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Abstract: The scope of this paper is the design of an interval observer bundle for the guaranteed state
estimation of an uncertain induction machine with linear, time-varying dynamics. These guarantees
are of particular interest in the case of safety-critical systems. In many cases, interval observers
provide large intervals for which the usability becomes impractical. Hence, based on a reduced-order
hybrid interval observer structure, the guaranteed enclosure within intervals of the magnetizing
current’s estimates is improved using a bundle of interval observers. One advantage of such an
interval observer bundle is the possibility to reinitialize the interval observers at specified timesteps
during runtime with smaller initial intervals, based on previously observed system states, resulting in
decreasing interval widths. Thus, unstable observer dynamics are considered so as to take advantage
of their transient behavior, whereby the overall stability of the interval estimation is maintained. An
algorithm is presented to determine the parametrization of reduced-order interval observers. To
this, an adaptive observer gain is introduced with which the system states are observed optimally by
considering a minimal interval width at variable operating points. Furthermore, real-time capability
and validation of the proposed methods are shown. The results are discussed with simulations as
well as experimental data obtained with a test bench.

Keywords: interval observer; bundle of observers; reduced-order hybrid observer; adaptive observer;
induction machine

1. Motivation and Overview

Guaranteed state estimation of uncertain linear continuous time dynamical systems
with time-varying parameters is of increasing interest in various technical applications.
Firstly presented for the induction machine in [1], a reduced-order hybrid interval observer
for the verified state estimation was designed. Its main advantage is the provision of
guarantees regarding the estimated states. A major disadvantage is the relatively wide
interval width resulting in practical inapplicability. To tackle this challenge, a bundle
of interval observers with optimal adaptive gains regarding the operation point of the
plant is designed within this paper leading to a significant reduction of the estimated
interval widths.

Challenges for guaranteed state estimation are the growing complexity of techni-
cal systems in combination with a great demand for functional safety, e.g., autonomous
driving [2], which results in requirements for fault detection and fault diagnosis applica-
tions guaranteeing the safe and reliable operation of the system [3,4]. Furthermore, in the
presence of undesirable effects such as failures in the actuators or sensors, it is desired that
the control system is responsive and adaptive to such failures and adjustable to recover
the system from anomalies and failures [5]. Therefore, the aim of a diagnosis system
is to detect faults as early as possible while, at the same time, false alarms, e.g., due to
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measurement noise or parameter uncertainties exceeding acceptable bounds, have to be
avoided to minimize unnecessary system shutdowns and maximize system reliability and
dependability [6]. For these mentioned challenges and applications, guaranteed state esti-
mation using real-time capable interval observers are an appropriate choice. An overview
about interval estimation applied to the diagnosis and control of uncertain systems is given
in Raissi et al. [7].

One way to achieve guaranteed enclosure is the observation of system states by
considering input and output noise as well as parameter uncertainties in a model-based
estimation setup resulting in essential signals for fault diagnosis and other applications.
Under certain conditions and restrictions, the estimation of the important system states
gives guaranteed results leading to safety diagnosis based on guaranteed intervals for the
signals instead of a measurement value trend or threshold comparison [8].

However, approaches like the extended Luenberger Observer, the extended Kalman
Filter, the High-Gain Observer, the Sliding Mode Observer, theH∞ Observer, or theL2-Gain
Observer are not directly applicable with a priori assumptions on probability distributions
or models of the uncertainties, because these are often unknown for practical applications.
Furthermore, such methods, e.g., Sun et al. [9], cannot be used because they do not provide
necessary guaranteed error bounds [10]. Therefore, it is reasonable to utilize methods that
assume that the uncertainties are unknown but their boundaries are specified, which is
usually given for practical applications.

In the literature, there are two approaches which should be emphasized considering
bounded intervals for the uncertainties, namely set-membership estimators and interval
observers [11,12]. Both aim at providing sets or intervals containing all the possible state
vectors consistent with the model structure, and input and output uncertainties as well as
uncertainties in initial states and the parameters.

Set-membership estimators are based on a predictor-corrector structure with dif-
ferent descriptions of uncertainties, e.g., zonotopes, parallelotopes, subpavings, and
ellipsoids [6,13]. These approaches have issues with real-time capability due to exces-
sive computational effort for the complex and guaranteed description of the uncertainties.
Hence, these methods are not suitable for systems with relatively small time constants like
the induction machine. However, in Zbranek and Vesely [14], a set-membership estimator
for a permanent magnet synchronous machine based on a nonlinear model with four states
is designed. The results show that this approach is only suitable for online operations
under restrictive conditions. In the case of a induction machine with similar time constants,
the coupling of such state estimators to a bundle to improve the performance is not feasible.

In contrast, interval observers are based on the classical observer structure. For each
state a lower and an upper bound is estimated. Due to a less complex description of
the set of possible states, i.e., just a box, the computational effort is lower than with the
aforementioned approach. This method is divided into cooperative-based and hybrid
interval observers [12].

The idea behind the so-called hybrid interval observer is to design dynamical systems
with monotone error dynamics that are activated on certain switching conditions guarding
the states which change the monotonicity of the system [10,15]. These systems enclose all
the state trajectories, generated by the original uncertain system, by estimating a lower and
an upper boundary for each state in a guaranteed way [16,17]. The derivatives of the error
dynamics activate a subsequent system, keeping monotonicity of the error dynamics [18].
Finally, switching conditions describe the change of these derivatives. This leads to a
cooperative system [19] for the error dynamics, resulting in an inclusion of the real state.

Both approaches, set-membership estimators and hybrid interval observers, face the
key challenge of finding a suitable parametrization for the observer or the estimator in
order to get a sufficient tight interval for the estimated states. With the task of considering
input and output noise as well as parameter uncertainties, these methods tend to give con-
servative intervals widths. Especially for electric machines whereby the system dynamics
have time-varying parameters, thus the parametrization of the observer is a crucial task.
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Due to the basic idea of a guaranteed enclosure of states, every interval observer limits
the range of the actual value. Therefore, the actual value has to be below each upper bound
and above each lower bound of the considered interval observers. Due to the fact that
interval observers have to bound the same value, even with different parameterizations,
these interval observers allow a comparison among themselves regarding the narrowest
enclosure of the actual value for the current operating point. This allows that the envelope
to be composed by the lowest upper bound and the highest lower bound chosen out of
each interval observer considered in the estimation setup.

Following this idea, a so-called bundle of interval observers, for which several ob-
servers are run in parallel and the resulting interval is arranged with the most suitable
upper and lower boundary, can be developed. Furthermore, within a bundle, it is possible
to generate interval observers with unstable dynamics, called framers [20], which simply
bound the estimated state without the assurance of stability. Finally, a better convergence
rate as well as smaller interval widths are expected. Interval observer bundles, predomi-
nantly applied to bioprocessess, are presented in [21–23]. Furthermore, a similar approach
is named a bank of observers. Hereby, the main difference between a bundle of observers
and a bank of observers is the used methodical approach for a single observer as well as the
underlying system description. If estimation with zonotopes is considered, the resulting
guaranteed enclosure is the intersection of the solutions [24]. Hence, this would be the set-
membership approach pendant to the bundle approach presented in this paper. Secondly,
if uncertain switching functions are considered to maintain guaranteed interval enclosure
for nonlinear systems, the so-called global solution would be the over-approximation of
activated interval observers [25]. This stabilizes the guaranteed boundaries but does not
minimize the error bounds.

However, most publications on interval observers and bundle of observers do neither
investigate the selection of observer gains, the behavior of unstable observer dynamics,
or an algorithm to determine feasible configurations with respect to an improvement
of the interval width. Their focus is on the design for a suitable structure of a single
interval observer. This strongly depends on the underlying model, hence, this usually is a
challenging task. A subsequent arrangement to a bundle of observers is made using an
arbitrary or a not precisely specified parametrization of the observer gain, which is not
discussed in detail.

In this contribution, to tackle the gap between using a bundle of interval observers to
improve state estimation and obtain an optimal solution for the given task, scenario-based
optimization for the reduced-order hybrid interval observer’s parametrization for a linear
time-varying model of the induction machine is discussed. Hereby, unstable observer
dynamics are considered. Moreover, the results of an offline optimization are used online
to adapt the observer gains during runtime.

Within previously published guaranteed interval estimation techniques [1,10,15,26,27],
realistic sensor errors have not been considered and interval widths need to be minimized
further in order to be applied for a practical algorithm (e.g., fault detection). For such
practical usage of guaranteed interval estimation, the interval width needs to be as small
as possible. Hence, to improve the interval widths for guaranteed state estimation with a
bundle of observers, the reduced-order interval observer approach has been chosen. How-
ever, all these approaches are capable of being used in an observer bundle as presented
within this contribution.

This paper is organized as follows: First, some necessary interval arithmetics, coor-
dinate transformations, and matrix operations are given. Afterwards, the design of the
reduced-order hybrid interval observer is presented. A description of an interval observer
bundle using some preliminary work out of Moisan et al. [23] as well as the necessary
definitions for the hybrid interval observer and the re-initialization approach with an
overview of some re-initialization conditions are introduced. In Section 3, a model of the
induction machine in αβ-coordinates is presented. The Section 4 deals with the design and
implementation of the reduced-order hybrid interval observer and the combination to the
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interval observer bundle. A general time-invariant as well as a time-varying observer gain
are specified. Furthermore, an algorithm for the parametrization of the observer bundle
as well as the reduced-order interval observers with a scenario-based optimization is also
presented in the Section 4. In the process, resulting lookup tables and a switching algorithm
suitable for the adaptive gain are presented.

The validation of the interval observer bundle is executed by comparing the measured
torque with the one calculated with the stator currents under consideration of the respective
uncertainties and the estimated magnetizing current intervals. This is reasonable since the
measurement of the magnetic flux is usually a sophisticated and expensive task.

Finally, the implementation of the whole system along with the re-initialization process
is discussed for the induction machine with simulations and measurement data in Section 5.

2. Preliminaries and Methods

This section presents necessary coordinate transformations, interval arithmetics, and
methods in order to establish the reduced-order hybrid interval observer and the bundle of
interval observers.

2.1. Clarke Transformation

With this transformation, the states of an induction machine within the three phase
system zv(t) are transformed into the αβ-coordinate system zq(t). To be able to consider
uncertain but bounded states of the three-phase system zv(t) with v ∈ [1, 2, 3] represented
by intervals [ zv(t), zv(t)], Definition 1 is used. The interval transformation (3) is obtained
by applying basic interval arithmetic operations as defined in Jaulin et al. [13].

Definition 1. [10] An interval Clarke transformation guaranteeing:

zq(t) ≤ zq(t) ≤ zq(t), q ∈ {α, β} (1)

under consideration of uncertain but bounded variables:

zv(t) ≤ zv(t) ≤ zv(t), v ∈ {1, 2, 3} (2)

is given by: 
zα(t)
zβ(t)
zα(t)
zβ(t)

 =
2
3
·


1 0 0 0 − 1

2 − 1
2

0
√

3
2 0 0 0 −

√
3

2
0 − 1

2 − 1
2 1 0 0

0 0 −
√

3
2 0

√
3

2 0

 ·


z1(t)
z2(t)
z3(t)
z1(t)
z2(t)
z3(t)

. (3)

2.2. Matrix Operations

In order to provide a compact description of the interval observer, we define some
matrix operations in Definition 2. Hereby, Equations (4) and (5) provide a Metzler matrix
W̃ with the main diagonal elements wij with i = j and the absolute values

∣∣wij
∣∣ on the

secondary diagonals with i 6= j of the original matrix W . Furthermore, P̃
+

is obtained
considering only positive values and P̃

−
only negative values of a Metzler matrix. Finally,

the matrices M+ and M− are given with the operations (10) and (11) necessary for the
interval state space representation of a dynamic system.

Definition 2.
W̃ =

(
w̃ij
)
=:M

{
W =

(
wij
)}

(4)
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w̃ij =

{
wij , if (i = j)∣∣wij

∣∣ , otherwise
(5)

P̃
+
=
(

p̃+ij
)
=: P̃+

{
P =

(
pij
)}

(6)

p̃+ij =

{
pij , if

(
i = j ∧ pij ≥ 0

)
0 , otherwise

(7)

P̃
−
=
(

p̃−ij
)
=: P̃−

{
P =

(
pij
)}

(8)

p̃−ij =

{
pij , if

(
i 6= j ∧ pij < 0

)
0 , otherwise

(9)

M+ = max(0, M) =: P+{M} (10)

M− = min(0, M) =: P−{M} = M −M+ (11)

2.3. Reduced-Order Interval Observer

Subsequently, some preliminaries for the design of a reduced-order interval observer
are proposed.

Lemma 1. According to Angeli and Sontag [28], a system:

ẋ(t) = A(x, t) · x(t) + b(x, t) (12)

is called positive if A(x, t) is Metzler and b(x, t) is nonnegative, hence x(t) is nonnegative for all t
if x(t0) is nonnegative.

Hereby, the system can be nonlinear. However, the same properties hold for a time-
varying linear system:

ẋ(t) = A(t) · x(t) + B(t) · u(t)
y(t) = C(t) · x(t) . (13)

Assumption 1. For all t, there exists a one times differentiable L(t) such that:

F̃ =M{F} (14)

with:
F = A22(t)− L(t) · A12(t) (15)

is time-invariant and Hurwitz.
Herein, A12(t) ∈ Rq×(n−q) and A22(t) ∈ R(n−q)×(n−q) are elements of the block matrix

A(t) ∈ Rn×n given as:

A(t) =
[

A11(t) A12(t)
A21(t) A22(t)

]
. (16)

A Hurwitz matrix is a structured real square matrix constructed with coefficients of a
real polynomial, whose zeros lie in the closed left half-plane of the complex plane, yielding
a totally nonnegative matrix. It should be noted that the design of L(t) has to be done in
order to meet the requirements of Assumption 1.
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For the reduced-order Luenberger Observer, the state vector is divided into measurable
states y(t) ∈ Rq and the unmeasurable states r(t) ∈ Rn−q with:

x(t) =
[

y(t)
r(t)

]
. (17)

For the following Proposition 1, matrix operations (4) to (11) are applied.

Proposition 1. If Assumption 1 holds, then a reduced-order interval observer estimating [r(t)]
with u(t) = [u, u] and y(t) = [y, y] is given by:

ρ(t) = r(t)− L(t) · y(t), (18)

x(t0) ∈ [x(t0), x(t0)], (19)[
ρ(t0)
ρ(t0)

]
=

[
r(t0)
r(t0)

]
−
[

L+(t0) L−(t0)
L−(t0) L+(t0)

]
·
[

y(t0)
y(t0)

]
. (20)

Hereby, ρ(t) are the states of the reduced-order interval observer, obtained with transforma-
tion (18). Equation (20) provides the initial states. The dynamics of the reduced-order interval
observer is given as:

[
ρ̇(t)
ρ̇(t)

]
=

F︷ ︸︸ ︷[
F̃+ F̃−

F̃− F̃+

]
·
[

ρ(t)
ρ(t)

]
+

G(t)︷ ︸︸ ︷[
G+(t) G−(t)
G−(t) G+(t)

]
·
[

y(t)
y(t)

]
+

H(t)︷ ︸︸ ︷[
H+(t) H−(t)
H−(t) H+(t)

]
·
[

u(t)
u(t)

]
, (21)

with the matrices based on the time-varying system description (13):

B(t) =
[

B1(t) ∈ Rq×p

B2(t) ∈ R(n−q)×p

]
, (22)

H(t) = B2(t)− L(t) · B1(t), (23)

G(t) =(A22(t)− L(t) · A12(t)) · L(t)
+ A21(t)− L(t) · A11(t)− L̇(t) (24)

and the construction as Metzler matrices:

F̃+ = P̃+{F}, F̃− = P̃−{F}, (25a)

G+(t) = P+{G(t)}, G−(t) = P−{G(t)}, (25b)

H+(t) = P+{H(t)}, H−(t) = P−{H(t)}, (25c)

as well as the inverse interval transformation leading the states to be estimated:

[
r(t)
r(t)

]
=

[
ρ(t)
ρ(t)

]
+

L(t)︷ ︸︸ ︷[
L+(t) L−(t)
L−(t) L+(t)

]
·
[

y(t)
y(t)

]
, (26)

with L(t) being chosen such that Assumption 1 is fullfilled.

Proof of Proposition 1. Initially, it is proven that the dynamical system introduced in
Proposition 1 is a framer (see Remark 1) for ρ(t) and afterwards, the interval width is
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proven to be bounded resulting in an interval observer. To prove the inclusion of ρ(t), the
error dynamics of ρ(t) and ρ(t) as defined in:

ė(t) = ρ̇(t)− ρ̇(t), (27)

ė(t) = ρ̇(t)− ρ̇(t) (28)

are proven to be positive systems. Under consideration of (18), (21), and (28), one gets:

ėρ︷ ︸︸ ︷[
ė(t)
ė(t)

]
=

F︷ ︸︸ ︷[
F̃+ −F̃−

−F̃− F̃+

]
·

eρ(t)︷ ︸︸ ︷[
e(t)
e(t)

]
+

G(t)︷ ︸︸ ︷[
G+(t) −G−(t)
−G−(t) G+(t)

]
·

Y(t)︷ ︸︸ ︷[
y(t)− y(t)
y(t)− y(t)

]

+

H(t)︷ ︸︸ ︷[
H+(t) −H−(t)
−H−(t) H+(t)

]
·

U(t)︷ ︸︸ ︷[
u(t)− u(t)
u(t)− u(t)

]
. (29)

Due to the fact that F is Metzler by construction and G(t), Y(t), H(t), and U(t) are
nonnegative by construction, (29) is a positive system. To get the inverse transformation
under consideration of [ρ(t)] and [y(t)], Equation (18) is adapted by using standard interval
arithmetic operations yielding (26).

In order to prove the boundedness of the resulting estimates, the dynamics of the
interval width:

ρ(t)− ρ(t) = e(t) + e(t) (30)

is proven to be stable. Its dynamics is given by:

ė(t) + ė(t) =ρ̇(t)− ρ̇(t)

=

F̃︷ ︸︸ ︷(
F̃+ − F̃−

)
·
(

ρ(t)− ρ(t)
)
+
(
G+(t)−G−(t)

)
·
(

y(t)− y(t)
)

+
(

H+(t)− H−(t)
)
· (u(t)− u(t)). (31)

Due to the fact that the system matrix in (31) is time-invariant, the system is stable if F̃
is Hurwitz.

Remark 1. If Assumption 1 does not hold, (21) and (26) with an arbitrary L(t) still represent a
framer for r(t) as shown in (29).

The structure of the reduced-order interval observer is shown in Figure 1.
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Linear Time-varying System Dynamics

Hybrid Reduced-order Interval Observer

Error

Model

Error

Model

Figure 1. State-space representation and signal-flow of a linear time-varying system as well as the
reduced-order hybrid interval observer as a block diagram.

2.4. Bundle of Interval Observers

In order to improve the interval estimation for dynamic systems, a bundle of interval
observers is proposed. To be consistent with the requirements and the system description
as well as sensor properties, the bundle of interval observers is defined as follows.

Definition 3. An interval observer bundle B is a finite set of b interval observers ∑i given as:

B =
{

∑1, ∑2, . . . , ∑b
}

, (32)

designed under the same constraintsR given as:

R :


Iκ =

{
κ1, κ2, . . . , κr

}
I ξ =

{
ξ1, ξ2, . . . , ξs

}
(S)

, (33)

with the number of considered uncertain parameters r ∈ N and uncertain output as well as input
variables s ∈ N and the considered model of the system (S). Hereby, κ is the set of model parameters
and ξ the set of output and input variables of the model.
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The definition of (S) as a determined model for the interval observer design, not
necessarily done within the same approach, is reasonable in order to establish non-violating
interval estimation in any case, leading to any ∑i ∈ B to be designed based on the same
system model.

Remark 2. The measurement errors of the considered uncertainties Iκ and I ξ for the error model
are marked as follows:

{[κi], [ξ j]}γ [um]± η % with i = 1, 2, . . . , r and j = 1, 2, . . . , s. (34)

Hereby, a bias (offset) γ coupled with the corresponding unit of measurement [um] and a
relative measurement error η give further information about the underlying error model. Both
values can usually be obtained by the sensor manufacturer’s information.

To complete the description of an interval observer bundle, Definition 2 and property 3
of [23] are presented more generally. Any interval observer ∑i ∈ B encloses the actual
value and therefore provides a valid upper and lower boundary. With B(t) and B(t)
representing every upper and lower boundary produced by the interval observers within
the bundle, this leads to Definition 4.

Definition 4. The best envelopes l(B)(t) estimated by the bundle of observers B is calculated using
the equations:

Binf(t) = min{B(t)}, (35)

Bsup(t) = max{B(t)}, (36)

for all t ≥ t0 resulting in the vector interval:

l(B)(t) =
[
Bsup(t), Binf(t)

]
. (37)

Without detailed information about the properties of the interval observers, the bound-
edness of the bundle is given by Definition 5.

Definition 5. An interval observer bundle B, respectively the envelope l(B)(t) is bounded, if the
stability of at least one interval observer ∑i ∈ B is given.

Remark 3. The possibility arises to supplement the bundle of observers with additional interval
observers that are not necessarily developed using the same method, e.g., the interval observer
proposed in [1], as long as the constraintsR given by Definition 3 are met.

Summarized, the bundle of interval observers B provides an interval for each esti-
mated system state r, e.g.,

[
r(t) r(t)

]
, using the reduced-order interval observer approach

discussed in this paper, by any considered interval observer ∑i within the bundle. The
tightest enclosure of the estimation l(B)(t), given by Equations (35) and (36), leads to a
single interval for each estimated system state.

2.5. Re-Initialization

The proposed interval observer bundle gives the possibility to use unstable framers for
which the convergence of the envelope is not given, but transient behavior may improve
the enclosure of the estimated values. If such unstable dynamics are used, a re-initialization
procedure has to be developed.
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Definition 6. Re-initialization is the procedure of restarting the integrators of ∑i at a specific time
step tR with new initial values given as:

[r0(t
R), r0(tR)] =

[
Bsup(t

R), Binf(tR)
]
. (38)

Remark 4. In case of reduced-order interval observers the initial values have to be transformed
using (20).

Remark 5. The design of the bundle of interval observers and the re-initialization remain within the
continuous time domain. Subsequently, the indices k and k + 1 are used to support the explanations
and represent two adjoining calculation steps.

In the previous works [20,21], re-initialization is executed only at periodical time steps
tR ∈ R+

0 . Hereby, the best estimation performed at the end of the previous calculation
period tk is used to reinitialize the whole bundle at tR = tk+1.

Theorem 1. To apply re-initialization for dynamic systems with relatively small time constants,
re-initialization has to be performed within the same time step as measurements are obtained.

To this, a principal behavior of two interval observers at re-initialization is shown in Figures 2
and 3. For a finite small calculation step, it can be seen in Figure 2 that the two interval observers
do not enclose the same set at tk+1. In contrast, a valid interval estimation is guaranteed if the
whole re-initialization algorithm is performed during the re-initialization time step tR, which is
presented in Figure 3.

Since Definitions 4 and 6 hold, every boundary of the interval observer bundle is used to
calculate the best envelope after solving each initial value problem of the interval observers separately.
Therefore, l(B)(t), respectively the new initial values [r0(tR), r0(tR)], depend on the calculated
values of each interval observer. Hence, the query for re-initialization depends on every interval
observer within the bundle. Consequently, the interval observers re-initialization depends on its
own output values during the same time step leading to an algebraic loop [29].

Hence, initial values x0 for re-initialization obtained at tR = tk are needed to maintain
guaranteed interval enclosures of the real values at subsequent time steps tk+1.

Figure 2. Re-initialization at time step tR = tk+1 with initial values obtained at tk.
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Figure 3. A whole re-initialization during time step tR = tk.

Proof of Theorem 1. It is proven that any linear time-varying system has to be initialized
within the same time step where the new initial values are obtained. Considered is a linear
time-varying system:

ẋ(t) = A(t) · x(t) + B(t) · u(t), (39)

y(t) = C(t) · x(t), (40)

with A(t) ∈ Rn×n, B(t) ∈ Rn×q, and C(t) ∈ Rp×n, which are continuous real matrices.
For each initial value x(t0) = x0, u(t0) = u0 and each continuous input function u(t) ∈ Rq,
the system has a unique and continuously differentiable global solution Φ(t, x(t), u(t))
fulfilling the initial conditions Φ(0, x0, u0) = x0. Furthermore, the output function y(t)
is continuous. Therefore, re-initialization at time step tR

k+1, with a shifted initial value
x(tk) = x0(tk+1) calculated during time step tk as proposed in [23] leads to the necessary
initial value problem’s solution:

Φ(tR
k+1, x(tk), u(tk)) = x0(tk+1) (41)

which does not satisfy the unique global solution Φ(t, x(t), u(t)) of the state space sys-
tem (39) to (40) generally, since Equation (41) is not met for all t ≥ t0.

Remark 6. In case of systems with relatively large time constants T, e.g., bioprocesses discussed in
Moisan et al. [23], the requirement to execute the whole re-initialization process during one time
step can be simplified under the assumption,

Φ(tR
k+1, x0(tk), u0(tk)) ≈ Φ(tk+1, x0(tk+1), u0(tk+1)) (42)

with a sampling time ∆t of the interval estimation algorithms that holds ∆t� T.

Remark 7. In case of unstable systems with small time constants, a periodical re-initialization
leads to areas, e.g., in between tk and tk+1, wherein the behavior of the system states is not well
defined leading to increasing calculation time or a complete termination of the program due to
numerical overflow because of instable dynamics. Hence, in Definition 6, no condition subject to the
re-initialization time tR contrary to Bernard and Gouzé [21] is made. Therefore, the procedure of
re-initialization for systems with small time constants is discussed in detail.
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Thus, an algorithm for systems with relatively small time constants, which do not
fulfill approximation (42), satisfying Theorem 1 has to be developed. To avoid computing
intensive numerical algebraic loops or an analytical solution at each re-initialization time
step tR, resulting from the necessary calculations of Definition 4 and Proposition 1, the
re-initialization is divided into sub tasks to solve the interval observer’s initial value
problem, generating the boundaries B(t) and B(t), check the re-initialization conditions,
and restart the concerned interval observers with new initial values given by l(B)(tR). The
preservation of real-time capability is the question that arises.

To take advantage of the periodical re-initialization and to avoid numerical problems
given by unstable framers, a re-initialization signal δi

R(t) activating the initialization of the
integrators if δi

R(t) = 1 within the algorithms, is composed as follows:

δi
R(t) =


1 for t = k · tr with k = 1, . . . , ∞ ∈ N, tr ∈ R+

1 if any |ri(t)|j ≥ r̂max with i = 1, . . . , 2n

0 otherwise

, (43)

whereby, j = 1, . . . , b, with the number of used interval observers b and ri(t) ∈ {r(t), r(t)}.
The threshold r̂max is an approximation of expected estimated values limited by physical
properties. The first condition in (43) is applied globally, but the second has to be checked
with the states of each interval observer separately. If δi

R(t) = 1 for ∑i, this interval observer
gets re-initialized, the integrators are reset with the new initial values given by (38).

3. Modeling of an Induction Machine

To describe the induction machine’s behavior in the stationary reference frame, a
parameter-varying state-space model based on the inverse gamma representation of the
machine is used as applied in Li et al. [30] in a similar notation. The dynamics (IM) of
the induction machine are given by:

ẋ(t) = A(t) · x(t) + B · u(t), (44)

y(t) = C · x(t), (45)

with
x(t) =

[
is,α(t) is,β(t) iµ,α(t) iµ,β(t)

]ᵀ, (46)

u(t) =
[

us,α(t)
us,β(t)

]
, (47)

A(t) =


− Rr+Rs

Lσs
0 Rr

Lσs

ωL(t)·Lh
Lσs

0 − Rr+Rs
Lσs

−ωL(t)·Lh
Lσs

Rr
Lσs

Rr
Lh

0 − Rr
Lh

−ωL(t)

0 Rr
Lh

ωL(t) − Rr
Lh

, (48)

B =

[
1

Lσs
0 0 0

0 1
Lσs

0 0

]ᵀ
, (49)

C =

[
1 0 0 0
0 1 0 0

]
(50)

and
ωL(t) = zp ·ωmech(t). (51)

The states x(t) contain the measurable stator current components is,α(t) and is,β(t)
and the unmeasurable components of the magnetizing current iµ,α(t) and iµ,β(t) while the
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input u(t) contains the stator voltage components us,α(t) and us,β(t). Five time-invariant
parameters are included, namely the number of pole pairs zp, the main inductance Lh,
the stator leakage inductance Lσs, the stator resistance Rs, and the rotor resistance Rr.
The time-varying parameter ωmech(t) is the mechanical angular velocity gained by the
differentiation of measured mechanical angle.

The torque of the induction machine is given in Quang et al. [31] by:

M(t) =
3
2
· zp · Im{Ψ∗s (t) · is(t)}. (52)

Applying the equation:

Ψ∗s (t) = Lh · i∗r (t) = Lh · (iµ(t)− i∗s (t)) (53)

as well as:

is(t) = is,α(t) + j · is,β(t) (54)

and

iµ(t) = iµ,α(t) + j · iµ,β(t) (55)

yields the torque of the induction machine:

M(t) =
3
2
· zp · LhIm{is,β · iµ,α − is,α · iµ,β}. (56)

Hereby, complex conjugate numbers are marked with (.)∗ and the imaginary unit j is
considered as well as the operator Im{(.)} selecting the value of the imaginary part of the
complex number. Furthermore, the interval representation of the torque is calculated using
basic interval arithmetic operations as defined in Jaulin et al. [13].

4. The Design and Implementation of the Bundle of Interval Observers for the
Induction Machine

In this section, the preliminaries presented in the previous sections are used and the
methods are applied for the design and implementation of the bundle of observers for the
induction machine. The composition of the reduced-order hybrid interval observers into a
bundle of observers and the re-initialization process as well as the parametrization of the
observer’s gain are presented. The number of used reduced-order hybrid interval observer
is defined by the suggested optimization strategy. A general design procedure closing this
section summarizes the algorithms presented in this paper.

4.1. The Re-Initialization Process

For the re-initialization signal δi
R(t), the two parameters tr and r̂max have to be chosen.

Firstly, the periodical re-initialization time is chosen to tr = 0.25 s. Since there is no
information given about the behavior of the transient phase of the magnetizing current,
this value is a first guess and has to be adjusted with simulations or experiments.

The maximum expected value is derived from a physical point of view. Given the
rated current of the induction machine irc = 21 A, an upper limit of expected currents r̂max
can be approximated using the relationship of the inrush current, which is about seven
to eight times higher than the rated current [32]. By representation in αβ-coordinates, the
in-rush current has to be transformed using the Clarke transformation (3). Summarized,
in case of the induction machine presented in this paper, the upper boundary of expected
values is established as:

r̂max = 224 A. (57)

Finally, the structure of the re-initialization algorithm under consideration of Lemma 1
is obtained as depicted in Figure 4. In this figure, the black path is processed continuously
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during runtime. Only if one of the re-initialization conditions is true, the gray part of the
algorithm gets executed resulting in an initialization of the integrator. Within this figure,
the remaining parts of the reduced-order interval observer, see Figure 1, are not shown.

Re-

initialization

conditions

Calculation

of the best

enclosure

Re-initialization Structure (RS)

reset

Clock

Figure 4. Structure and signal flow of the re-initialization process of one reduced-order hybrid
interval observer. The gray part of the algorithm is executed only if the condition δi

R(t) == 1
is fulfilled.

4.2. The Interval Observer Gain

For the design of the reduced-order hybrid interval observer, the observer gain L(t)
using (15) and satisfying positivity as well as stability of the estimation errors is further
named Lf(t) and given by:

Lf(t) =
[

lf,11(t) lf,12(t)
lf,21(t) lf,22(t)

]
=

(
A22(t)−

[
f11 f12
f21 f22

])
A−1

12 (t). (58)

Hereby, fij ∈ θf = [f11, f12, f21, f22] with i, j ∈ {1, 2} are the elements of the resulting
system matrix F, see (15), utilized as design parameters θf of the interval observers. Fur-
thermore, because of the time-variant matrices A22(t) and A−1

12 (t), the observer gain Lf(t)
is dependent on ωL(t). The precondition that the matrix A12(t) is invertible for all t ≥ t0
is always met for the induction machine. When applying to other technical systems, this
condition has to be checked to obtain a general formula for the observer gain Lf(t) yielding
a constant system matrix (15).

Secondly, an observer gain independent of the system matrix may be desired. In the
following, such an observer gain is denoted as:

Ll(t) =
[

ll,11(t) ll,12(t)
ll,21(t) ll,22(t)

]
, (59)

with the elements ll,ij ∈ θl = [l11, l12, l21, l22] with i, j ∈ {1, 2}. Given the observer gain
Ll(t), stability of the error dynamics is not ensured because the resulting system matrix
F(t) is time-varying and hence, the matrix F̃ of (31) is not Hurwitz in every case. However,
with this observer gain a framer can be set up.

4.3. Parametrization of the Observers

An optimization algorithm is proposed that determines configurations for the in-
terval observers in order to minimize the interval widths for a feasible operation area
of the time-varying parameter ωL(t). Additionally, unstable configurations are a result
of this procedure which improve the interval widths further. For the implementation of
the optimization’s results, lookup tables (LUT) followed by the adaptive observer gain
are designed.

Given the basic idea of a bundle of interval observers, it is useful to optimize the
estimation of each interval in [r(t)] separately. In case of the induction machine these are
the intervals for the magnetizing currents:

[rᵀ(t), rᵀ(t)] =
[
iµ,α(t), iµ,β(t), iµ,α(t), iµ,β(t)

]
. (60)
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Subsequently, there width is called lα(t) and lβ(t) and calculated using:

[
lα(t), lβ(t)

]ᵀ
=
[
iµ,α(t)− iµ,α(t), iµ,β(t)− iµ,β(t)

]ᵀ
. (61)

Hence, half of the interval observers within the bundle are optimized to shrink the
interval width lα(t) and the other half the interval width lβ(t).

Furthermore, both introduced observer gains (58) and (59) should be utilized to
achieve optimal results. On the one hand, this is reasonable since the observer gain (59) is
neither influenced by ωL(t), nor G(t) by ω̇L(t) (see Equation (24)). In that case: the observer
gain is time-varying and the estimation interval is enlarged because of additional interval
calculations resulting in an amplification of the wrapping effect [33]. On the other hand,
the information of the angular velocity is useful to minimize the interval widths with (58),
because the operation point is known and an optimal gain can be calculated offline.

Unfortunately, with a time-varying ωL(t) for both sets of possible observer param-
eters θl(t) = [l11(t), l12(t), l21(t), l22(t)] and θf(t) = [f11(t), f12(t), f21(t), f22(t)], whereby,
both sets can be constant or time varying, it is not possible to find the minimal enclosures
of the interval error estimation (30) analytically. The reasons are complex dependencies
of the matrices of (30) to obtain zeros of its first derivation analytically in order to mini-
mize the influence of the observer gain, see Appendix A for a full representation of the
system matrices. Hence, the interval widths are minimized numerically based on scenar-
ios of ωL(t) considering a variety of observer gains θl(t) and θf(t) within the bundle of
interval observers.

The three scenarios shown in Figures 5–7 are considered. Firstly, various constants (sce-
nario A) of ωL(t) are utilized. Secondly, the rising and falling edges of a linear (scenario B)
as well as a sinus function (scenario C) representing ωL(t) with either ω̇L(t) ≥ 0 or
ω̇L(t) < 0. For these scenarios, the torque remains constant Mset(t) = 4 N m.

Given these scenarios, the number of interval observers within the bundle are defined.
For each magnetizing current lα(t) and lβ(t) an interval observer is needed for the scenario
(Figure 5) and two interval observers for both directions of the derivatives ω̇L(t) for
Figures 6 and 7. Given two different approaches for observer gain (58) and (59), the total
number of interval observers within the bundle is 20. This number can be increased with
more scenarios or additional observer gains. Within this contribution, the simulation of the
whole procedure is done with these 20 observers representing each proposed combination
of parameters, scenarios, and signs of the time-varying parameters. For each combination of
scenario, sign of ω̇L(t) and set of observer gains θl(t) or θf(t) one optimization is processed
leading to one parametrization for the specific combination. Obviously, more scenarios
or distinct ranges of ωL(t) can be determined in order to polish the interval observation,
but, this should be done with the requirements of an actual task specifying the desired
operation range of the induction machine.

0 8 16 24 32
−300

−150

0

150

300

t in s

ω
L
(t
)
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s−

1

Figure 5. Scenario A for ωL(t) representing constant operating points (revolutions per second).
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Figure 6. Scenario B for a slowly changing ωL(t) (revolutions per second).
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Figure 7. Scenario C for more rapid changes of ωL(t) (revolutions per second).

For the implementation of the adaptive observer structure, the scenarios for ωL(t) are
divided into parts representing different operation areas. For each part, the optimization
is solved offline with the given scenarios. The resulting parameters are stored in lookup
tables (LUT) which can then be called during online operation. The necessary values u(t)
and y(t) for the optimization are calculated with the scenario and the induction machine’s
model, see Section 3, in advance. These data are divided into m sections resulting in
ωL(∆ti), u(∆ti), and y(∆ti). In each section, ∆ti = ti+1 − ti with i = 0, 1, . . . , m− 1 ∈ N, a
feasible set of parameters is searched. The edges of these sections are the supporting points
of the lookup tables.

Given this setup, either the parameters θl or θf are used in order to minimize lα(t) or
lβ(t). For each section ∆ti in the scenarios, one optimization is performed in order to obtain
the optimal values θ∗l and θ∗f for this section. The objective functions (62) are minimized in
order to obtain optimal parameters for the associated operating area. Hereby i specifies
the requested set of parameters by the lookup table which is passed to the observer gain
during online operation.

Jα(θ
∗
l ) = min

∫ ti+1

ti

lα(θi
l, [u(τ)], [y(τ)], ωL(τ), τ)dτ,

Jα(θ
∗
f ) = min

∫ ti+1

ti

lα(θi
f, [u(τ)], [y(τ)], ωL(τ), τ)dτ,

Jβ(θ
∗
l ) = min

∫ ti+1

ti

lβ(θ
i
l, [u(τ)], [y(τ)], ωL(τ), τ)dτ,

Jβ(θ
∗
f ) = min

∫ ti+1

ti

lβ(θ
i
f, [u(τ)], [y(τ)], ωL(τ), τ)dτ.

(62)

It should be noted that there are no constraints given for the parameters. This is
intended to ensure that unstable configurations can be set up. With the presented re-
initialization, such unstable framers tighten the interval estimation further. To avoid
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problems with high numerical values due to unstable eigenvalues, which may lead to the
termination of the optimization, one stable interval observer runs in parallel, as it would
be within a practical application, but, without impact on the optimization process. Further-
more, this is necessary so as to monitor and re-initialize the unstable framer (procedure as
presented in Section 4.1).

Finally, a basic sectioning algorithm solving the optimization numerically is chosen [34].
With the assumption of multiple local minima, the algorithm should be able to bypass
problems like jumping between valleys or a low convergence rate. It is expected that
the algorithm remains within such a local minimum, which is inthe case of this paper, a
suitable approach that is sufficient to show the effectiveness of the general approach.

4.4. Adaptive Observer Gain Using Lookup Tables

Before the bundle of observers is set up, some preliminaries and requirements have to
be reconsidered. Given Equation (24) and the proof of Proposition 1, the elements of the
observer gains as well as their derivatives in (64) have to be continuous. These derivatives
are given by:

d
dt

L(θf(t), t) = L̇(θ̇f(t), θf(t), t) (63)

and

d
dt

L(θl(t), t) = L̇(θ̇l(t), θl(t), t). (64)

Equation (63) is presented in detail in Appendix A, the derivative of (64) can only be
approximated numerically since there is no functional connection of the change between
two consecutive values of θl(t). Hence, if an observer, using the optimal configurations
stored in the lookup tables, is to be implemented, the scheduling of L(t) and L̇(t) is to be
designed such that continuity is assured.

4.5. Parameter Switching Functions

With the results of Section 4.3, a switching function has to take different operating areas
into account. Hereby i specifies the requested parameter by the lookup table (LUT). If the
measured value of the angular velocity lies within a specific section ωL(∆ti), the matching
observer configurations θi

l(∆ti) or θi
f(∆ti) are retrieved from the lookup table and passed

to the observer. These changes, comparable to step functions, are not continuous, thus, they
give no satisfaction on the necessary continuous derivatives (63) and (64). Furthermore,
because of the necessary continuous derivatives θ̇l(t) and θ̇f(t), interpolation with spline
methods or polynomials is difficult to set up and computationally intensive, especially for
online operation. The condition for a continuously differentiable change of parameters is
met if:

θ̈
i
l,f(tk) = θ̈

i+1
l,f (tk+1) (65)

is satisfied. To meet the requirements, the second order linear time invariant (LTI) transfer
function (66) is introduced, in order to filter the change of the parameters.

Gη(s) =
1

(s + η)2 =
1/η2

1/η2s2 + 2/ηs + 1
(66)

With two identical time constants η, which can be used as tuning parameters, an
overshoot is prevented. This is reasonable with the proposed optimization that generates
configurations which are approximately local minimizers in between two supporting points
of ωL(t). With the transfer function (66) and an additional auxiliary state z1(t) to monitor



Sensors 2021, 21, 2584 18 of 27

condition (65) the state-space system (67) achieving a continuous differentiable adaptive
gain is set up. ż1(t)

ż2(t)
ż3(t)

 =

0 1 0
0 0 1
0 −1/η2 −2/η

z1(t)
z2(t)
z3(t)

+

0
0
1

θi+1

θi(t)
θ̇i(t)
θ̈i(t)

 =

0 −1/η2 0
0 0 −2/η

1 0 0

z1(t)
z2(t)
z3(t)


with z0 = θi · η2

(67)

The state z1(t) is necessary since the lookup table may request new observer gains
during the transient phase for the previous parameter set leading to noncontinuous behav-
iors. Hence, a change of gains is possible as long as θ̈i(t) = θ̈i+1(t) = 0 with z1(t) = θ̈i(t).
Otherwise the locus of ż3(t) and ż2(t) is not continuous. In Figure 8, the structure of the
adaptive observer gain (AG) as well as the re-initialization (RS) is shown.

Re-

initialization

conditions

Calculation

of the best

enclosure

LUT

Re-initialization Structure (RS)

Adaptive Observer Structure (AG)

reset

Clock

Figure 8. Extensions of the interval observer: Re-initialization structure (RS) and the adaptive
observer gain (AG) selecting the optimal observer parametrization θ from a lookup table (LUT)
depending on ωL(t). After the LTI (linear time invariant) switching function (67), the observer gain
L as well as its derivative L̇ are set up for the reduced-order interval observer.

4.6. Set Up the Error Model

It is not sufficient to set up an arbitrary error model when using interval observers
at a plant where measurement data are obtained using sensors and control variables are
uncertain. Therefore, a feasible error model for the input voltages uu,v,w(t) as well as the
stator currents is,α(t) and is,β(t) have to be selected.

The measurement error of the stator currents is provided by the sensor manufacturer.
Unfortunately, the error model for the input voltages is not given directly. Though, using
the interval model of an inverter and the knowledge about the uncertain DC link voltage
leads to the representation of the input voltages as intervals. A detailed interval model of
the chosen inverter model is presented in Krebs et al. [35] which completes the error model
for the interval observers. The error model of the setup is given as follows:

I ξ =
{
[UDC]

0.48 V, [y(t)]0.5 A}. (68)
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Herein, [UDC] is the DC link voltage’s uncertainty. The parameters are assumed to be
exactly known.

Iκ = ∅ (69)

4.7. Composition of the Estimation Setup

Finally, the bundle of interval observers is given by (70).

B :



{
∑1, ∑2, . . . , ∑20

}
Iκ = ∅

I ξ =
{
[UDC]

0.48 V, [y(t)]0.5 A}
(IM)

. (70)

The hybrid interval observers ∑i with Equations (21)–(26) estimating the magnetizing
current components r(t) = [iµ,α(t), iµ,β(t)]ᵀ as well as the extensions, presented in the
previous sections, are shown in Figure 1. The narrowest envelopes are calculated using
Definition 4. Each interval observer is supplemented with the re-initialization procedure
(RS) as presented in Section 4.1 as well as a lookup table (LUT) together with the adaptive
observer gain (AG) using the optimization results given by Section 4.3 as shown in Figure 8.
The signal-flow graph is presented in Figure 9.

AG
RS

RS
AG

Interval Observer i
with Extensions

Interval Observer b
with Extensions

Figure 9. Structure of the interval observer bundle B. Hereby, ∑i are the reduced order interval
observers considered within the bundle and [ri(t)] are the estimated interval values. The best
envelopes l(B)(t) are calculated with Binf(t) and Bsup(t), see Definition 4. Adaptive observer
parameters are obtained based on ωL(t) with the adaptive observer gain (AG) and re-initialization
conditions are monitored within the re-initialization structure (RS) providing the re-initialization
signal δi

R.

4.8. Summary of the Design Approach

In Figure 10, a flowchart for the design procedure is presented. Given the technical
representation of the problem to be observed, a suitable mathematical model (S) must
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be established (cf. Section 3). With this model the interval observer architecture can be
chosen, for example the reduced-order hybrid interval observer presented in this paper
(see Section 2.3). Given the structure of the interval observer, the tuning parameters can
be identified (cf. Section 4.2). These parameters are used for offline optimization to get
a suitable parameterization for each operating area of interest (see Sections 4.3 and 4.4).
With a priori knowledge about the system’s time constants and an approximation for the
maximum expected values r̂max, the re-initialization signal is to be determined. The error
model is assembled with the information about the sensor and parameter uncertainties Iκ

and I ξ (cf. Section 4.6). Finally, the bundle of interval observer can be implemented as
presented within the previous sections.

Set up the mathematical model of the plant

Evaluate which observer structure is applicable

 for the given model and choose a suitable approach

Identify the tuning parameters of the observer gain

Determine the measurement and parameter uncertainties

   and    , set up the error models

Determine the re-initaliziation signal     , especially

Set up the optimization in order to minimize the 

estimated envelops         

Merge the bundle of observers      with the extensions

Figure 10. Flowchart of the design procedure.

5. Results

The simulation and experimental results are obtained by considering an induction
machine with a rated power of 2 kW, a rated torque of 6.3 N m, and a rated speed of
3000 1

min . The numerical values of the parameters listed in Table 1 are assumed to be
known exactly. A lookup table for the torque control as well as a cascaded PI controller for
the current control followed by an ideal voltage source inverter, with a DC link voltage
of 48 V arrange the control system of the induction machine. As load, a speed regulated
synchronous machine with a maximum torque of 32 N m is used. The angular velocity
ωmech(t) is obtained by an incremental encoder and assumed to be known exactly. Within
the simulation, the setpoint of the output torque is given as Mset(t) and Equation (56) is
used to calculate the output torque of the induction machine. Hence, only the interval
inclusion of the measured torque Mmv(t) against the calculated interval with Equation (56)
and the estimations are presented. Within the experimental setup, the input voltages
u(t) can not be measured directly. Therefore, these values have to be calculated with the
controllers output signals and the ideal model of a voltage source converter leading to the
necessary input voltages u(t).

The simulation scenario is shown in Figure 11. For the analysis with measurement
data, the scenario presented in Figure 12 is considered. The comparison of the bundle of
observers against the benchmark interval observer ∑REF given by [10] is shown in Figure 13
(simulation) and Figure 14 (measurement data). With (56) and the measured output torque,
the validation is presented in Figure 15.

The results are presented for the interval estimation of iµ,α(t). Qualitatively, the same
results are obtained for iµ,β(t).
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Table 1. Parameters of the induction machine under consideration.

Rr Rs Lh Lσs zp

12.6 mΩ 16.7 mΩ 1.3 mH 108.82 µH 2
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Figure 11. Used scenario for the simulation. Mset(t) (red, dashed) and ωL(t) (blue, solid).
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Figure 12. Scenario given by measurement data obtained at the test bench. Measured torque Mmv(t)
(red, dashed) and angular velocity ωL(t) (blue,solid).

5.1. Interval Width Improvement

Compared with the single interval observer, the bundle is able to suppress the initial
overshoot and to achieve a fast convergence for different operation areas. The narrowing
of the envelope lα(t) shows significant improvement presented in Figure 16 (simulation)
and Figure 17 (measurement data). Furthermore, the influence of the angular velocity’s
amplitude during periods with constant ωL(t) is nearly decoupled from the resulting
interval width. The bundle of observers shows its full potential in the neighborhood
around ωL(t) = 0. In this operation area, the influence of the interval arithmetic operations
is decisive but minimized with the optimized observer configurations. Nevertheless, the
combination of rapid changes and zero crossings of ωL(t) challenge the interval observers
for the induction machine. Hereby, the interval observers implemented with (59) are able to
reduce the interval width, which is presented in Figure 18, but still, a temporarily widening
can not be avoided with the established configuration.

A similar improvement is obtained with measurement data, see Figure 19. However,
the resulting interval width is not suitable, which can mainly be attributed to a too large
input uncertainty, due to the interval model of the inverter that is adding additional interval
calculations within the chain of the estimation algorithm. Hereby, each zero crossing of the
stator currents within the used interval model of the inverter contributes the deterioration
of the interval width. The principle improvement of the guaranteed state estimation with
measurement data is shown.

The validation of the reduced-order interval observer and the observer bundle is
successful. The calculated interval of the output torque follows the measured torque’s
dynamics and enclosures the real value for the whole simulation (see Figure 15).
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Figure 13. Interval width lα(t) of the bundle of observers B (red) compared with the single interval
observer ∑REF (blue).
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Figure 14. Interval boundaries iµ,α(t) (red) and iµ,α(t) (blue) of the bundle of observers B of the
scenario with measurement data.
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Figure 15. Torque interval boundaries M(t) and M(t) (blue, solid) calculated with iµ,α(t) and iµ,α(t)
of B (see Figure 14) compared with the measured torque Mmv(t) (red, dashed).
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Figure 16. Relative interval width improvement in % with respect to ∑REF.
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Figure 17. Relative interval width improvement in % with respect to ∑REF.

0 2 4 6 8 10 12 14 16
0

2

4

6

t in s

l α
(t
)

in
A

Figure 18. Interval width lα(t) of the bundle of observers only with configurations θf (t) (red, dashed)
compared with θl(t) (blue, solid).
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Figure 19. Interval width lα(t) of the bundle of observers B (red, dashed) compared with the single
interval observer ∑REF (blue, solid) of the scenario with measurement data.

5.2. Reinitalization & Unstable Configurations

Firstly, the periodical re-initialization has not shown improvements on the interval
widths. Hence, the re-initialization process is mainly driven by the second case of (43). Nev-
ertheless, the re-initialization process is used to take advantage of unstable configurations
and is necessary for the implementation of the unstable interval observers.

The presented optimization achieves two different types of results for the parameters
θl and θf:

(i) The eigenvalues of the resulting system matrices are negative, which also yields
stable and bounded error dynamics in case of θf together with Proposition 2.3;

(ii) Considering the optimization and the results with parameters θf it can be observed
that the optimization algorithm shifts one off-diagonal element f12 or f21 of the
system matrix to zero. The matching main diagonal element f11 or f22 then results
in an unstable eigenvalue. Hence, the dynamics of this unstable eigenvalue does
not affect the dynamics of the stable eigenvalue. The remaining optimization



Sensors 2021, 21, 2584 24 of 27

parameters, in case of the induction machine three, are used to minimize the
interval width. Since the optimization and estimation is done separately for
each unmeasurable state, this procedure leads to appropriate results. Further
improvements could be made by setting one off-diagonal element a priori to zero
and starting the optimization using this knowledge about the behavior and the
considered scenario.

5.3. Real-Time Capability

The interval observer bundle presented in this paper was successfully tested at the
test bench sketched in Section 5 and [10]. For the investigation of the discussed methods,
the number of implemented interval observers within the bundle was gradually increased
until the real-time controller (dSPACE ds1005 Controller Board) was unable to perform the
algorithm in real-time. It resulted in a total number of 15 reduced-order hybrid interval
observers with the whole extensions established in this paper capable of running in parallel.
Hereby, none of the possible combinations with the prior proposed 20 interval observers
are tested. Such a procedure needs to be done if the bundle of observers is applied to a
specific technical system, whereby, the overall performances needs to be optimal.

For the experimental setup, the sampling frequency of the whole test bench is not
known. Furthermore, the numerical discretization scheme, e.g., the Runge–Kutta method,
as well as the implementation of interval operations in real-time environment is done with
default settings of Simulink Embedded Coder. Hence, potential in order to speed up the
algorithms or to increase the accuracy exist.

However, real-time capability has been shown up to a certain number of reduced-
order interval observers. This may be improved with a detailed look into implementation
as well as a real setup on which the bundle has to perform.

Additionally, with a detailed study about the interval observers within the bundle
and the corresponding lookup tables with the parameters concerning the best enclosure
for certain scenarios, interval observers with little improvement can be removed from the
observer bundle which is then capable for practical use in real-time setup.

6. Conclusions

The design procedure for guaranteed state estimation of unmeasurable states is a
challenging task. Hereby, the determination of an optimal observer gain depends on the
chosen interval observer structure, the system properties, and the range of operation. The
presented interval observer bundle’s underlying reduced-order hybrid interval observer
does not restrict the configuration of the observer gain, but neither does it give specific
statements about the resulting interval widths with respect to the eigenvalues nor the
observer gain itself, especially not in case of parameter-varying systems. Therefore, a
bundle of interval observers was proposed which overcomes the difficulty to choose an
optimal observer gain by introducing a set of configurations covering the most important
operating points with respect to the time-varying parameters.

The proposed methodical approach made huge improvements on the estimated inter-
val widths of the induction machine’s magnetizing currents. The underlying reduced-order
interval observers with their low computational effort yielded the possibility to supplement
a bundle of interval observers for the given induction machine model with its small time
constants. Furthermore, the offline optimization with its objective function’s decomposition
and the adaptive gain give the potential to optimize the estimation for a priori considered
operation areas, whereby, the continuity conditions are met.

Due to the continuity of the observer gain parameters, the switching of the configura-
tion can not be done immediately. Therefore, the effect of the adaptive gains are delayed.
Nevertheless, real-time capability as well as the verification of the proposed methods are
successfully tested with measurement data of an induction machine and show a significant
decrease of the estimated state’s interval width.
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The applied number of interval observers within a bundle of observers as well as
global optimization leading to a guaranteed and optimal enclosure of the estimated states
should be considered for practical tasks.

Furthermore, the results within a real-time setup will be improved by applying
instrumentation to measure the input voltages of the induction machine. Moreover, instru-
mentation with small measurement errors lead to an improvement of the interval widths
for single observers and thus also for a bundle of observers.

A drawback of the proposed interval observer is the influence of the wrapping
effect [33]. The over-approximation due to the interval calculations is amplified by the
shape of the state-space representation, which also affects the calculation of the initial val-
ues at the time steps of re-initialization, which is attributed to the necessary transformation
of the reduced-order observer.

Future work will be the consideration of uncertain parameters like the angular velocity
ωL(t). It is expected that the interval width can be kept within a feasible envelope for
further applications like machine control or fault diagnosis.
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Appendix A

With Equation (58), the matrix elements hi,j(t) of Equation (23) are given by:

h11(t)=− 1
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R2
r +L2

hωL(t)
2−
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h22(t)=− 1
Lσs

(
− Lσs

Lh
− Rr f22 Lσs

R2
r +L2

hωL(t)
2 +

f21 LhωL(t)Lσs
R2

r +L2
hωL(t)

2

)
. (A4)

With Equation (58) the matrix elements gi,j(t) of Equation (24) are given by:

g11(t)=− 1

Lh

(
L2

hωL(t)
2+R2

r

)2 L3
hRrωL(t)

(
Lσs
(

ωL(t)
(

f11

(
f11+ f22

)
− f12

(
f12− f21+ωL(t)

))
+ωL(t)

(
f12

(
f12+ωL(t)

)
− f11 f22

)
+2 f11ω̇L(t)

)
+ f11ωL(t)

(
Rr+Rs

))
+L2

hR2
r

(
Lσs
(

f11

(
ωL(t)

(
− f12+ f21+ωL(t)

)
+ωL(t)

(
2 f12− f21+ωL(t)

))
+ f12

(
f22ωL(t)−ω̇L(t)

))
+ωL(t)

·
(

Rs
(

f12+2ωL(t)
)
+ f12Rr

))
+LhR3

r

(
Lσs
(

f12

(
f21+ωL(t)−ωL(t)

)
+ f 2

11

)
+ f11

(
Rr+Rs

))
+L4

hωL(t)2
(

ωL(t)
(

Rs
(

f12+ωL(t)
)
+ f12Rr

)
+Lσs

(
ωL(t)

(
f12 f22+ f11

(
f12+ωL(t)

))
+ f12ω̇L(t)

))
+R4

r

(
f11Lσs+Rs

)
−l̇f,11(t),

(A5)



Sensors 2021, 21, 2584 26 of 27

g12(t)= 1

Lh

(
L2

hωL(t)
2+R2

r

)2 L2
hR2

r

(
Lσs
(

ωL(t)
(

f 2
12− f12ωL(t)− f11 f22

)
+ωL(t)

(
f11

(
f11+ f22

)
− f12

(
f12− f21+ωL(t)

))
+ f11

(
−ω̇L(t)

))
+ f11ωL(t)

(
Rr+Rs

))
+L4

hωL(t)2
(

Lσs
(

ωL(t)
(

f12 f21− f12ωL(t)

+ f 2
11

)
+ f11ω̇L(t)

)
+ f11ωL(t)

(
Rr+Rs

))
−L3

hRrωL(t)
(

Lσs
(

f11

(
ωL(t)

(
2 f12− f21+ωL(t)

)
−ωL(t)

(
f12− f21

+ωL(t)
))

+ f12

(
f22ωL(t)+2ω̇L(t)

))
+ f12ωL(t)

(
Rr+Rs

))
−LhR3

r

(
Lσs
(

f12 f22+ f11

(
f12−ωL(t)+ωL(t)

))
+ f12Rr+ f12Rs

)
− f12LσsR4

r−l̇f,12(t),

(A6)

g21(t)− 1

Lh

(
L2

hωL(t)
2+R2

r

)2 L4
hωL(t)2

(
Lσs
(

ωL(t)
(

f21

(
f12+ωL(t)

)
+ f 2

22

)
+ f22ω̇L(t)

)
+ f22ωL(t)

(
Rr+Rs

))
+L3

hRrωL(t)
(

Lσs
(

f22

(
ωL(t)

·
(

f12− f21+ωL(t)
)
−ωL(t)

(
f12−2 f21+ωL(t)

))
+ f21 f11ωL(t)

+2 f21ω̇L(t)
)
+ f21ωL(t)

(
Rr+Rs

))
+L2

hR2
r

(
Lσs
(

ωL(t)
(

f21

(
f12− f21

+ωL(t)
)
+ f22

(
f11+ f22

))
+ωL(t)

(
f21

(
f21+ωL(t)

)
− f11 f22

)
− f22ω̇L(t)

)
+ f22ωL(t)

(
Rr+Rs

))
+LhR3

r

(
Lσs
(

f21 f11+ f22

(
f21+ωL(t)

))
+ f21Rr+ f21Rs

)
+ f21LσsR4

r

−l̇f,21(t),

(A7)

g22(t) 1

Lh

(
L2

hωL(t)
2+R2

r

)2−L3
hRrωL(t)

(
Lσs
(

ωL(t)
(

f21

(
f12− f21

+ωL(t)
)
+ f22

(
f11+ f22

))
+ωL(t)

(
f 2
21− f21ωL(t)− f11 f22

)
+2 f22ω̇L(t)

)
+ f22ωL(t)

(
Rr+Rs

))
+L2

hR2
r

(
Lσs
(

f22

(
ωL(t)

(
f12− f21−ωL(t)

)
−ωL(t)

(
f12−2 f21+ωL(t)

))
+ f21

(
f11ωL(t)−ω̇L(t)

))
+ωL(t)

·
(

Rs
(

f21−2ωL(t)
)
+ f21Rr

))
−LhR3

r

(
Lσs
(

f21

(
f12−ωL(t)+ωL(t)

)
+ f 2

22

)
+ f22

(
Rr+Rs

))
+L4

hωL(t)2
(

ωL(t)
(

Rs
(

f21−ωL(t)
)
+ f21Rr

)
+Lσs

(
ωL(t)

(
f21 f11+ f22

(
f21−ωL(t)

))
+ f21ω̇L(t)

))
−R4

r

(
f22Lσs+Rs

)
−l̇f,22(t).

(A8)

Whereby the elements l̇f,ij(t) of Equation (63) are given by:
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