis and study cancer growth [7]. In recent
years, many studies have been conducted to capture the entire slide with a scanner and
save it as a digital image [8]. The word histopathology derives from the Greek histos (web
[in this case, of tissue]), pathos (suffering or disease), and logos (study) [9].
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detection through the use of histopathological images at medical centers and conse-
quently it has become one of the most major topics in histopathological imaging and di-
agnosis process [11]. There is a substantial requirement for CAD systems to reduce human 
errors. Human errors happen because of many reasons including lack of expertise or er-
rors caused from image overlapping, blurring, noise, and weak edge detection. Further-
more, observation of the cells specifically composed of visualizing tiny structures, func-
tions, composition, cellular distribution, and cellular morphology across the tissue, which 
assists pathologists to make a decision of whether the cells are normal and cancerous [11]. 
This manual process is very time-consuming, difficult, requires a great deal of experience, 
and leads to variability in diagnosis. Therefore, CAD is a good choice for pathologists for 
the development in the improvement of histopathological image precision, segmentation 
of tumor parts, and classification of disease [11]. The literature shows a plethora of CAD 
systems applied to histopathological images. 

Figure 1. Different Types of Medical Images (I) MRI image of prostate, (II) CT image of prostate, (III) X-Ray image of
prostate pelvic area, (IV) Histopathological image of prostate tissue, and (V) Ultrasound for prostate biopsy.

In recent years, computer-aided diagnosis (CAD) has become the main player in radi-
ological detection, diagnosis, and management of diseases [8,10]. Nowadays, computer-
aided diagnosis has become a factor of common clinical diagnosis procedures for cancer
detection through the use of histopathological images at medical centers and consequently
it has become one of the most major topics in histopathological imaging and diagnosis
process [11]. There is a substantial requirement for CAD systems to reduce human errors.
Human errors happen because of many reasons including lack of expertise or errors caused
from image overlapping, blurring, noise, and weak edge detection. Furthermore, observa-
tion of the cells specifically composed of visualizing tiny structures, functions, composition,
cellular distribution, and cellular morphology across the tissue, which assists pathologists
to make a decision of whether the cells are normal and cancerous [11]. This manual process
is very time-consuming, difficult, requires a great deal of experience, and leads to variability
in diagnosis. Therefore, CAD is a good choice for pathologists for the development in
the improvement of histopathological image precision, segmentation of tumor parts, and
classification of disease [11]. The literature shows a plethora of CAD systems applied to
histopathological images.

In general, artificial intelligence (AI) has shown a significant growth in medical health
applications and in histopathology imagery provides a breeding ground for the expansion
of CAD systems [12]. AI and CAD systems will continue to grow among researchers and
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clinicians to constitute a prognostic set of tools to enable them to detect patients that are
susceptible to a specific disease and provide accurate, cheap, and fast technologies [12,13].
AI is an umbrella term encompassing both traditional machine learning (ML), and deep
learning (DL). The research we consider in our study is largely categorized as ML-based
techniques and DL-based techniques. Conventional machine learning techniques applied
in HI analysis typically involve several preprocessing steps, including feature selection,
image segmentation and classification. ML techniques have been reviewed extensively
in the literature, for instance in [2,14–22]. In the last decade, researchers have turned
their focus towards the development of new deep learning techniques as they outperform
conventional machine learning techniques in diverse fields and not only HI image analysis.
To date, many of these ML techniques have been supplanted by DL, and an abundance of
work has evaluated the use of deep learning techniques on HI of prostate cancer [23–33].
Moreover, studies that employ an ensemble of DL techniques and ML techniques gave
better results [34]. Table 1 summarizes reviewed papers on prostate cancer detection and
diagnosis. One of the main constraints in conventional ML techniques is their training with
a limited number of features, which has been overcome in DL techniques where hundreds
to thousands of features can be selected from digital images for classification; however,
this process requires significant amount of training time [35]. Some of these problems are
solved in ensemble techniques as the feature extraction stage is done using pretrained deep
networks and samples classified using conventional ML classifiers [35].

Table 1. A brief comparison between previous studies that proposed techniques for prostate histopathology images.

Reference Study Aim Year Strength Weakness Number of
Patients

[2]

Automated
classification using

AdaBoost-based
Ensemble Learning

2016
They integrated various feature

descriptors, different color
channels, and classifiers.

The algorithm able to
discover only the critical

regions on the digital
slides

50

[14]

A novel technique of
labeling individual

glands as malignant or
benign was proposed.

2013

The technique can detect individual
malignant gland units without

relying on the neighboring
histology and/or the spatial extent

of the cancer.

It applied on a small
number of radical

prostatectomy patients
8

[15]
Methodology for

automated gland and
nuclei segmentation

2008

They incorporate low-, high-level
knowledge, and structural

constraints imposed via domain
knowledge.

They focused on a
smaller cohort of cancer
images and the dataset

is private

44

[16]
A new automated
method for gland

segmentation
2017 This method texture- and gland

structure-based methods

The method failed in the
images with the

cribriform pattern.
They validated data

using 2-fold cross
validation

10

[17]

Multistage
Segmentation Using

Sample Entropy
Texture Analysis

2020

An added advantage of performing
multistage segmentation using

sample entropy values is that one
could easily separate epithelial
nuclei from the stroma nuclei in
standard H&E stained images
without using any additional
immunohistochemical (IHC)

markers.

It requires identifying
sample entropy features 25
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Table 1. Cont.

Reference Study Aim Year Strength Weakness Number of
Patients

[18]

A new approach to
identify prostate
cancer areas in

complex

2014

It utilizes the differential
information embedded in the

intensity characteristics of H&E
images to quickly classify areas of

the prostate tissue

Classification
performance is tested

using only KNN
algorithm

20

[19]

Ensemble based
system for feature

selection and
classification

2011

They addressed the possibility of
missing tumor regions through the
use of tile-based probabilities and

heat maps.

They focused only on
texture feature selection
and not used a voting

schema for the ensemble
classifier to enhance the

probability scores

14

[20]
A novel fully

automated CAD
system

2006

The proposed system represents the
first attempt to automatically
analyse histopathology across

multiple scales

Their system trained
using only 3 images 6

[21] A new multiclass
approach 2018 It obtained improved grading

results

It was evaluated based
on its impact on the
performance of the

ensemble framework
only

213

[22]

A bag-of-words
approach to classify

images using
SpeededUp Robust

Features (SURF)

2016

The drawbacks of scale-invariant
feature transform descriptor is

overcome by the SURF descriptors
causing an enhanced output

accuracy

More features needed to
be integrated with their

feature extraction
process to enhance

accuracy of the
classification

75

[23]

An automatic method
for segmentation and

classification
(Integration of Salp

Swarm Optimization
Algorithm and Rider

Optimization
Algorithm)

2019 Less time complexity

The maximal accuracy,
sensitivity, and

specificity does not
exceed 90%

20

[24]

A new region-based
convolutional neural
network framework

for multi-task
prediction

2018
The model achieved a detection

accuracy 99.07% with an average
area under the curve of 0.998

They didn’t have
patient-level

information with which
to perform a more

rigorous patient-level
stratification.

40

[25]

An approach to nuclei
segmentation using a
conditional generative
adversarial network

2019

It enforces higher-order consistency
and captures better results when
compared to conventional CNN

models.

The model trained on
small annotated patches 34

[26]

Deep neural network
algorithm for

segmentation of
individual nuclei

2019

A simple, fast, and parameter-free
postprocessing procedure is done to

get the final segmented nuclei as
one 1000 × 1000 image can be

segmented in less than 5 s.

The model is trained on
a small number of

images and has been
tested on the images that

may have different
appearances

30
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Table 1. Cont.

Reference Study Aim Year Strength Weakness Number of
Patients

[27]

Two novel approaches
(combination of 4
types of feature

descriptors, advanced
machine-learning

classifiers) to
automatically identify

prostate cancer

2019

They apply for the first time on
prostate segmented glands,
deep-learning algorithms

modifying the popular VGG19
neural network.

The hand-driven
learning approach

employs SVM, where
selecting the suitable

kernel function could be
tricky

35

[28]
Automated Gleason

grading via deep
learning

2018
The study showed promising

results especially for cases with
heterogeneous Gleason patterns

The model trained on
small mini patches at

each iteration
886

[29]
A deep learning
system using the

U-Net
2019 The system outperformed 10 out of

15 pathologists

The system was built
upon three pretrained

preprocessing modules,
each of which still

required pixel-wise
annotations.

1243

[30]

Predicting Gleason
Score Using OverFeat
Trained Deep CNN as

feature extractor

2016
It is quite effective, even without

from-scratch training on WSI tiles.
Processing time is low

Small size of patches 213

[31] CNN to idiomatically
identify the features 2016

The system is not constrained to
H&E stained images and could

easily be applied to
immunohistochemistry

Some detection errors
happen at the

boundaries of the tissue
254

[32]

DL model to detect
cancer based on
NASNetLarge

architecture and
high-quality annotated

training dataset

2020
The model demonstrated its strong

ability in prediction as accuracy
attained 98%

The availability of fully
digitalized cohorts

represents a bottleneck
400

[33]

A novel benchmark
was designed for
measuring and
comparing the

performances of
different CNN models

with the proposed
PROMETEO

2021 Average processing time is less
compared to other architectures

The network validated
on 3-fold

cross-validation method
470

[34]

Novel features that
include spatial

inter-nuclei statistics
and intra-nuclei

properties for
discriminating

high-grade prostate
cancer patterns

2018

The system tackled the
inter-observer variability in

prostate grading and can lead to a
consensus-based training that
improves both classification

lack examples of the
highest grades of disease 56

Many surveys have been published in recent years reviewing histopathological image
analysis covering its history, and detailed information of general artificial intelligence
techniques [7,8,12,31,36–42]; the main limitation is the lack of comprehensive surveys of
histopathological image analysis that focus on prostate cancer [1,43,44]. Accordingly, in this
survey we present more prostate histopathology from an image analysis point of view. The
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main goal of this survey is providing readers a comprehensive overview of the state-of-the-
art in terms of image analysis and artificial intelligence techniques i.e., machine learning,
and deep learning being tailored specifically for histopathology images in prostate cancer,
and its challenges specific to histopathology images analysis, and the future scope. This
survey mentions 113 related works, comprising 63 papers that concentrate on prostate
cancer. Figure 2 depicts a statistical distribution of studies used in this survey.
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The selection methodology of our survey was conducted using the well-known aca-
demic search engines including IEEE Xplore, Google Scholar, Science Direct, Springer,
ACM Digital Library, and ResearchGate. We have employed the following criteria: (I) The
paper must be highly related to the research area; (II) papers published in highly rank
journals and conferences of relevant domain, such as Scientific Reports, Expert Systems with
Applications, IEEE Transactions on Medical Imaging, Neurocomputing, Journal of Pathology
Informatics, etc. and conferences, such as the International Symposium on Biomedical
Imaging, IEEE International Symposium on Biomedical Imaging, International Conference
on Machine Vision, etc. (III) Top cited papers are preferred. (IV) Papers that were published
within the last 5 years, although we also include papers published before that time if the
paper is of high quality. Meanwhile, we ignored many papers that have inadequate criteria
including low-quality papers, non-English written papers, and white papers.

This survey is organized as follows: Section 2 introduces a background of histopathol-
ogy images, their preparation, and challenges. Section 3 focuses on the whole histopathol-
ogy image analysis methodology and highlights the various methods used for this method-
ology. Finally, we provide some concluding remarks and present some future possibilities
in Section 4.

2. Histopathology Images Background

Histopathology is a significant branch of biology that covers the investigation of the
cell anatomy and tissues of organisms at a microscopic level by a histopathologist [45].
Histopathological images are very influential for the final decision procedure of effective
therapeutics; these images are essential to investigate the status of a certain biological
structure and to diagnose diseases like cancer [39,45]. Digital histopathology represents a
significant evolution in modern medicine [46]. It often uses machine vision techniques as a
basis. Nevertheless, because of the special properties of digital histopathology images and
their processing tasks, specific processing approaches are usually needed. In this survey,
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we describe the application of histopathology image analysis employing machine learning
and deep learning techniques.

Uropathologists use different screening methods to determine the various tumor
histology in the prostate in a good quality. Typical tissue of prostate incorporates glands
and stroma. The gland is the basic anatomical structural unit of the prostate. The stroma
is the fibromuscular tissue around glands [14]. Each gland unit consists of a lumen and
rows of epithelial layers surrounding the lumen. The stroma keeps the gland units together.
When cancer is in high-grade, stroma and lumen are both replaced by epithelial cells [24].
Once the slides are stained using a hematoxylin and eosin (H&E) solution, the nuclei
become dark blue and the epithelial layer and stroma become several shades of purple
to pink [14].

To date, one of the most effective ways to measure aggressiveness of prostate cancer is
using the Gleason grading system [24,43,47]. The Gleason grading system is completely
founded on architectural arrangements of prostatic carcinoma, and a substantial parameter
to a therapeutic final decision. Gleason grading has five grade groups from grade 1 (G1) to
grade 5 (G5), with a grade of G1 refers to tissue with a maximum grade of resemblance to
normal tissue and outstanding prognosis, and a grade of G5 refers to poorly differentiated
tissue and the worst prediction [24,29]. Artificial intelligence has the ability to improve the
quality of Gleason grading. Abundant automated Gleason grading systems were proposed
and have led to increased consistency [28–30,34,48–51].

Histopathology images can be acquired by using specialized cameras with a micro-
scope wherein an automated computerized approach can be carried out [9]. To study
various architecture and constituent of tissues under a microscope, the biopsy specimen
is embedded in wax and dyed with one or more stains. Staining procedures are used by
pathologists for cellular components separation for structural in addition to component
visualization of tissue for diagnosis [38]. Stages of the preparation process of the tissue
slides are as presented in Figure 3. It consists of five operations, and each of them can affect
the quality of the final image [38,45]. (I) Fixation: Samples of biological tissues are fixed
with chemical fixation. There are many ways of fixation, but the commonly applied way in
the biomedical field is fixation with formaldehyde or glutaraldehyde solution to protect the
cells [51]. This is a critical step in tissue preparation and aims to prevent tissue autolysis
and putrefaction; (II) Processing: Tissue processing is a crucial step and involves two
main processes: dehydration and clearing. Dehydration is used to extract water from the
gross tissue and substitute it with a certain concentration of alcohol which solidifies it [52].
This process helps incise superfine sections of the specimen. Clearing consists of removing
the dehydrator with a material that will be the solvent in both the embedding paraffin
and the dehydrating agent; (III) Tissue Embedding: Thus is the process wherein tissues
are carefully positioned in a medium such as wax [51], so when solidified, it will provide
enough external support to allow very thin sectioning. This process is essential as the
proper tissue orientation is necessary for precise microscopic evaluation; (IV) Sectioning:
this process is required to generate superfine slices of tissue samples sufficient such that
the details of the microstructure characterization of the cells can be obviously noticed using
microscopy methods. After that, carry the superfine slices of sample onto a clean glass
slide [38]; (V) Staining: The final step in preparing tissue for light microscopy is to stain it
and mount it on the slide. Staining increases contrast to the tissue and, also highlights some
specific features which would otherwise be practically invisible in the microscope [38].
There are many types of stain but the most common type of staining for histology is H & E.
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2.1. Diagnostic Challenges Using Histopathological Images

Automated prostate cancer diagnosis using histopathology images is deemed to offer
great promise for advanced cancer therapy, however, it is not a simple task, as several
open scientific challenges have to be overcome before the CAD system of histopathology
images can become part of the routine healthcare diagnostic pipeline. These challenges
occur because of the numerous technical and computational variabilities and artifacts
incurred due to differences in slide preparation and because of the complicated structure
of the tumor tissues architecture [41]. Image analysis techniques are substantially reliant
on the quality of the digital slide images. In the following paragraphs, we will discuss the
different challenges of histopathology image analysis and computational techniques to
deal with them.

2.1.1. Extremely Large Image Size

These days, one of the growing challenges is how to handle the extremely large size
of histopathology image datasets [53]. Whenever images, for example, cars, humans,
or animals are classified using artificial intelligence techniques, small images such as
512 × 512 pixels are usually applied as an input [54,55]. Large-sized images usually have
to be rescaled into a smaller size, which is adequate for differentiation, as increasing the
size of the input image will result in increased computational complexity, thus making the
analysis process more challenging and time-consuming. On the contrary, histopathology
images contain as many as hundreds of thousands to millions of pixels, which is generally
laborious to analyze as is. Nevertheless, rescaling the whole image to a lower dimension
such as 512 × 512 may cause loss of information at the cellular level, which leads to a
marked drop of the identification accuracy. Thus, the whole histopathology image is often
divided into partial regions of about 1024 × 1024 pixels called patches, where each patch
is examined apart, such as detecting region-of-interests [56]. Thus, many studies such
as [16,24–27,48,57,58] presented in this survey, especially those dealing with deep learning
applied patching technique to overcome the extremely large histopathological images.

2.1.2. Insufficient Labeled Images

Perhaps the biggest challenge in analyzing histopathological images is that only a
limited number of training set data is available. As healthcare image datasets often have a
considerably lower size than a natural view of images, this causes direct application of many
conventional artificial intelligence techniques not suitable for medical image datasets [53].
One of the important keys of success of DL in common image recognition tasks is the
abundance of training data. Label information at a pixel level or a patch level is essential in
histopathology image tasks such as diagnosis. Label information could be collected easily
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in common image processing from the internet and it is also possible to use crowdsourced
labeling since the human brain is able to identify objects and perform labelling work while
ignoring artifacts [59]. Nevertheless, only highly qualified pathologists can manually
label histopathological images properly, and this process at the regional level in a large
histopathology image needs a long time and is tedious. Therefore, the paramount limitation
in designing high-quality histopathology image analysis techniques lies in the paucity of
freely public annotated datasets [24,60]. Many researchers have attempted to alleviate
such a problem of insufficient amount labeled images. Most of these solutions fall under
one of the following categories: (I) increasing the number of labeled data, such in [25,30],
(II) predicting the labels of test images or self-taught learning, such as applying transfer
learning [24,61], or (III) utilizing of weak label or unlabeled data [62].

2.1.3. Artifacts and Color Variation

Another major challenge is the presence of artifacts and color variation [8,11,36,59,63,64].
Histopathology images are captured through several stages as previously mentioned. At
each stage, unwanted anomalies that are unassociated with the underlying biological
factors, could be represented by differences in specimen preparation, staining, and even
scanning with equipment from different vendors. For instance, when specimen sections are
placed onto the slides, they may be folded and rumpled; dust may besmear the slides during
scanning process; loss of microscope focus leads to blurred regions, noise, and shadows;
and occasionally tissue regions are marked by color markers or chromatic aberrations [8,41].
Learning without considering these artifacts, as shown in Figure 4, may deteriorate the
performance of decision support algorithms. When digital images are produced, the slides
should be uniformly illuminated by the light source. Tissue autofluorescence differences in
microscopic setup, staining protocol, and organ size could generate irregular lighting across
the tissue samples. Additionally, the scanner’s sensitivity varies for different wavelengths
of the light spectrum [41]. Large variations in light are considered an important factor for
the precise prostate cancer diagnosis. These variations need to be handled earlier before
employing image processing techniques [63,64].
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To tackle these problems, many different techniques have been designed, includ-
ing conversion to grayscale [65,66], color normalization [67,68], and color augmenta-
tion [69]. One of the simplest methods is the conversion of colored histopathology images
to grayscale, however, it disregards the significant information concerning the color repre-
sentation used by pathologists since the beginning. On the contrary, the color normalization
method attempts to adapt the color values of images on a pixel-by-pixel basis so that the
color distribution of the source image matches a reference image. Color separation and
stain normalization were applied on the histopathology images for the first time in [70].
Afterwards several distinct color and stain normalization techniques have been used as a
preprocessing step in several techniques for histopathological image analysis.
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2.1.4. Multi-Level Magnification Led to Multi-Level Information

Magnification is the phenomenon of enlarging the proportion of biological structures
that are apparent under the microscope based on different objective lenses [39]. Tradi-
tional microscopes have a standard set of objectives with 2X, 8X, 40X, 200X, and 400X
power [39]. Tissues generally consist of cells and fibers, where each tissue shows specific
cellular features. Information concerning cell shapes is taken accurately under a high
power objective and images are more deterministic and informative to predict disease
outcome, but structural information such as a glandular structure that are made of many
cells are better taken under a lower magnification, so that images cover a wider field of
view. Because malignant tissues exhibit both cellular and structural abnormalities, each
of the images captured at different magnifications could provide significant information.
Even in AI, researchers employing image datasets with different levels of magnifications,
such as in [71,72]. As already pointed out, it is challenging to process the images at its
original resolution directly, images are usually rescaled to adapt different magnifications
and configured to be input for processing. Regarding diagnosis, the most informative mag-
nification remains a subject of controversy, whereas efficiency enhancement is sometimes
attained by entering both low and high magnification images simultaneously as input,
probably depending on the applied AI technique or type of disease. Moreover, the status of
histopathological images does not need to be determined by the cells, images with different
levels of magnification are adopted to learn distinctive features [71].

As depicted in Figure 5, histopathological images with multiple levels of magnification
can depict various types of information. When the histopathological images are with low
magnification, cells will be difficult to detect, while the high magnification image shows
more fine-grained details.
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3. Histopathology Image Analysis Methodology

Digitized histopathology is a current direction that makes huge numbers of images
available for automated analysis. It enables visualization and interpretation of pathology
cells and tissue samples in a great resolution images and with the assistance of software
tools [36,37]. This opens a new era to design image analysis techniques that assist clinicians
and promote their image descriptions (e.g., grading, staging) with the purpose of image
features quantification. In that respect, the computer-aided diagnosis of histological image
analysis is a newly challenging domain for biomedical image analysis. CAD can be defined
as detecting cancer within the examined tissue using computer software [60,73,74], which
is the main mission of the pathologist [8]. The combination of conventional diagnosis
techniques with computational AI techniques provides a good possibility to decrease the
workload of pathologists while preserving performance. There is a need for a precise
CAD system that minimizes reading interpretation times, lowers necessary experience
in anatomic pathology, and provides a consistent risk evaluation of cancer existence in
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prostate histopathology images without additional burden to pathologists. Such a CAD
system would automatically find out suspected lesions in prostate histopathology images
to assist screen for prostate cancer in large patient populations. A typical CAD system for
detecting prostate cancer receives raw histopathological images, preprocesses them, and
produces a particular diagnostic result [10].

Over the last two decades, numerous research papers on CAD systems were published.
Automated systems for digital histopathological imaging can maintain reproducibility
and consistency using suitable image processing techniques [41]. In fact, there are many
research perspectives for CAD systems applied in the histopathological domain, including:
(I) cancer detection in the given tissue, (II) automatic grading to correctly quantify the
level of the malignancy, which can offer more insights into disease characterization, (III)
cell/nuclei/gland segmentation that discovers and separates these regions from images,
and (IV) multi-class classification for the different subtypes of a specific type of cancer.

CAD systems can be broadly subdivided into two groups. The first uses handcrafted
features and relies on conventional machine learning techniques, while the second uses
deep learning techniques. For this reason, we will discuss these two groups separately in
Sections 3.2 and 3.3, below. Figure 6 displays the process model for handcrafted features
based on machine learning techniques versus deep learning techniques of histopathological
image analysis. The process model of the two groups of analysis passes through a number
of stages that highlight specific structures in the image analysis methodology. There are two
common components that are shared by the process model, which are image acquisition
and image preprocessing.
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3.1. Image Acquisition

In the first phase, histopathology images can be acquired from a public dataset or a
private dataset. The choice of a dataset is a dominant factor to establish for any experimental
setup. One of the main challenges when dealing with prostate histopathology images is
the lack of representative public image datasets annotated by multiple pathologists with
high quality. Most research dealing with prostate histopathology images work with private
datasets. As shown in Table 2, we provide list of the publicly available datasets [75–79].
It is noted that PANDA challenge [78] provides the largest public histopathology image
dataset in prostate cancer.
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Table 2. Details of publicly available datasets containing prostate histopathology images.

Dataset URL Magnification Year Dataset Size Number of
Patients

Annotated dataset [75] 40× 2017 4 images for training and 2 for validation 6

Prostate Fused-MRI-
Pathology [76] 20× Last modified

2021

comprises a total of 28 3 Tesla T1-weighted,
T2-weighted, Diffusion weighted and Dynamic

Contrast Enhanced prostate MRI along with
accompanying digitized histopathology images

28

TCGA-PRAD project [77] 40× Last modified
2020

It includes includes 368 digitized prostate
pathology slides 14

Prostate cANcer
graDe Assessment

(PANDA) Challenge
[78] 20× 2020 It consists of 11.000 cases for training, 400 cases for

public test set, and 400 cases for private test set NA

PESO dataset [79] 10× 2019 It consists of 62 case for the training set and 40 case
for the testing set 102

3.2. Image Preprocessing

Preprocessing is a basic stage of most automated CAD systems [35]. In the preprocess-
ing stage, raw data are processed to normalize the image or to transform the image to a
domain where cancer can be easily diagnosed [10]. Preprocessing can enhance histopathol-
ogy images and ameliorate the interpretability for human viewers since the acquired
images contain different types of noises or artifacts and may not have adequate contrast or
illumination due to the scanning [36,46]. It is necessary that the acquired images be of good
quality to generate the intended result [40]. Appropriate image pre-processing methods
could compensate for these differences between images. Various existing preprocessing
methods are commonly used to boost the results of the analysis process can be grouped as
illustrated in the following subsections and summarized in Figure 7.
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3.2.1. Filtering

There are various methods for enhancing images. The basic and simple methods
can be classified as filtering. Filtering is used to eradicate unwanted variation (noise)
from images. There are different noise eliminating filters used for removing undesirable
information from images, i.e., mean filters, median filters, adaptive mean filters, adaptive
median filters, and Gaussian smoothing filters. The mean filter is the simplest linear
filter [80]. It eliminates the noise, blur images, and reduces sharp edges [81]. Similarly, the
median filter has also been employed to eliminate noise from histopathology images [40].
The median filter is a nonlinear digital filtering method. It is commonly used in digital
image processing because under certain conditions, it maintains edges whilst removing
noise [82]. Adaptive filtering is used to remove noise from images without degradation.
It involves a tradeoff between smoothing efficiency, preservation of discontinuities, and
the generation of artifacts. Gaussian filtering is a smoothing filter method. It has been
applied for smoothing the images, to overcome the variations in staining, as well to reduce
noise [40]. The Gaussian filter is a very good filter for removing noise expressed in a normal
distribution [80].

3.2.2. Color Normalization Techniques

In histopathology CAD systems, color normalization plays a significant role because
the perception of information in images could negatively affected by color and concen-
tration differences [83,84]. Two issues have made the color normalization process a chal-
lenging task [83]: (I) the presence of diagnostically significant but visually subtle details
in color images. (II) the heterogeneous nature of tissue composition. Among the image
preprocessing techniques, color normalization was the most common. In the last two
decades, many color normalization techniques to histopathology image analysis have
been proposed. In [85], authors developed a reliable color-based segmentation approach
for histological structures that applied image gradients estimated in the LUV color space
instead of RGB color space to handle matters relating to stain variability. Another approach
presented in [84], founded on using of nine common color filters selected for histology
H & E stained slides. The authors conducted two experiments, and results showed that
pathologists became more sensitive to the color of the image than before. While in [86],
a new color correction technique is proposed and developed in the linear RGB color space.
This technique can easily be integrated to the slide scanning process. The technique is also
handy in the sense that the data needed for color correction are extracted from the color
calibration slide wherein nine reference color patches embedded on the glass slide, and the
spectral properties of these patches are known beforehand.

3.2.3. Histogram Equalization

The histogram of an image is a mathematical graph representing frequencies of
occurrence of distinct color intensities in that image. It summarizes the image with respect
to quality, contrast, and brightness [40]. Histogram equalization of the image is a popular
and simple ways for enhancing image contrast to normalize the distribution of probability
of occurrence of intensities in the image and used for removing color variations due
to illumination conditions and staining process [40]. There are many previous works
published in histogram equalization. In [87], the authors tried to overcome the problem of
changing the brightness of an image when applying traditional histogram equalization.
They introduced a novel extension of bi-histogram equalization technique. It effectively
separates the objects from the background. Another novel method for histopathology
images was introduced in [88], is a fully automated stain normalization technique to
minimize batch effects and thus help improving analysis of digitalized pathology images.
Among the different histogram techniques, one paper applied multi-objective histogram
equalization by using particle swarm optimization (PSO) [89]. The proposed technique
works by segmenting the histogram of the image into two sub-images. Then, a number
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of optimized constraints are employed. PSO used to explore the optimal constraints.
This technique preserves the brightness of the image while enhancing the contrast.

3.2.4. Data Augmentation

In the artificial intelligence domain, the model efficiency always enhances with the
amount of the training data that has been used. Data augmentation (DA) is a strategy used
to artificially enlarge the size of the training data without introducing labeling costs [90–94].
DA has already been used in many domains, including image processing and audio classifi-
cation. The most common means of data augmentation in image analysis include reflection,
translation, rotation, scaling, and cropping [90]. Applying conventional data augmentation
methods is one popular way to increase both the number and diversity of images in small
datasets. Nevertheless, it is not always used in all problems. A significant amount of DA
techniques on specific problem-dependent are proposed can also be applied to expand
small datasets. One of the powerful and common methods used in data augmentation is
generative adversarial networks (GANs) [91]. GANs are based on competition between two
neural networks. GANs consist of a discriminator and a generator, two neural networks
trained as adversaries, therefore its name is adversarial. Over the past years, there have
been many attempts in exploring the use of GANs in generating synthetic data for data
augmentation given limited or imbalanced datasets. One variant of GANs is proposed
in [92]. It is used to enhance generalizability in CT segmentation tasks. Another variant
of GANs used in histopathology images proposed in [93]. But applying these techniques
always require a relatively high effort. Moreover, there exist lots of excellent studies for
data augmentation. In [94], the authors proposed a novel technique capable of augmenting
histopathology images and distributing the variance between patients through image
blending using the Gaussian-Laplacian pyramid. This technique produces new training
images composed of half images of different patients. This method tries to prevent that a
model learns color representations of patients, which related but to the staining process.
Some studies aim to enhance the overfitting problem caused by the lack of samples by
employing different data augmentation techniques. For example, in [26] authors used five
DA techniques (rotation, flipping, shifting, rescaling, and random elastic transformation).
Experimental results showed the effectiveness of applying different DA methods in the
nuclei segmentation task.

3.3. Traditional Machine Learning Techniques

Machine learning (ML) is an automated learning process of machines to categorize
and recognize different data such as text, images, and videos. ML employs algorithmic
techniques to analyze, learn, and make decisions from the input data [95]. ML has been
widely employed in many applications, including image processing, specifically in our
study in histopathological image analysis. Traditional machine learning techniques typ-
ically involve several steps to deal with histopathology images including segmentation,
feature extraction, and classification, as represented in Figure 6. Each step is described in
the following subsections.

3.3.1. Image Segmentation

Segmentation process is one of the main research efforts in histopathology image anal-
ysis. It is the process of separating objects in an image that are of interest to the developed
application by using various methods [40]. It can make anatomical structures like glands,
nuclei and so on more obvious for a subsequent automatic or manual image classifica-
tion [7]. The various morphological features of these structures like size, shape, extent,
and color intensity, are also important factors for existence of prostate cancer. To analyse
all these indicators, images need to be segmented first [38]. Prostate segmentation is a
challenging process. It is difficult to determine the boundary between the prostate and the
surrounding tissues. Even for experienced pathologists, the interobserver variability of
manual prostate segmentation is large [10]. A precise prostate cancer segmentation may
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help effectively in guiding radiation therapy and biopsy therapy as well as its application
in diagnosis [10].

Many researchers have applied various segmentation techniques in their research,
which can be broadly classified into classical techniques and machine learning techniques,
as represented in Figure 8. However, there is no general segmentation technique proven to
be effective for all kind of images. In [23], the segmentation task in prostate cancer is carried
out using the color space transformation and thresholding techniques. This process aids to
form the gland region, which is subjected to feature extraction by applying multiple-kernel
scale-invariant feature transform method. In [15], authors presented a new automatic
nuclei and gland segmentation technique for prostate histopathology which incorporates
an integration of high-level, low-level, and domain-specific information. The segmentation
technique is utilized for three different applications: (I) classifying intermediate grades
of prostate cancer, (II) identifying cancer from normal regions, and (III) discriminating
Bloom-Richardson high-grade cancer from low-grade cancer. In [16], authors proposed
an automated technique for gland segmentation in prostate cancer using histopathology
images using machine learning and image processing methods. This technique outperforms
structure and texture-based techniques. However, this technique fails in the images with
the cribriform pattern, resulting in inaccurate segmentation. Another study [96] tried to
overcome the necessary condition of the conventional thresholding segmentation method
to give accurate results, where the nuclei must have a wide range of intensities to be easy
differentiated from the background. Their adaptive thresholding technique passes through
four different stages: (I) detecting the nuclei, (II) optimizing the primary contours through
a rough texture segmentation, (III) optimizing the convergence, and finally (IV) splitting
the overlapping segmentation masks.
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Figure 8. Image segmentation taxonomy compromising different techniques that are used to segment histopathological images.

Other methods such as [17] used two-stage segmentation. Firstly, the mean-shift (MS)
algorithm is used to perform the coarse segmentation to split the tissue constituents in four
parts. After that, wavelet filters are used to perform fine segmentation of glandular tissue.
Although, there exists other studies that segment each individual cell. for example, an early
study [97], where authors focused on dynamic segmentation of live cells for the purpose of
quantification of different modalities. Their technique can identify the cell boundary no
matter how many times it is used in the system.
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There exist few studies that focus on utilizing cell nucleus and blue mucin. In [98],
authors depend in their segmentation on the structure of glands to separate them from the
background by analyzing the color space of histopathology image. Another segmentation
technique, proposed in [99], combined the similarity of morphological characteristics re-
lated to the appearance of lumen components. It operated in three stages: (I) classification
of pixels, (II) extraction of inner gland boundary, and finally (III) complete gland construc-
tion. The performance of the abovementioned techniques is constrained by the size and
the characteristics of labelled datasets and the variation needed in the images to model the
distribution of relevant tissue features.

3.3.2. Feature Selection

Feature selection refers to eliciting the best feature subset that can accurately label
images from a dataset as belonging to one or more classes [100,101]. This has now been
a significant domain to researchers with new advancements in histopathological image
analysis. Just a few applications produce their data already in a form that classifiers can
construe and do not need a feature selection process. However, histopathology images
require representing characteristics of the tumor cells or tissues in a quantitative way [7,41].
The extracted features should be identifiable and distinct to an extent to be able to automat-
ically classify normal and malignant tissues and to grade them correspondingly [41]. In HI,
selecting which distinctive features will be feeding the classifier is more essential than pick-
ing the classifier itself, and when feature selection is applied, classification accuracy will be
improved as many features are selected from all features [10]. Selecting distinctive features
from targets of interest is a challenging task in an effective CAD system. Common features
for HI comprise size, shape, histogram, texture, intensity, and multiple features. Feature
descriptors to be selected in HI can be categorized into four groups: texture-based features,
topological-based features, morphological-based features, color-based features, and other
features [38,39,45,46]. Table 3 provides a brief view for the feature extraction publications
suggested in HI of prostate cancer. The following paragraphs detail the different features
selection procedures that have been employed for classifying histological images.

Table 3. Summary of publications focused on feature selection of prostate histopathology images.

Features Type Reference Year Accuracy Result

Texture

[56] 2011 The AUC value is 0.91 for the first database and 0.96 for the second database.

[102] 2015 The proposed method outperforms the classic SVM-RFE in accuracy and reducing
redundancy.

[103] 2018 The proposed method attained a classification accuracy around 99%.

Topological

[13] 2011 The model attainted an average accuracy 90%.

[50] 2011 The test classification results have an average of 96.76%

[49] 2017 The developed way achieved 93.0% training accuracy and 97.6% testing accuracy, for the
tested cases.

Morphological

[15] 2007 Average accuracy for prostate cancer classification was 92.48%

[104] 2011 The system achieved 0.55 under the precision recall curve measure

[58] 2019 The prediction model resulted an average accuracy of 90.2%

Color
[98] 2012 The proposed method attained an average of 86% accuracy in classifying a tissue pattern

into different classes.

[105] 2006 They achieved accuracy of 91.3%

Color & Texture

[106] 2012 The algorithm achieved an average of 86% and 93% of classification accuracy.

[107] 2012 Classification accuracies are 97.6%, 96.6% and 87.3% when differentiating Gleason 4
versus Gleason 3, Gleason 5 versus Gleason 3, and Gleason 5 versus Gleason 4.

Topological &
Morphological & Texture

[48] 2007
SVM classifier applied to test the accuracy of the extracted features and achieved about
93% when differentiating among Gleason grade 3 and stroma, 92.4% among epithelium

and stroma, and 76.9% among Gleason 4 and 3.

[27] 2019 The proposed model using hand-crafted features achieved an average accuracy of 94.6%.
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Texture-based features are related to the spatial distribution of repetitive intensities
inside the tissue [9]. Examination texture features of each tissue components gives a
valuable discriminative information in the diagnosis and grading systems of prostate
cancer. In [56], authors applied a quantitative texture feature selection, for example,
gland density, gland size, and gland circularity, and evaluated the accuracy of these
features in discriminating normal from cancer glands using the ROC curve. The model
achieved an average of 0.94 of AUC. In [102], a new method was proposed to overcome
redundancy among features and that considered one of the most important reasons for
weakness of SVM-RFE. The main purpose of their proposed feature selection method is
to merge the SVMRFE with filter measure to extract the least features and enhance the
classification accuracy of the model. Another work [103] focused on a type of texture-based
features, called local binary pattern (LBP), and introduced a new modified version called
multispectral multiscale LBP (MMLBP). This algorithm varies from the standard LBP in
which it takes into consideration the joint information within spectral and spatial directions
of the image. MMLBP attained a classification accuracy of around 99%.

Topological-based features enable characterization of cellular structure in histopathol-
ogy images. These features apply the theories of algebraic topology and this is especially
beneficial to the segmentation task [13,39]. In [13], 50 topological-based features were
selected for designing a new data fusion algorithm in prostate histopathology images,
incorporating 25 nearest-neighbor and 25 graph-based features. A pioneering effort on the
use of topological features for automated scoring of prostate cancer using histopathological
images was done in [50], where the authors introduced a new class of topological features
that make use of network cycle structure. Another work [49] selected a set of visually
significative features for the purpose of differentiation between different grades in prostate
cancer using topological-based features. It based on computing the shortest path from the
nuclei to their closest luminal spaces.

Morphological-based features give information about shape, color, structure, and
size of the cells in HI [39]. Morphological features are useful to provide details for form
and structure of abnormal cells of prostate cancer [9]. Many studies showed the viability
of this type of features to help characterization of the histopathological prostate images.
In [15], they presented a new automatic gland and nuclei segmentation system for prostate
histopathology images and utilize an accurate extraction of various morphological features.
In [104], the authors presented a content-based image retrieval system that takes advantage
of a novel set of morphological attributes called explicit shape descriptors that properly
depict the similarity between the morphology of objects of interest. A recent study [58],
proposed a new machine learning classification method to classify Gleason grade groups
of histopathology images for prostate cancer using new proposed morphological features.

Color-based features provide information of the grey level or color of pixels provided
in the region of interest. Feature selection based on this type of features utilizes different
color spaces. In [98], authors introduced a novel technique for grading prostate malignancy
using digitized histopathological specimens of the prostate tissue. The color space that
represents the tissue image is the Lab color space. The Lab color space is preferable than
RGB since it is designed to approximate the color perception in human visual system. Also,
in [14] classification is based on the lab color space. In [105], authors presented a wavelet-
based color feature selection technique utilizing CIELAB color space. They compared
CIELAB in their experiments with many color spaces e.g., RGB, KLT and HSV. CIELAB
attained the highest accuracy.

However, most of the research that focus on feature selection apply a combination
of different types of feature selection to improve the performance. The work presented
in [106] introduced a new content-based microscopic image. The authors applied a hybrid
color and texture feature selection method. They used RGB and HSV color spaces for color-
based feature selection and for each image, an overall of 80 texture features were selected.
The performance of the retrieval system was evaluated for various histopathology image
types and the best retrieval performance was obtained for prostate images. In [107], the
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authors proposed an integrated feature set that combines color and morphological features
to design new CAD system to automatic grade prostatic carcinoma biopsy images. Another
CAD system was introduced in [50] to automatic grade of prostate cancer. The research
used a total of 102 topological-based, morphological-based, and texture-based selected
features from each tissue patch so that quantifying the arrangement of glandular and
nuclei structures within histopathological images of prostate cancer tissues. Another
recent research in [27], provided an automatic system able to accurately detect specific
areas susceptible to be cancerous through presenting a novel method, a combination of
topological-based, morphological-based, and texture-based feature selection for addressing
the hand-crafted feature selection stage.

3.3.3. Classification

Classification is one of the important data analysis domains, which focuses on assign-
ing a sample to one of a set of classes, based on its features [108,109]. For histopathological
images, choosing the appropriate classifier is very significant to cope with huge, high vi-
sual complexity datasets. After segmentation and feature selection, the selected optimal
classifier is applied to classify images for detecting malignancy in HI. In this step, a cell
or tissue is assigned to one of the classes and then it can also be classified for malignancy
level e.g., grading of tumor or type of the tumor [38]. Machine learning classifiers operate
in two modes: learning mode and classification mode. In the learning mode, the selected
features from annotated histopathological images are used to train the classifier. After-
wards, the classifier is used in classification mode on cases without knowledge of true
annotation [10,41]. The different selected features from HI are used to classify the new
images as normal or malignant. Constructing automated classifier systems of histopatho-
logical images is a challenge task in machine learning as histopathological images do
not hold the same morphologic structure of macroscopic images such as human faces,
trucks, text, or animals [94]. Numerous classification methods have been developed for
histopathological images employing machine learning algorithms like k-nearest neighbors
(KNN), support vector machine (SVM), logistic regression method, random forests (RF),
decision trees, fuzzy systems, etc. The details regarding the developed classifiers dealt
with classifying histopathological prostate images have been summarized in Table 4.

Table 4. Summary of publications focused on Prostate histopathology image classification.

Classifier Reference Year AUC Accuracy Specificity Sensitivity

KNN
[66] 2003 - 0.917 - -

[18] 2014 - 0.76 - -

SVM

[48] 2007 - 0.876 - -

[14] 2013 0.75 - 0.83 0.81

[13] 2019

0.98 ± 0.011 for
artefacts versus

glands
0.92 ± 0.04 for
benign versus
pathological

0.95 ± 0.02 for
artefacts versus

glands
0.88 ± 0.07 for benign

versus pathological

0.95 ± 0.03 for
artefacts versus

glands
0.87 ± 0.07 for
benign versus
pathological

0.94 ± 0.01 for
artefacts versus

glands
0.80 ± 0.06 for
benign versus
pathological

[58] 2019 -

0.655 (one-shot
classification)
0.92 (Binary

classification)

- -

Bag-of-Words [22] 2016 - 0.901 0.905 0.79

MLA [21] 2018 - 0.883 0.94 0.876

Boosting Cascade [20] 2006 - 0.88 - -

SVM and Random Forest [19] 2011 0.95 - 0.91 0.89

Fuzzy Set Theory + Genetic
Algorithm [110] 2013 0.824 - 0.95714 0.7097

Adaboost [2] 2016 - 0.978 - -
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KNN is one of the simplest, versatile, and efficient methods used for image classifi-
cation [99]. For instance, the authors in [66] applied KNN to classify HI into four grades
of cancer ranked from 2 to 5. They used different K, e.g., 1, 3, 5, 7 and compared the
results. With K = 1, achieved the highest performance of classification. Another work [18]
applied a KNN classifier with K = 3 to develop an analytical framework to differentiate
between stroma and glands in histopathological images of radical prostatectomies and to
differentiate different Gleason grades. The proposed framework can be used firstly before
quantifying and stratifying anatomic tissue structures.

In theory, a support vector machine (SVM) algorithm could obtain a high performance
because it can maximize the margin between normal and cancerous training samples [10].
There exist many works that make use of SVM classifiers in prostate cancer histopatho-
logical images [13–15,48,58,103,106,107]. In [14], a novel methodology was proposed for
labelling individual glands as normal or cancerous. They applied SVM classifier. SVM is
trained by a linear kernel function to filter out the non-nuclei objects. In [13], the authors
addressed the classification stage using a hand-crafted method that make use of two widely
known classifiers. Specifically, they optimized SVM classifier and used a quadratic kernel
to handle the multi-class classification from a nonlinear method. They achieved promising
results. In [58], the authors developed an automated grading system for histopathological
images of prostate cancer using SVM. After several experiments to compare between SVM
and multilayer perceptron classification method (MLP), they reached to that SVM attained
better results than MLP. Another study introduced a new system for quantitative and
automated grading of prostate biopsy samples [48]. This work used a SVM classifier to
differentiate between four categories of tissue patterns and they used cross-validation to
get the best parameters for the classifier.

Inspired by the bag-of-words (BoW) model extensively used in natural language
processing, the authors in [22] developed a new CAD system for prostate cancer using
speeded-up robust features (SURF). In [21], a new method named multi-level learning
architecture (MLA) is proposed. It depends on the divide-and-conquer algorithm by
assigning each binary task into two different subtasks e.g., (strong and weak).

Multi-classifier systems or ensemble-based combine accuracies of different similar
classifiers for improving the predictions for a problem [7,36]. Early research [20] employed a
modified version of the popular ensemble classifier AdaBoost. To the best of our knowledge,
their research is the first attempt at automatically analyzing prostatic adenocarcinoma
across multiple scales. Some researchers tried to propose a classification technique to work
in multiclass problems. In [19], another ensemble method (SVM plus random forests) was
used to adapt to various imaging modalities, image features, and histological decisions.
They employed statistical analysis using the Friedman test to rank the results of classifiers
on datasets. To the best of our knowledge [110] is the only example that applied a fuzzy
system to HI of prostate cancer, where the authors designed membership functions of
the fuzzy system by using a genetic algorithm. In [2], the authors presented an adaptive
boosting algorithm to support automated Gleason grading of prostate adenocarcinoma
(PRCA). They prepared a pool of classifiers (SVM with linear and radial basis function kernels,
adaptive boosting algorithm, decision tree, RF, linear discriminant analysis (DA) and quadratic
DA). Results of all classifiers were combined using an adaptive boosting classifier.

3.4. Deep Learning-Based Techniques

Recently, adoption of deep learning (DL) techniques in biomedical imaging has had
a positive impact on a broad range of tasks including automatic analysis of histopathol-
ogy images [34,36]. DL creates new clinical tools that outperform the aforementioned
classical machine learning techniques with handcrafted features in terms of accuracy, ob-
jectivity, consistency, and reproducibility. It also provides new insights to clinicians and
researchers [59]. DL techniques are currently the most frequently studied in prostate cancer
histopathology imaging and studies [28,34] have proven that DL models can accurately
detect cancer in histopathological images. DL techniques takes original digital images as
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input, with a minimum preprocessing, and have the benefit of learning features instead
of the conventional selection of handcrafted features, which may be not sufficient or not
accurate [34]. Deep learning techniques learn salient features from data, so a large number
of input images is of great value to the training process. Deep learning cannot be regarded
as a singular technique; it can nearly be considered as adaptation of multi-layer artificial
neural networks to a large variety of challenges, from natural language processing, fraud
detection to computer vision [31]. Neural networks consist mainly of an input layer, a
number of hidden layers, and an output layer, where each layer is composed of neurons.
The input layer firstly takes input data, then the hidden layers execute some mathematical
computations on those input data [111]. The output values of the network are predicated
on the adjustment of internal weights [36]. These weights are computed by the network
through iterative forward or backward propagation of the training data and error back-
propagation respectively [36]. This process takes less effort to code than the conventional
machine learning.

The main obstacle of any deep learning technique is its need for a substantial training
set. Fortunately, histopathology images contain a great deal of information at small scales.
Accordingly, a single slide can produce considerable amount of training patches [34].
Patches generate the effect of extracting portions of an image with the same structure but
relate to images belonging to different classes [7]. Patches are commonly square portions
having dimensionality that ranges from 32 × 32 pixels to 10,000 × 10,000 pixels [59].
Another obstacle of deep learning is the inadequacy of interpreting features and this may
slow the development of CAD systems [34]. In the last decade, neural network architectures
like convolution neural network (CNN), fully convolutional network (FCN), deep neural
networks (DNN), and generative adversarial networks (GAN) are attracting the attention
from the research community because of its recently impressed results on large datasets. A
considerable amount of effort is done on prostate cancer histopathological images using
the different neural networks.

A particular neural network subtype, convolutional neural network; has made sound
advancements in image processing [31,112]. Convolutional networks have the ability to
identify visual patterns with less processing and is persistent in existence of variations and
distortions in pattern [36]. The basic CNN structure is comprised of convolutional, pooling,
activation, classification, and fully connected layers [36,90]. The Histopathology imagery
domain is rapidly adjusting this architecture to enhance a wide range of challenges. In [31],
authors investigated the general applicability of CNN for increasing the performance of
prostate and breast cancer detection in histopathology images. They used fully connected
CNN to get cancer maps for each pixel and make segmentation in the whole slide images.
Results proved that DL has great potential for increasing the performance of detecting
malignancies in H & E images as AUC ranges from 0.88 to 0.99. As far as we know,
researchers in [54] were the first to use images of the entire prostate gland as an input
to the network, instead of using image patches or regions with gland information. They
designed a new CNN architecture that comprises feature selection stage, characterized by
the compound of four convolutional blocks, and the classification phase compound of two
fully connected layers.

Various papers have applied CNN to automatic Gleason grading to perform better
than systems that use conventional machine learning methods. The first attempt to apply
convolutional networks to Gleason score grading prediction is [30], where the authors
applied a pre-trained CNN. The classification stage in CNN was excluded and replaced
with RF and SVM algorithms to classify the feature vectors selected from the network.
In [28], the authors trained different variants of CNN as Gleason score annotator and
utilized the prediction of the model to assign patients into low, medium, and high levels
of risk, attaining pathology stratification results at expert level. Their experiments shown
improved efficacy regarding the applicability of CNN reaching more reproducible and
consistent prostate cancer grading, specifically for cases with heterogeneous Gleason
patterns. Recently, a fully automated grading system using the U-Net was proposed in [29],
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where the authors adopted the conventional U-Net architecture, however after several
experiments, they made the network deeper to be composed of six levels as they added
additional skip connections within each layer block. Their model attained a high agreement
with pathologists.

Aside from CNN, many authors have tried to utilize different techniques in histopathol-
ogy imagery in prostate cancer, for example, the authors in [23] proposed a new deep learn-
ing technique that combines the multi-model neural network, ride NN and optimization
algorithm, Salp–Rider algorithm (SRA), generating the new technique SSA-RideNN. The
experiments showed that SSA-RideNN attained a maximal accuracy, specificity, and sensi-
tivity.

Since the comparison of different techniques is difficult, some studies like [34] tried
to compare different classifiers and deep learning algorithm for automatic grading of
prostate cancer in HI on their new CAD system. Specifically, they have evaluated the
performance of SVM, random forest with several number of trees, logistic regression, and
linear discriminant analysis, and they also estimated the performance of a convolutional
neural network (CNN) on the same training and testing subsets. They used Cohen’s kappa
coefficient to evaluate the performance. The highest value attained is 0.52 by logistic
regression, while 0.37 is attained by using CNN. More recently, the authors in [113] tried
to compare different architectures of CNN—EfficientNet, DenseNet, and U-Net—on two
datasets of prostate cancer HI. Experiments were performed on three-fold cross-validation
and U-Net attained the best results.

Some researchers have studied on the use of DL techniques for automated segmenta-
tion of prostate cancer on histopathology images. In [25], the authors tried to overcome the
struggles of CNN to distinguish overlapping segmentation instances. The study presented
a new nuclei segmentation technique that utilized the conditional generative adversarial
network (cGAN). Their proposed technique enforces a higher consistency when compared
with traditional CNN architectures. In [26], the authors proposed a new nuclei boundary
(NB) segmentation technique using CNN. The technique was proved to be efficient and
faster than other traditional techniques, as one image of dimension 1000 × 1000 pixel can
be segmented in less than five seconds. It works in the following way: firstly, the images are
normalized into the same color space. Secondly, images are split into overlapping patches
to tackle the extremely large image challenge. Thirdly, they proposed a new nucleus
segmentation technique to identify nuclei and boundaries on each patch. Finally, the pre-
dictions of all the patches are combined to get the final prediction result of the whole image.
Driven by the success of region-based CNN (RCNN) and its extensions, authors in [24]
applied RCNN for detection epithelial cells employing grading network head (GNH). They
applied a ResNet in their network for feature selection. Then, they employed GNH for
detecting the class. They added a branch that produces an epithelial cell score using GNH.
Since the proposed network was inspired by Mask RCNN, it was named Path R-CNN.
The details regarding deep learning methods for prostate histopathology images have been
summarized in Table 5.
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Table 5. Summary of publications focused on applying deep learning methods for prostate histopathology images.

Method Reference Year Accuracy Result Software

CNN [31] 2016 AUC ranges from 0.88 to 0.99. N/A

CNN built upon VGG19 [27] 2019
Average accuracy of classifying Artefacts vs. Glands is 95.4%, average

accuracy of classifying Benign vs. Pathological is 88.3%, Average
accuracy of Multi-class classification is 87.6%

Matlab 2018b + Python 3.5 with Keras
library and Tensorflow as backend.

Pretrained CNN [30] 2016 The classification accuracy per image patch is 81%, while for the whole
images, the classification accuracy is 89%. N/A

Different CNN
Architectures

ResNet-50

[28] 2018
They evaluated their results using test cohort and they observed that

MobileNet attained the best performance on the validation set

Python 3 with Keras library and tensorflow
as backend. Some analysis was done in R

by the help of using survminer and
survival packages.

MobileNet

Inception-V3

DenseNet-121

VGG-16

U-Net [29] 2020 The developed model achieved accuracy of 99% for biopsies containing
tumor and a specificity of 82%. Tensorflow and Keras

SSA-RideNN [23] 2019 The technique achieved maximal accuracy of 89.6% and sensitivity of
89.1%, and specificity of 85.9% Matlab

SVM

[34] 2018
They used Cohen’s kappa coefficient to evaluate the performance. The

highest value attained is 0.52 by logistic regression, while 0.37 is
attained by using CNN.

Matlab

Random forest

linear discriminant analysis

logistic regression

CNN

Different CNN
Architectures

EfficientNet
[113] 2020 UNet attained the best result of AUC about 0.98 N/ADenseNet

U-Net

cGAN [25] 2018 The proposed technique achieved F1-score 85.7% for prostate dataset Pytorch 0.4

NB that utilizes CNN [26] 2019 Their proposed model achieves 81.3% precision, 91.4% in recall, and
85.4% in F1.

Python 2.7 with Keras library and
Tensorflow

Path RCNN [24] 2019 Path RCNN attained accuracy of 99% and a mean of area under the
curve of 0.99. Python and Tensorflow backend
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4. Conclusions and Future Perspectives

More than 28% of cancers in men arise in the prostate gland, causing prostate can-
cer, and detection of this type has a high priority in cancer research. Histopathology
images may enhance the early diagnosis and treatment of prostate cancer patients through
providing functional and morphological data about the prostate. Histology is nothing
but examining the stained sample on the slide glass under a microscope. In this survey,
we presented a literature review of the use of histopathology images and its challenges.
We studied different steps of histopathology image analysis methodology. This automatic
process assists pathologists and clinicians in diagnosis and lowers the time spent for exam-
ining large number of tissues. The survey revealed a greater utilization of deep learning
techniques and a constant use of conventional machine learning techniques. It also revealed
that the histopathology image analysis is a topic of increasing interest. Our findings reveal
that there is still room for improvement as CAD systems of histology images composed
of complicated combination of image processing, feature selection, image segmentation,
and classification stage. Moreover, the image processing techniques mentioned in this sur-
vey is not applicable for prostate histopathology image analysis only, but also applicable in
many image analysis domains. This research is an attempt to summarize the most common
and recent developments in prostate cancer CAD systems using histopathology images
and to give an outline on the performance and efficacy of different techniques.

The domain of histopathology image processing of prostate cancer detection is very
vast. According to the challenges to this type of images and disease characteristics, research
in this domain is still being unlocked and many opportunities and future perspectives
remain to study and analyze including: (I) the ability of enhanced interaction with images
from various scanners and across pathologies, in addition to the development of new
techniques that can learn from unlabeled or weakly labeled data; (II) allowing online
consultations; (III) providing accessible histopathology analysis services in remote areas
with limited pathology assist; (IV) developing of new data fusion techniques for integrating
radiologic and histologic measurements for improved disease diagnosis with the function-
ality of real-time image processing and finally (V) applications and computerized software
for histopathological image processing techniques may be incorporated into microscopes
with small size chips. It is therefore expected from those opportunities and future perspec-
tive that we are standing at the threshold of an era that will transform the personalized
diagnosis into better diagnostic systems to decrease the workload of pathologists.
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