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Abstract: The primary focus of autonomous driving research is to improve driving accuracy and
reliability. While great progress has been made, state-of-the-art algorithms still fail at times and
some of these failures are due to the faults in sensors. Such failures may have fatal consequences.
It therefore is important that automated cars foresee problems ahead as early as possible. By using
real-world data and artificial injection of different types of sensor faults to the healthy signals, data
models can be trained using machine learning techniques. This paper proposes a novel fault detection,
isolation, identification and prediction (based on detection) architecture for multi-fault in multi-sensor
systems, such as autonomous vehicles.Our detection, identification and isolation platform uses two
distinct and efficient deep neural network architectures and obtained very impressive performance.
Utilizing the sensor fault detection system’s output, we then introduce our health index measure and
use it to train the health index forecasting network.

Keywords: health forecasting; fault prediction; fault detection; fault isolation; machine learning

1. Introduction

Autonomous vehicles are already roaming modern cities’ streets thanks to the state-of-
the-art machine learning algorithms and controllers. These methods are heavily dependent
on data from multiple sensors. Due to this reliance, sensor fault and the resulting error
propagation can be detrimental to the reliability and safety of autonomous vehicles, giving
importance to sensor health monitoring and prognostics. The purpose of a sensor health
monitoring system is to not only detect, isolate and identify the faulty sensors but also
try to predict the performance and reliability of sensors and make decisions based on the
prediction [1].

Fault is characterized as an unauthorized deviation from the normal state of at least
one characteristic property or parameter of the system [2]. Faults can be categorized
as sensor faults, actuator faults and part or process faults [3]. Sensor faults point to
the faults in the input module, and the actuator faults address the faults in the output
module. To eliminate any potential danger and safety risk, vehicles with a very complicated
electronic architecture require an appropriate fault diagnosis strategy [4] including fault
detection which shows if there is fault present in the system, fault isolation that is used
to find which sensor is faulty, fault identification that determines how the sensor has
failed and sensor health forecasting strategy which shows the current and future state of
the sensors.

Different methods and techniques have been proposed by researchers to detect/identify
the nature of faults and isolate the defective sensor. For instance, a data-driven approach
was suggested by [5] named improved credit assignment cerebellar model articulation
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controllers neural network knowledge fusion model which included fault data preparation,
fault detection and isolation of controllers. By using sensor, actuator data and motion state
value, Ref. [6] developed an intelligent decision subsystem, understanding the risk analysis
of autonomous robots. Focused on the SVM, Ref. [7] found and successfully determined
and isolated the autonomous vehicle’s sensor fault. In addition, the efficacy of learning
techniques in fault identification and isolation has been demonstrated in the aircraft in-
dustry [8]. These previous work bodies suggest that the application of the fault detection,
identification and isolation of autonomous vehicles to the field of learning techniques will
theoretically provide great benefits in terms of vehicle safety.

For sensor health monitoring and fault diagnosis, initially model-based and rule-based
models were used; however, deriving theoretical models and rules for complex systems can
be a complicated task. With the recent growth of computational power, memory capacity
and sensor technology, data-driven methods like machine learning and statistical models
gained more attention and proved to be more effective [9]. Currently, deep learning methods
have been in the center of attention as the state-of-the-art frameworks [10]. These methods
have been applied to some health monitoring approaches based on different assumptions
and data-availability. In general, the methods can be categorized as [11]: (i) knowledge-
based, such as model, rule and ontology-based methods; (ii) statistical methods, such as
traditional machine learning methods, e.g., support vector machines (SVMs), K-nearest
neighbors (K-NN) and artificial neural networks (ANNs) and (iii) deep learning methods,
such as deep neural networks (DNNs), recurrent neural networks (RNNs), convolutional
neural networks (CNNs), autoencoders (AE) and estricted Boltzmann machine (RBM).

Among the traditional machine learning methods, SVMs and random forests are
the common techniques that are used for system health monitoring and they act as the
golden standard. The main advantage of these approaches is their excellent generalization
capabilities, resulting in high classification and regression accuracy for condition moni-
toring and diagnosis [11]. However, most of these methods require hand-crafted features
that can consistently capture faults. Additionally, the majority of statistical methods suf-
fer from curse of dimensionality and can be very computationally expensive if multiple
data-streams are involved. These shortcomings have been the main motivations to use
deep learning methods for feature extraction and selection, and dimension reduction [10].
Table 1 provides a comprehensive review of the various deep learning architectures which
have been utilized for health management systems and their strengths and limitations.

Health prognostics is often viewed as an application of forecasting. Forecasting
applications can be categorized in two major classes, as shown as in Figure 1. The majority
of the research in prognostics and health management (PHM) has been dedicated to End-
of-Life predictions, and these applications of the studied component, such as turbines,
batteries, gears, bearings, etc., have a certain critical threshold of failure and system’s health
is considered to be monotonic [12].

In the context of health prognostics, methods can be grouped as [13]: (i) remaining
useful life (RUL) prediction using regression models, (ii) early failure detection using classi-
fication techniques and (iii) anomaly detection, analysis and prediction based on detection.

For RUL prediction, the central assumption is that historical run-to-fail data of the
system are available. This is mostly possible for analyzing the health status of mechanical
components, e.g., turbofan engine [14] and rotary machinery [15], in which degradation
data are available from accelerated degradation tests [13]. However, these valuable datasets
are only available for a limited selection of mechanical components, and little data are
available on the degradation of electronic sensors. The RUL prediction algorithms learn
the degradation path of the studied component.

The main goal of early failure detection is to identify failures by learning the sequential
patterns of data that lead to failure from historical data. This can be represented as a binary
classification problem. Signals which will follow a failure are labeled as faulty, and others
are labeled as the healthy class. The downside of this approach is that the system can only
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foresee a short time window in the future and can not forecast long-term status; that is why
these methods are called early failure detection.

Table 1. Overview of machine learning and deep learning approaches for health management
systems [11].

Method Strengths Limitations

Machine Learning

Decision Trees Easy to understand Requires prior knowledge
(DT) Non-parametric May over fit

Good visualization Local minima problem

Random Forest Improved performance to DT Increased bias
Fast and scalable
Generally trains faster than SVM

Support Fewer parameters to optimize Requires prior knowledge
Vector Robust against noise Incomprehensible results
Machines Efficient for large datasets Memory intensive

Designing the kernel
function

Hidden Statistical Models Requires prior knowledge
Markov Scalable Can become complex
Model Large amounts of data is

needed

Deep Learning

Autoencoders Can be equipped with CNNs to Training requires a lot of data,
learn richer representations Processing time and fine tuning
Easy to implement Learns to capture as much
Dimensionality reduction information as possible rather
Easy to track the loss function than relevant information

Denoising Better for compression/feature Randomly inserts noise at input
Autoencoders extraction level

Implicitly designed to form
a generative model

Variational Learns to insert noise distributions Can be difficult to optimize
Autoencoders Explicitly designed to form Can be difficult to implement

a generative model

Restricted Generative models Can be difficult to train
Boltzmann Can create patterns if there are Difficult to track the loss/cost
Machine missing data function

Deep Boltzmann Can learn good generative models Impractical for large datasets
Machine Incorporates uncertainty about Approximate inference is slow

ambiguous inputs

Deep Belief Good for 1D data Training can be very slow
Networks Can extract global features and inefficient

Steady high performance on signals
A powerful alternative to PCA

CNN Good for multi-dimensional data Might require more training
Extracts local features well

RNN, LSTM, Good for sequential data Can be difficult to train and
and GRU Can detect changes over time implement
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Figure 1. Different forecasting categories for various applications [12].

The main focus of this paper for health monitoring strategy is on anomaly detection,
analysis and prediction. This prediction is based on the output of the detection platform.
This approach, also known as outlier detection, is traditionally applied to fraud detection,
target tracking, personal health monitoring and network security breaches and is currently
being extended to the area of wireless sensor networks. In this context, sensor outliers
are considered as irregularities in observations that are not consistent with the pattern of
behavior given the circumstances of a scenario. However, there is no universal definition of
sensor outliers in the literature [16]. Table 2 provides an all-inclusive selection of definitions
used in the literature.

Table 2. Definitions of sensor outliers with its corresponding references [16].

Ref. Definitions

[17] ”An outlier is an observation that digress significantly from others as to raise
concerns that a different process created it.”

[18]

”An outlier is a data point that is substantially distinct from one another.
From other data points, or is not compatible with the data points Anticipated

typical behavior or corresponds well to a given normal behavior
Anomalous conduct.”

[19]
”As a spatial-temporal outlier, a spatial-temporal point whose non-spatial class
labels vary considerably from those of other temporally and spatially referred

points in its spatial as well as temporal surroundings is considered.”

[20] ”An outlier is an observation or segment of occurrences which tends to be
incompatible with the remaining dataset.”
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One of the challenges in sensor prognostics is detecting context-related anomalies
in the sensor outputs effectively and making predictions based on the detection results.
However, it is known from the anomaly detection scenarios that abnormal observations are
scarce compared to the sensors’ normal behavior, which results in considerable imbalanced
data. The other challenge is a lack of ground truth on the degradation path of sensors.
This challenge is due to the fact that the run-to-failure data on sensors, which are generally
available for RUL of mechanical parts, are not available for electronic sensors.

Considering the gaps in multi-sensor, multi-fault detection and identification, and
condition-based fault prediction, this paper proposes a novel multi-sensor, multi-fault
resilient architecture to meet the current research gaps. The present research gaps that we
have addressed in this research are the following. The first is providing a reliable health
index measure for an unbalanced dataset of healthy and faulty classes. The second contri-
bution is implementing a novel predictive algorithm that forecasts sensors’ health index,
which can estimate the time at which degrading performance of a sensor would cause
a critical failure. These forecasts can be used for sensor network prognostics and aid an
accurate maintenance schedule. Moreover, the prediction algorithm provides interpretabil-
ity and risk management measures using attention mechanisms and quantile regressions.
These considerations for practical implementations would represent a step forward in ad-
dressing the current research gaps for bringing fault detection, isolation/identification and
prediction into autonomous vehicle applications. The third contribution of this research is
designing a unified framework and methodology for reliable fault detection, identification
and prediction scalable for multiple sensors. Towards this end, a novel method is proposed
for predicting the health status of the electronic sensors of autonomous vehicles. A CNN
classifier has been used for real-time multi-sensor monitoring to capture faulty signals and
construct a health index (HI) for sensors. The evolution of the HI is then used to forecast
the sensor’s health and possible depredations. This process is represented as a multi-step
uni-variate time series forecasting problem using a Temporal Fusion Transformers (TFT)
network. We have also proposed a feature extraction and DNN classification technique to
isolate and identify the detected fault type. To test our method, we have used the recently
released real-world dataset from a car manufacturer (Audi) [21].

The structure of this paper is as follows: In Section 2 the dataset and the partitions
which were used for our experiments are described. Section 3 contains the system descrip-
tion for multi-sensor fault detection, identification/isolation and prediction. Subsequently,
Section 4 summarizes the obtained results and their corresponding analysis. Finally,
Section 5 concludes the findings of this research.

2. Dataset Description

Audi recently released an autonomous driving dataset (A2D2) [21], which includes
data derived from the automobile bus and recorded on highways, country roads and cities
in the south of Germany. Vehicle bus data are stored in a JSON-file, which contains the
bus signals themselves as well as the corresponding timestamps and units. The signals
comprise odometer, acceleration, (angular) velocity, GPS coordinates, brake pressure, pitch
and roll angles. By including vehicle bus data, Audi not only allows A2D2 to be used for
imitation learning research but also enables reinforcement learning approaches.

In this paper, we have used urban and highway driving scenarios from the A2D2
dataset using the Audi bus controller, which came from three sensors’ output. These
sensors are Accelerator Pedal (AccP), Steering Wheel Angle (SWA) and Brake Pressure
(BP). We have used all available data from three sensors, approximately 35 min of driving
in three cities in total. These outputs (sequential data-points) are then converted to signals
with a length of 2.4 s (the sensors’ sampling frequency is 100 Hz, which means 10 ms
period). In Figure 2, there is an example of output from three sensors (AccP, SWA and BP)
over time, which was recorded from driving sessions at Ingolstadt.
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Figure 2. Three vehicle bus data-points are depicted over time. The top figure shows the output of
the Accelerator Pedal (AccP) sensor, the middle figure is for the Steering Wheel Angle (SWA) and the
bottom figure is showing the output of the Brake Pressure (BP) sensor.

Table 3 shows the available real data-points from three sensors and per recording
location for the A2D2 dataset.

Table 3. Available A2D2 data-points from AccP, SWA and BP sensors for each recording location.

Location AccP SWA BP

Gaimersheim 52,576 52,577 52,576

Ingolstadt 91,968 91,968 91,969

Munich 74,520 74,520 74,521

Total 219,064 219,065 219,066

In order to have a coherent open-set of experiments throughout the paper, we have
defined the fixed methodology for using the available data. As explained earlier in this
section, the data were recorded from three different cities. We have used all available data
from Ingolstadt, Gaimersheim and Munich for training, validation and testing, respectively.
Ingolstadt has the highest number of samples, so we have used data from this city to train
our networks. Gaimersheim has the lowest number of data, and it has been chosen for
validation and parameter optimization. By keeping the data constant for all the experi-
ments, we can first be sure that none of the data in validation and testing phases are visible
to the network during training (means open-set scenario). Secondly, since our prediction
architecture is based on our detection network’s output, we can be sure that no underlying
information is passed to the prediction network from the detection phase.

Fault Injection for Fault Detection Task

Sensor high reliability assurance necessitates a thorough understanding of their failure
modes. Sensor failures may be caused by a variety of factors, including aging, wear, manu-
facturing deficiencies, incorrect calibration or mishandling and external conditions [22].
For instance, electromagnetic interference can cause sensors to become inactive or noisy,
or corrosion can degrade PCBs. As it can be seen, some of the causes of faults and failure
are temporary, such as electromagnetic and insulation disturbances [23]. As a consequence,
sensors’ health can fluctuate during its life span. This implies that a monotonic health
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index, which is commonly used for mechanical components, can not be used effectively
in this context. For this reason, we have introduced a non-monotonic health index in
Section 3.3.1 that can be used to forecast the future health state of the sensor network.

A number of different fault patterns may occur in a system, such as total sensor
failure, intermittent or continuous faults. The intermittent faults refer to the faults that
occasionally happen, while the continuous faults refer to those that persist in the sys-
tem. The intermittent or continuous faults which we have considered are classified as
follows [23–25]:

• Drift fault refers to the situation where a signal slowly deviates (linearly) from the
actual value.

• Hard-over fault refers to the situation when a sensor returns a value outside its
measurable range and increases to the saturation point for a short time.

• Erratic fault occurs when the sensor data have a large increase in noise, as a result,
the magnitude of the signal variance can increase around the true value over time.

• Spike fault happens when occasional increases in the signal value are produced.
The density of spike faults within the signal can increase over time.

To create faulty signals, we have injected four different types of faults to the healthy
signals from three sensors (AccP, SWA and BP) of the A2D2 dataset described in Section 2.
There are two main benefits of using this methodology [17]. Firstly, adding faults into sensor
measurements provides an accurate “ground truth” which allows one to better understand
the efficacy of a detection algorithm. Secondly, fault intensity and frequency can be changed
for different scenarios, allowing us to test the limits of each method and comparing various
schemes at low fault intensities. Despite the fact that faults and failure thresholds that we
have found in existing literature are of relatively high intensity (a considerable fraction
of full scale output), we believe it is critical to understand the behavior of fault detection
methods over a spectrum of fault intensities, as it is uncertain if the failure threshold
would be as prevalent for different sensor systems and state-estimation methods used
for autonomous vehicles. The injection of each fault incorporates pseudo-randomness
to simulate the variability of each fault condition. Intermittency of fault conditions has
been included for hard-over, erratic and spike to simulate real-world fault conditions.
We have injected faults to all the available data from three cities to provide sufficient
training material of different scenarios.

The method used to inject the fault to the A2D2 dataset is designed to cover all possible
combinations of faults in three channels (each channel contains a stream of signals from
AccP, SWA and BP sensors) and also fault types. Table 4 shows the combinations which we
have used to generate faulty signals. In Table 4, F and H represent faulty and healthy signals.
For faulty signals, we have injected and generated all four types of faults for each combina-
tion. The dataset is accessible from the Github repository via this link. (https://github.com/
MAminSFV/multi-sensor-FDII-health-forecasting-for-autonomous-vehicles (accessed on
3 April 2021))

The fault is introduced after the 25th percentile of one or more of the three sensor
signals. As shown in Table 4, the type and location (which sensor is faulty) of fault are
introduced to cover all possible combinations, so the machine can learn more by observing
more. Normal distributions have been used to simulate the amplitude of faults where
applicable. An error of 20% of Full-Scale Output (FSO) has been defined as faulty for the
erratic and drift faults.

https://github.com/MAminSFV/multi-sensor-FDII-health-forecasting-for-autonomous-vehicles
https://github.com/MAminSFV/multi-sensor-FDII-health-forecasting-for-autonomous-vehicles
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Table 4. Number of signals in all of the faulty/healthy combinations.

Channels Healthy Single Fault Double Fault Triple Fault

AccP H F H H F F H F

SWA H H F H F H F F

BP H H H F H F F F

Total 912 10,944 10,944 3648

The fault parameters shown in Table 5 have been selected to give a suitable repre-
sentation of real-world faults for the simulated data. Uniform distributions are used to
incorporate randomness into drift fault gradient, hard-over fault length and erratic fault
length. The erratic fault amplitude uses a normal distribution with a standard deviation of
0.2. Examples of the described faults are shown in Figure 3.

Table 5. Fault parameters. ∗SL stands for signal length and ∗∗Sig stands for signal.

Fault Amplitude Gradient Max Length

Drift Maximum FSO Max ± FSO
SL

SL
4

Hard-over 1.1× Sig∗∗FSO N/A 0.5× SL∗

Erratic ±0.2× SigFSO N/A 0.4× SL

Spike 0.5× SigFSO N/A N/A
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Figure 3. Examples of sensor faults. Data have been taken from the Audi autonomous driving dataset
(A2D2). All four figures are faulty variants of a sample signal from the AccP sensor.

3. System Description

The topic explored in this paper is broadly described as Integrated Vehicle Health
Monitoring. The benefits of Integrated Vehicle Health Monitoring systems are improved
vehicle safety, more accurate health awareness and reductions in through-life costs.

The proposed system in this paper comprises both current vehicle state awareness
(fault detection and identification) and prediction to determine future vehicle health. An
adequate understanding of the vehicles current health state would allow for intelligent
vehicles to reconfigure the available healthy systems to compensate for failures, or for
maintenance to be directed quickly to the faulty components. Predictive fault detection
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allows for the condition of the vehicle systems to be predicted at a future point in time.
The proposed predictive system provides the opportunity to control systems to reconfigure
themselves in advance of a sensor failure or fault.

The overall architecture of the proposed system is shown in Figure 4 which consists
of detection, isolation, identification and prediction modules. Each element of system
architecture, shown in Figure 4, is described in the following subsections.

Fault 
Detected?

Isolation Platform

Multi-class Identification 
Platform

Prediction 
Platform

Y
N

Detection Platform

Sensor health 
forecasting

Sensor and 
Fault Condition

Sensor 1 Sensor 2 Sensor 3

Figure 4. Proposed system architecture.

3.1. Sensor Fault Detection

It is important to identify sensor faults early on, and ANNs are commonly used for this
task. Two separate blocks are generally used for typical systems: extraction of features and
classification. These customized and hand-crafted features can be a sub-optimal solution
and entail a high cost of computing, impeding their use for real-time applications. In this
article, using 1D CNNs with an intrinsic adaptive architecture, we used a fast and precise
sensor monitoring and early fault detection method to fuse the feature extraction and
classification phases of the sensor fault detection into a single learning body. This approach
is based on the proposed method by Ince et al. [26]. This is immediately effective for the
raw data and alleviates the need for a distinct feature extraction process that results in a
more effective method in terms of both speed and precision.

A CNN 1D architecture was used to fuse the extraction and learning processes of the
raw sensor signals. The flexible CNN configuration will enable us to work with every
input layer dimension. In addition, the suggested compact CNN has hidden convolution
layer neurons that can execute both convolution and subsampling operations. The 1D
CNNs are composed of an input layer, hidden CNN and fully connected layers and an
output layer. The key structural distinction between conventional 2D and suggested 1D
CNNs is the use of 1D kernels instead of 2D kernels. By this means, the number of weights
and computation decreases and 2D matrix manipulations such as 2D convolution and
lateral rotation have now been replaced by their 1D replacements, 1D convolution and
reverse rotation [26]. The overall block diagram of the CNN architecture is illustrated in
Figure 5. As shown in the figure, the three sensor signals are stacked as three channels
and fed into the input layer. The length of the moving window is considered to be 2.4 s,
as suggested by Ince et al. [26]. The CNN model is then structured hierarchically with
convolutional layers, pooling layers and fully connected layers. Convolutional kernels can
effectively capture relevant temporal input connections across the input channels. This
network is able to detect faults by observing 2.4 s of the three data streams. Additionally,
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this model is computationally fast due to its compact architecture, using only three 1D
convolutional layers.

Figure 5. The convolution structures of the suggested 1D CNN adaptive configuration [26], e.g.,
“9× 1 conv, 60, /1” indicates a convolutional layer with 60 kernels, size 9× 1, stride 1; a box labeled
“4× 1 pool, /4” implies a max pooling layer with a size of 4× 1, stride 4; ‘fc 20’ is a fully connected
layer with the output dimension of 20. The numbers across boxes are the prior layers’ output sizes.

3.2. Sensor Fault Identification and Isolation

The proposed architecture for identification and isolation consists of two parts: feature
extraction and multi-class DNN modeling. For sensor fault identification and isolation
tasks we have used a separate feature extractions block as the real-time implementation is
not a concern (and it could be done offline) as opposed to the fault detection task which
needs to be done in real time. DNNs are used to identify the type of fault in sensors and
to recognize the faulty sensors. Typically, deploying these modules together allows the
intelligent system to make state identifications and a decision based upon the current state
for sensor isolation.

3.2.1. Feature Extraction

As shown in Figure 4, once a fault is detected in the fault detection stage, the faulty and
non-faulty signals are imported into the feature extraction function. In this paper, this step
is done using a feature extraction algorithm which is applied to each signal. The available
techniques for feature extraction in the literature can be classified as time-domain analysis,
frequency-domain analysis and a mix of both [27].

Ref. [28,29] summarize 10 widely used time-domain features which can typically be
generalized to a variety of applications. In the feature extraction module of this paper,
10 time-domain features , which are defined in Table 6, are used to generate a feature
matrix, where each row includes 10 values of a sample by a length of 240 data points.



Sensors 2021, 21, 2547 11 of 23

Table 6. Time-domain feature definitions used for N data points in a sample X.

fRMS =
√

1
N ∑N

i=1 x2
i fSRA =

(
1
N ∑N

i=1

√
|xi|
)2

fKV = 1
N ∑N

i=1

(
xi−µi

σ

)4
fSV = ∑N

i=1

(
xi−µi

σ

)3

fPPV = max(x)−min(x) fCF = max(|x|)
fRMS

f IF = max(|x|)
1
N ∑N

i=1 |x|
fMF = max(|x|)

fSRA

fSF = max(|x|)√
1
N ∑N

i=1 x2
i

1
N ∑N

i=1

(
xi−µi

σ

)4

( 1
N ∑N

i=1 x2
i )

2

3.2.2. Fault Isolation and Identification Based on Multi-Class DNN

DNN-based methods shown fast and high-accuracy performance in fault/anomaly
identification [30]. In the feature extraction phase, 10 distinct features are extracted from
the sensor signals. A normalization (in the range of 0 to 1) is applied to the extracted
features. In the next step, the data are divided into training, validation and testing sets
as described in Section 2. A four-layer DNN architecture, consisting of one input layer,
two hidden layers and one output layer, has been developed for isolation and identification
purposes (see Figure 6). The number of nodes in the input layer is equal to the size of
the extracted features from the signals. Eight hidden layers are also used in our DNN
architecture. The output layer uses a softmax function to develop four classes (for all fault
types) and one class for the non-faulty signals, as presented in Figure 3.

Multi-class DNNs for fault identification and isolation are developed in a way to
minimize the categorical cross-entropy loss function.

Figure 6. The proposed multi-class deep neural network (DNN) architecture in this study for fault
isolation and identification.

3.3. Sensor Health Forecasting

The health state forecasting platform needs a proper health index definition and
forecasting strategy to learn different patterns of health index measures. In subsequent
subsections, we have initially defined a novel health index measure and then our sensor
health forecasting strategy which is based on the usage of a TFT network [31].

3.3.1. Health Index Definition

Considering the fact that the A2D2 dataset does not include degraded signals, a degra-
dation process needs to be introduced to each driving scenario. In this work, different
fault patterns with three degradation paths have been artificially added to A2D2 dataset to
make the learning process as general as possible. For example, continuous erratic, drift and



Sensors 2021, 21, 2547 12 of 23

spike faults with linear, exponential and sinusoidal amplitudes are used as a degradation
scenario. These degradation paths are adopted based on the patterns studied in [22].

Figure 7 shows examples of three different degradation paths for fault types of erratic,
spike and drift on the AccP sensor and the healthy signal with no faults. These are just
examples to show how the HI was constructed from the output of our detection engine.
Still, for prediction, we have trained our model using all three degradation paths and all
fault types for all signals along with all healthy signals in the training split. Figure 8 shows
the linear degradation of erratic fault for AccP signal, Figures 9 and 10 demonstrate expo-
nential degradation of drift fault and sinusoidal degradation of spike fault for AccP signal,
respectively. Figure 7d shows the HI construction process for the healthy AccP signal.
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(d)

Figure 7. Three different degradation scenarios for erratic, drift and spike fault types of the AccP
sensor. (a) Steps taken to construct the HI from a linearly degraded AccP data stream with erratic
fault. (b) Steps taken to construct the HI from an exponentially degraded AccP data stream with drift
fault. (c) Steps taken to construct the HI from a sinusoidal degraded AccP data stream with spike
fault. (d) Steps taken to construct the HI from a healthy AccP data stream.
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Figure 8. Steps taken to construct the HI from a linearly degraded AccP data stream.
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Figure 9. Steps taken to construct the health index (HI) from an exponentially degraded AccP
data stream.
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Figure 10. Steps taken to construct the HI from a sinusoidal degraded AccP data stream.

The blue data-point sequence in the top figure represents the healthy, and the red
data-point sequence shows the same sequence, which is degraded by fault over time. The
second plot shows the CNN detector’s output when the fault is gradually added to the
healthy signal. The third plot is the filtered version of the second plot, which shows the
overall trend for the detection network’s output. The bottom plot is the subtraction of
healthy scores (green) from the faulty scores (red) in the second plot. The HI is constructed
based on the output of the fault detector network.

The last layer of the CNN architecture is equipped with a linear activation function
against the conventional softmax and other activation functions used for the classification
task. The main reason to choose a linear activation function is to have an unbounded and
one to one map for each class score. One emergent property is that class scores increase
linearly as fault intensity increases, as found in Figure 7. The network provides two scalar
scores for each class, green and red plots are showing the healthy and faulty output of the
detection network, respectively. These scalar outputs show the quality of the signal, and by
monitoring the evolution of these scores through time, we will be able to detect possible
degradation. However, these scores are quite noisy since a linear activation function was
used. To find trend lines and meaningful patterns in the evolution of scores, a Savitzky–
Golay filter is applied to de-noise the scores and extract smooth trend lines. The filtered
scores are shown in the third plot of each subfigure. The HI is defined as the subtraction of
the filtered scores. A healthy sensor system is expected to have a positive HI, and as the
sensors’ quality degrades, the HI decreases, and a sensor failure happens when the HI sign
is changed to negative.

For HI measure, we have tested our proposed method with three fault types; erratic
fault, which has the most random characteristics, drift and spike. Hardover fault is not used
for prediction because it happens suddenly and early fault detection is the best approach
to prevent system failure in this case.
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As explained in Section 2, the desired health index should be non-monotonic since
electronic systems can recover if the external interference is removed. In addition to
non-monotonicity, HI should be robust to noise and present a smooth degradation trend.
As shown in Figure 7, the proposed HI demonstrates these features for different degrada-
tion scenarios.

The Y axis in the second and third plots of each sub figure are marked as neuron
energy which means the output (this is the weighted sum of neuron inputs plus the bias
term) of each corresponding neuron per class.

3.3.2. Sensor Health Forecasting Strategy

For sensor health forecasting based on detection, we have trained the TFT network [31]
using the HI obtained in the previous section. The HI measures are obtained from each
of the three cities, and all possible fault combination described in Table 4 are considered.
TFT was proposed by Lim et al. [31] in 2020 and is introduced for multi-horizon forecasting.
Multi-horizon forecasting also involves a dynamic combination of variables, including
static covariates, known future inputs and other exogenous time series, which are observed
only in the past (with no prior information on how they link with the target). TFT is
an attention-based structure that provides high-performance multi-horizon forecasting.
TFT uses recurrent layers for local processing to learn temporal associations at various
scales. TFT uses advanced components to pick appropriate features and a set of gating
layers to suppress redundant components, allowing high performance in a wide variety of
scenarios. This method performed impressively on various real-world datasets, and the
authors demonstrated significant performance improvements over existing benchmarks.

Functional multi-horizon forecasting applications typically involve access to a number
of sources of data, including static metadata, as seen in Figure 11 (e.g., city where the data
are recorded).

Figure 11. Sketch of static covariate multi-horizon forecasting and past-observed inputs.

The TFT is designed for using canonical components for a wide variety of problems to
effectively construct feature representations for each input type (i.e., static, documented,
observed inputs) for high forecasting efficiency. TFT’s main components are:

• Gating structures to skip over any redundant elements of the architecture, to support
a wide variety of datasets and scenarios, offering adaptive depth and network com-
plexity.

• Networks of variable selection to choose appropriate input variables at each stage of
the time.

• Static covariate encoders to incorporate static features into network by encoding
contextual vectors to condition temporal dynamics.
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• Temporal computation from both observed and known time-varying signals to learn
both long- and short-term temporal relationships. For local processing, a sequence-to-
sequence layer is used, while long-term dependencies are collected using an innova-
tive interpretable multi-head attention block.

• Quantile forecast prediction periods to assess the spectrum of likely target values for
each prediction horizon.

Figure 12 indicates a high-level structure of TFT, with individual components de-
scribed in detail in [31].

Figure 12. Temporal Fusion Transformers (TFT) architectural design. TFT inputs static attributes,
time-varying historical inputs and time-varying a priori known future inputs. Variable filtering is used
to allow a judicious selection of the most excellent features based on input. Gated Residual Network
Blocks allow efficient information flow with skip and gating layer connections. Time-dependent
processing is built on LSTMs for local processing and multi-head attention for the aggregation of
information at any time.

4. Experimental Results and Discussion

In this section, the experimental results are analyzed for each block of Figure 4. It is
noteworthy to mention that the A2D2 dataset has not been used in the context of health
diagnosis; hence, there are no benchmarks to directly compare the obtained detection
results. However, the research by Biddle et al. [29] provides a good basis to compare
results. The authors provided a fault detection, identification, isolation and prediction
framework using support vector machine for autonomous vehicles. The same assumptions
are made for the fault types and characteristics for detection and identification. The key
difference is that [29] used simulation data and in this study real sensor measurements
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were used as a ground truth. I the following sections, we will compare our detection and
isolation results with this study as it serves as the closest study that can resemble a baseline.
The authors reported the accuracy of 94.94%, 97.42% and 97.01% for detection, isolation
and identification, respectively.

For comparison of the forecasting strategy, [31] provides a comprehensive comparative
study, demonstrating the performance of the TFT model with respect to other state-of-
the-art approaches. Another challenge is that other well-known datasets for autonomous
driving only provide limited information from vehicle bus data. For instance, KITTI [32]
and ApolloScape [33] only provide GPS and IMU data and Waymo OD [34] includes
velocity and angular velocity of the autonomous vehicle.

4.1. Sensor Fault Detection

As mentioned in Section 2, the dataset generated to train and test (data from Ingolstadt
and Munich) the proposed fault detection system comprised of 20,097 signals (11,107
signals for training and 8990 signals for testing), with each signal containing the data-point
amplitudes for each sensor of 2.4 s interval (equal to 240 data points). As described in
Section 2, we have used the data from Ingolstadt, Munich and Gaimersheim for training,
testing and validation, respectively. This has been set deliberately to ensure a good variety
of training scenarios are captured, and our setup is open-set. This will help reduce the
generalization error. To address the unbalanced amount of data (a more significant number
of faulty signals compare to healthy ones), we have used oversampling strategy in our
training split.

After the application of oversampling for training split of the data, a total of 10,720
signals is available for healthy scenarios and 10,724 signals for faulty scenarios. For testing,
we have used 8990 signals, of which 310 signals are healthy, and 8680 signals are faulty.

Our CNN architecture achieves an accuracy of 99.84% for the detection task. For fur-
ther analysis of detection results, we have presented the corresponding confusion matrix
in Figure 13.
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Figure 13. The confusion matrix of our detection system which achieved an accuracy of 99.84%.

The confusion matrix shows that the detection system has almost no bias towards the
prediction of healthy signals, indicating that the use of the oversampling technique will
not result in an over-fitting issue.

Table 7 compares the sensor fault detection performance of the SVM and the proposed
CNN frameworks. Since the A2D2 dataset is recently released, there is no comparable
baseline performance in the literature for comparison. To create the baseline for our
detection platform a SVM (famous in this field of research) classifier is deployed. Table 7
shows that the proposed CNN architecture outperforms the SVM baseline system.
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Table 7. Sensor fault detection performance compared to a baseline.

Method Accuracy AUC F1 Score Precision Recall

SVM 98.55% 0.9441 75.47% 62.50% 95.24%
Proposed CNN 99.84% 0.9992 97.78% 99.35% 96.25%

4.2. Sensor Fault Identification and Isolation

SVM and DNN models are trained on the same training dataset used in the detection
stage, while non-faulty signals are labeled 0. The results of both models’ for signal iso-
lation have been shown in Table 8 which demonstrates that the deep learning technique
outperforms SVM for all three sensors.

Table 8. Sensor isolation accuracy for SVM and DNN.

Signal SVM DNN

Brake pressure 85% 97%
Accelerator pedal 81% 94%
Steering angle 83% 96%

Identification accuracies are tabulated in Table 9. The identification performances
vary depending on which sensor is evaluated. This is demonstrated in the findings of
multi-class DNN, with a minimum average accuracy of 94.66%. Identification accuracy
ranges from 81.00% to 100.00%, with the highest accuracy for brake pressure. As it can
be seen, all fault types except drift fault are identified by accuracy of more than 85.00%.
In this case, the model was able to detect the faults as an anomaly sample successfully.
The highest accuracy has been achieved for the brake pressure sensor where the signal has
the lowest fluctuation, and faults can be identified with an average accuracy of 98.00%.

Table 9. Fault identification accuracy by multi-class DNNs.

Signal Erratic Drift Hard-Over Spike Overall

Brake pressure 100% 82% 100% 100% 98%
Accelerator pedal 85% 73% 100% 100% 89%
Steering angle 100% 80% 100% 100% 97%

4.3. Sensor Health Forecasting

Same as detection, isolation and identification for testing our prediction network, we
have split the data to convert our problem to the open-set scenario, which is harder to
predict and more generalizable. For this aim, we have used all available HI measures from
Ingolstadt and all signal combinations (combinations described in Table 4) for training the
TFT network and keep the HI measures from Munich for testing.

The TFT network takes a three-dimensional input with this format: [Time from the
start, categorical ID (which is the city’s name), HI samples]. For the electronic sensor fault
prediction problem, the look-back is set to 100 HI data-points and the look-forward is set
to 50 HI data-points. It means that the model makes predictions based on the last 100 HI
data-points, which are equal to 240 s (In the first iteration of the for-loop, the input carries
the first 240 s, and the output is HI prediction for the next 120 s). It is worth mentioning
that the look-back and look-forward sizes could be extended to higher values using more
powerful processing units.

Our TFT network has an internal state size (size of the hidden layer) of 40 across
the network with a learning rate of 0.001. To make the TFT model robust to changes, the
dropout function is used. Dropout randomly drops 40% of units from the network. To train
data, 100 epochs and a mini batch-size of 64 are used.
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4.3.1. Performance Measure

In a given time series dataset, let there be I particular entities; such as different
calculated HI time series (based on all faulty/healthy combinations) in different cities.
Each i object is correlated with a collection of si static covariates, as well as Xi,t inputs and
yi,t scalar targets at each t time-step.

The availability of forecast intervals can be helpful in many situations to improve
decisions and risk assessment by providing an indicator of the possible best and worst-case
values that can be taken by the target. As such, we used quantile regression in this research
work to set multi-horizon forecasting settings (e.g., outputting the 10th, 50th and 90th
percentiles at each time step). As it is shown in Figure 12, each quantile forecast takes
the form:

ŷi(q, t, τ) = fq(τ, yi,t−k:t, xi,t−k:t+τ , si) (1)

where ŷi,t+τ(q, t, τ) is the forecasted qth sample quantile of the τ-step-ahead forecast at
time t, and fq(.) is a forecast model. Similar to other direct methods, τmax forecasts are
outputted simultaneously. We insert all past knowledge into a finite look-back window k,
using goal and known inputs only up till and including the forecast start timestamp t and
known inputs over the full range.

TFT is trained by jointly minimizing the quantile loss, summed through all quantile
outputs [35]. For this research, by concentrating on P10, P50 and P90 risk, we calculate the
normalized quantile losses over the entire forecasting horizon.

4.3.2. Prediction Results

The TFT model is trained using the HI time series from the combinational scenarios
(as it is tabulated in Table 4) of Ingolstadt data using three different degradation paths.
The number of data-points in the HI time series used for training, validation, and testing
the TFT model are shown in Table 10. Table 11 shows the quantile loss for the test data;
P10, P50 and P90.

Table 10. Number of data-points in HI time series for train, validation and test of the TFT model.
*path. stands for degradation path.

Sensor Condition

Healthy Erratic Fault Spike Fault Drift Fault

path.* N/A Lin. Exp. Sin. Lin. Exp. Sin. Lin. Exp. Total

Train 1.5 k 33 k 33 k 33 k 33 k 33 k 33 k 33 k 33 k 265.5 k

Valid. 840 18.5 k 18.5 k 18.5 k 18.5 k 18.5 k 18.5 k 18.5 k 18.5 k 148.8 k

Test 1.2 k 26.4 k 26.4 k 26.4 k 26.4 k 26.4 k 26.4 k 26.4 k 26.4 k 212.4 k

Total 3.5 k 233.7 k 233.7 k 155.8 k 626.7 k

Table 11. Quantile loss for test data.

P10 P50 P90

0.0315 0.0611 0.0299

Figure 14 shows the plot of test data versus the TFT forecasts (using P50 quantile
forecast) for three different degradation paths; linear, exponential and sinusoidal. The blue
and red plots in Figure 14 show the original test HI time series and the forecasts generated
by the TFT model, respectively. The forecasts are started after observing the first 100 HI
data sequences, and at each step the model generates 50 future HI data sequences. We have
plotted all forecasts generated at each step. These sequences have overlap, i.e., at the first
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step, TFT generates 50 future HI sequence by observing the first 100 HI data-points (0 to
99 HI data-points), and in the second step, it forecasts another batch of 50 HI data-points by
observing the next overlapping analysis window of HI data-points which is from 1 to 100 HI
data-points. This is why we have multiple overlapping forecasts per each HI data-points.
In other words, the TFT forecasts consist of multiple predictions for moving horizon.
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Figure 14. Test data vs. TFT predictions.

The top left plot of Figure 14 shows the original and forecasts of HI time series for
the scenario in which all three sensors are healthy. The top right plot shows the original
and forecasts of the HI time series for the system, which has a spike fault with a linear
degradation path on the AccP sensor and healthy BP and SWA sensors. The bottom left
plot shows an original and forecasts of the HI time series for the system, which has an
erratic fault with a sinusoidal degradation path on AccP, BP sensors and healthy SWA
sensor. The bottom right plot shows an original and forecasts of the HI time series for the
system, which has a drift fault with an exponential degradation path on all three sensors:
AccP, BP and SWA.

Figure 15 illustrates the comparison of three different quantile forecasts. Quantile
forecasts are generated using linear transformation of the output from the temporal fu-
sion decoder.
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Figure 15. Test data vs. TFT forecasts for three different quantiles.

The example in Figure 15 shows a linearly degraded BP sensor with erratic fault and
three sets of forecasts, which are P10, P50 and P90. Each of these forecasts aims to predict
the low (10% quantile), mean (50% quantile) and the upper (90% quantile) ranges of HI.
This implies that the P10 forecasts are much more conservative and tend to predict the
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worst-case scenario. On the other hand, the P90 forecasts tend to generate naive predictions.
P50 forecasts are the closest approximation to the original HI time series. It is evident from
Figure 15 that the P10 forecasts (red plot) are the most pessimistic approximation of the
original HI stream (blue plot). The use of different quantile predictions is purely based on
the application, i.e., for sensitive applications, the P10 approximation is more suitable since
it predicts the worst-case scenarios.

5. Conclusions

This paper has examined the physical underpinnings of sensor faults and has mapped
them to four main categories. The ultimate goal has been to enable a vehicle sensors
health monitoring framework consisting of fault detection, isolation, identification and
prediction. In that spirit, a CNN-based sensor fault detector/classifier has been shown to
effectively manage a series of faults understudy for a large variety of fault combinations
that occurred in a multi-sensor (in our case three sensor output) scenario. The proposed
fault detection system obtained an accuracy of 99.84%. Based on the outcome of the fault
detection, the next stage will be chosen; if the fault is identified, the signal will pass to
the isolation and identification systems, and if no fault is detected, it will be passed to the
sensor health forecasting system.

It has been shown that the proposed architecture, with deep learning algorithms,
has the ability for autonomous vehicles to perform fault isolation and identification tasks.
Key findings on the implementation of DNN models in multi-sensor control systems
revealed high isolation and identification accuracy for different sensors when models
are exposed to multiple fault types, such as drift fault, which is the most difficult to
recognize. The multi-class DNN fault identification system obtained various performances
for different fault types and sensors from 73.00% to 100.00%.

When the fault detection system shows no fault in the sensors, then the signals will
pass to the sensor health forecasting system. In order to forecast the health state of the
sensors, the output of the sensor fault detection system has used to define a HI measure by
using three different degradation paths. The HI measure is the input to the TFT network
to predict the sensors’ future behavior and forecast the possible faults before they occur.
The performance measure which is used in this research is the quantile loss and the results
have been reported for P10, P50 and P90 quantiles, with an obtained loss of 0.0315, 0.0611
and 0.0299, respectively. The proposed method is validated on the real-world dataset,
A2D2 which is recently released by Audi (a German car manufacturer) [21].
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD Linear dichroism
PdM Predictive maintenance
SVMs Support vector machines
K-NN K-nearest neighbor
ANNs Artificial neural networks
DNNs Deep neural networks
RNN Recurrent neural networks
CNN Convolutional neural networks
RUL Remaining useful life
HI Health index
TFT Temporal fusion transformers
A2D2 Autonomous driving dataset
AccP Accelerator pedal
SWA Steering wheel angle
BP Brake pressure
FSO Full-scale output
LSTM Long short-term memory
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