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Abstract: A compensation method for nonlinear vibration of a silicon micro resonant sensor is
proposed and evaluated to be effective through simulation and experimental analysis. Firstly, the
parameter characterization model of the silicon micro resonant sensor is established, which presents
significant nonlinearity because of the nonlinear vibration of the resonant beam. A verification circuit
is devised to imitate the nonlinear behavior of the model by matching the simulation measurement
error of the frequency offset produced by the circuit block with the theoretical counterparts obtained
from the model. Secondly, the principle of measurement error compensation is studied, and the
compensation method dealing with nonlinear characteristics of the resonant beam is proposed by
introducing a compensation beam and corresponding differential operations. The measurement error,
compensation rate, and measurement residual between the two scenarios that use single beam and
double beams, respectively, are derived and are compared with their simulation and experimental
counterparts. The results coincide with the predicted trend, which verifies the effectiveness of the
compensation method.

Keywords: silicon-micro resonant sensor; nonlinear vibration; measurement error; compensation
method

1. Introduction

A silicon-micro resonant sensor, as the name implies, is a kind of high-precision sensor
that senses the measured object by the change of frequency. It is widely used in civil
and military fields owing to its miniaturization, light weight, low energy consumption,
high accuracy, good stability, and other advantages [1]. In the field of aerospace, resonant
sensors have higher requirements for accuracy. At present, the accuracy of most pressure
sensors can only reach 0.075%. The control accuracy directly depends on the measurement
accuracy, so the research on its model is the primary task.

The theoretical vibration model is the core formulation to describe the sensitive struc-
ture of silicon-micro resonant sensor by using an equivalent single-degree-of-freedom
underdamping system. In practical testing, due to the displacement constraint at the sup-
port end of the sensitive structure, i.e., no free deformation during vibration, there will be
additional internal stress proportional to vibration displacement inside the sensitive struc-
ture, causing the natural vibration frequency to vary with different vibration amplitudes
of the sensitive structure, thus generating nonlinear vibration. Moreover, with the rapid
development of micro-scale silicon-micro machining technology, the vibration amplitude
of the micro-scale silicon structure resonant beam is bound to be small when the silicon-
micro resonant sensor is sensitive to external input signals, which directly leads to a weak
detection signal, limited detection range, and low measurement accuracy. The most direct
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and effective solution from the source is to increase the amplitude of the resonant beam,
enhance the testing signal, broaden the detection range, and improve the measurement
accuracy, but large amplitude vibration must inevitably lead to nonlinear vibration. The
vibration process of the sensitive structure should ensure the detection range and precision,
as well as the vibration stability, so its vibration state should approach the nonlinear vibra-
tion, to ensure the detection range and precision of the sensor. Therefore, it is the primary
problem to study nonlinear vibration characteristics and corresponding compensation
methods for improving the range and accuracy of silicon-micro resonant sensors.

B. Hok is one of the pioneers who study the nonlinear vibration of medical pressure
sensors [2]. Under his leadership, nonlinear studies of various sensors such as photo-
electric sensors [3] and magnetic sensors [4] have emerged one after another. Then, the
researchers found that by reducing the influence factors of nonlinearity, the measurement
accuracy and stability of the sensor can be improved. After a long period of research, it is
found that there are many factors affecting the output error of the sensor, such as residual
stress [5], electrostatic force [6], large amplitude [7], bias voltage [8], material [9], additional
mass [10], and coupling effect [11,12]. For a specific sensor, the performance depends on a
variety of factors, instead of considering one single aspect. In order to reduce the influence
of different factors on the sensor nonlinear vibration, it is necessary to incorporate it into
the nonlinear vibration model, then quantify and solve. Therefore, in the next study, there
are many studies on the solution methods, but the dominant ones are the harmonic balance
method [13], multiscale method [14], Chebyshev polynomials [15], and KBM method [16].
With the help of these methods, the influence of the nonlinear vibration can be seen directly
by analyzing the dynamic performance with stability lobe graphs [17] or measurement
experiments [18].

Then, through algorithms compensation, the accuracy of the sensor can be improved.
For example, D. G. Kim employed the Takagi Sugeno fuzzy model to subtract the estimated
output from the original data of the resonant sensor to compensate for the nonlinear
deviation drift [19]. C. Pramanik proposed an intelligent online temperature compensation
scheme based on artificial neural network technology for a porous silicon micromechanical
resistance pressure sensor [20]. G. Araghi introduced a temperature compensation model
for a total inertial measurement unit based on a radial basis function neural network,
which was used to compensate the measurement error of the accelerometer and three-axis
gyroscope [21]. T. Wu designed a surface fitting compensation algorithm based on the
least square method, which can effectively eliminate the zero offset and nonlinear error of
the silicon piezoresistive pressure sensor [22]. However, with the progress of science and
technology, the accuracy of the existing sensors is not enough to meet the demand. The
algorithm’s compensation of sensors has stepped onto the development bottleneck.

The above studies mainly focused on the influencing factors, characterization, solu-
tions, and error compensation of the nonlinear vibration of sensors. Through the opti-
mization of each component in the sensor, the performance of the sensor is continuously
improved to meet various needs. However, in the study of nonlinear vibration analysis
and error compensation, the predecessors mainly established a temperature compensation
model through different algorithms to realize the suppression of sensor zero drift and
sensitivity drift. In this paper, besides incorporating temperature and axial stress into the
dynamic model of resonant beam, we also compensated the measurement error caused by
nonlinear vibration.

In our previous work, Li Yan et al. have thoroughly studied the parameter charac-
terization and solution of gyroscope in the resonant state [23] and incomplete resonant
state [24], and the frequency measurement method of the gyroscope [25]. All the previous
works not only broaden the linear theoretical system of the silicon-micro resonant sensor,
but also have a guiding significance for the nonlinear theoretical derivation of this paper.

In this paper, an electrothermal excitation silicon-micro resonant pressure sensor is
taken for example. Firstly, the working principle is analyzed theoretically, and the nonlinear
vibration parameters characterization of the resonator is established and solved. Then,
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the measurement error model is developed, the relationship between measurement error
and nonlinear vibration is further proven by using circuit blocks, and the compensation
method is raised for the nonlinear vibration caused by the electrothermal excitation and
measured pressure. Finally, a series of experiments are carried out to verify the feasibility
of the compensation method.

2. Working Principle of Silicon-Micro Resonant Sensor

The simplified model of the silicon-micro resonant pressure sensor is shown in
Figure 1. It mainly includes the sensitive structure, drive unit, detection unit, and closed-
loop control unit. The inner part of the resonator will produce axial stress due to the
diaphragm deformation under the action of measured pressure, when the sensitive struc-
ture that is composed of a square diaphragm and resonant beam is sensitive to the measured
pressure, which leads to the shift in the natural frequency. The drive unit excites the res-
onant beam to vibrate and keeps it in a resonant state. The detection unit picks up the
vibration signal of the resonant beam and feeds it back to the drive unit through the closed-
loop control unit. Therefore, the frequency of the excitation force is always consistent
with the natural frequency of the resonant beam, which realizes tracking of the natural
frequency of the resonator. The frequency shift can be obtained by picking up the resonant
beam vibration signal, and then calculating the measured pressure.

Figure 1. Schematic diagram of the silicon-micro resonant pressure sensor.

As a result of the displacement constraint at the support end of the resonant beam, it
cannot be freely deformed when it vibrates, which results in additional internal stress that
is proportional to the vibration displacement inside the resonant beam. The existence of
internal stress makes the natural frequency of the resonant beam change with the different
vibration amplitude, and then produces nonlinear vibrations. For a resonant beam with
silicon micro-machining technology, the nonlinear vibration caused by large amplitude is
more significant due to its miniaturization in size.

3. Measurement Error of the Resonant Beam Nonlinear Vibration
3.1. Parameter Characterization of Nonlinear Vibration

According to the Euler Bernoulli beam model, the resonant beam of the silicon-micro
resonant sensor is simplified. Take any element with length dx along the length of the
resonant beam for force analysis, as shown in Figure 2.
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Figure 2. Schematic diagram of micro element stress for the resonant beam.

Table 1 lists the geometric, elastic, and thermal parameters of the resonant beam and
diaphragm involved in the model.

Table 1. Symbols and definitions.

Symbol Definition

ŵ Lateral vibration displacement
c Viscous damping coefficient
E Young’s modulus of materials
J The moment of inertia of resonant beam cross section
ρ Material density
v Poisson’s ratio of materials
b Width of the resonant beam
l Length of resonant beam
h Thickness of resonant beam
L Edge length of the square diaphragm

αL Coefficient of thermal expansion
∆T The average axial temperature rises of the resonant beam
Nn The axial tension
Nt The axial pressure caused by static thermal power
Np The axial tension caused by the measured pressure
Nr The axial residual stress

where M is the sum of bending moments Mb(x̂, t̂) and Mt(x̂, t̂), which are caused by the
bending deformation of the resonant beam and its temperature gradient along the thickness
direction, respectively. They can be expressed as [26].

Mb(x̂, t̂) = EJ
∂2ŵ(x̂, t̂)

∂x̂2 (1)

Mt(x̂, t̂) = Mth1(x̂, t̂) + Mth2(x̂, t̂) (2)

where Mth1(x̂, t̂) and Mth2(x̂, t̂) are distributed time-dependent driving moments devel-
oped, respectively, by the dynamic thermal components of P1(t̂) and P2(t̂). They can also
be expressed as [26].

P1(t̂) =
2UdcUac cos(ω̂t̂)

R
(3)

P2(t̂) =
0.5U2

ac cos(2ω̂t̂)
R

(4)
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where Udc is the dc bias. R is the excitation resistor. Uac and
_
ω are the amplitude and

frequency of the ac exciting signal, respectively.
Stress analysis of the resonant beam element in vertical direction:

ρA ∂2ŵ
∂t̂2 dx̂ + (V + ∂V

∂x̂ dx̂) cos(θ + ∂θ
∂x̂ dx̂)−V cos θ + c ∂ŵ

∂t̂ dx̂ cos θ

+(Nn + Nt + Np + Nr) sin θ − (Nn + Nt + Np + Nr) sin(θ + ∂θ
∂x̂ dx̂) = 0

(5)

Moment balance of the resonant beam element:

Vdx̂ + M− c
∂ŵ
∂t̂

dx̂ · dx̂
2
− (M +

∂M
∂x̂

dx̂) = 0 (6)

when θ is small, there cos θ ≈ cos(θ + (∂θ/∂x̂)dx̂) ≈ 1.
Substituting the above formula into (5) and combining with (6), and neglecting the

high order small quantity, we can get:

ρA
∂2ŵ
∂t̂2 +

∂V
∂x̂

+ c
∂ŵ
∂t̂
− (Nn + Nt + Np + Nr)

∂2ŵ
∂x̂2 = 0 (7)

V =
∂M
∂x̂

(8)

The nonlinear vibration parameters of the electrothermal excited resonant beam are
characterized as:

EJ ∂4ŵ
∂x̂4 + ρbh ∂2ŵ

∂t̂2 + c ∂ŵ
∂t̂ =

[
Ebh
2l

∫ 1
0

(
∂ŵ
∂x̂

)2
dx̂ + Nt + Np + Nr

]
∂2ŵ
∂x̂2

− ∂2 Mth1(x̂,t̂)
∂x̂2 − ∂2 Mth2(x̂,t̂)

∂x̂2

(9)

The boundary conditions are:

ŵ(0, t̂) = ŵ(l, t̂) = 0 (10)

∂ŵ(0, t̂)
∂x̂

=
∂ŵ(l, t̂)

∂x̂
= 0 (11)

3.2. The Solution of the Nonlinear Vibration Parameters Characterization

Since such formulation will facilitate the identification of the order of magnitude of
some variables. Hence let:

w =
ŵ
r

, x =
x̂
l

, t = ω̂1 t̂, ω =
ω̂

ω̂1
(12)

where r = (J/bh)1/2 is the radius of gyro radius of cross section, ω̂1 is the fundamental
natural frequency of the resonant beam under linear vibration.

ω̂1 =
4.73

l2

√
EJ
ρbh

√
1 +

0.295(Nt + Np + Nr)l2

12EJ
(13)

In non-dimensional form, (9), (10) and (11) become:

EJ
l4

∂4w
∂x4 + ρbhrω̂2

1
∂2w
∂t2 + crω̂2

1
∂w
∂t

= r
l2

[
Ebhr2

2l2

∫ 1
0 ( ∂w

∂x )
2
dx + Nt + Np + Nr

]
∂2w
∂x2

−
[
δ−1(

2xl−l+lR
2 )− δ−1(

2xl−l−lR
2 )

]
[Md1(t) + Md2(t)]

(14)

w(0, t) = w(l, t) = 0 (15)
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∂w(0, t)
∂x

=
∂w(l, t)

∂x
= 0 (16)

where

Md1(t) =
24UacUdcEJβM(ω̂)

λRblR
cos[ωt− φd(ω̂)] (17)

Md2(t) =
6U2

acEJβM(2ω̂)

λRblR
cos[2ωt− φd(2ω̂)] (18)

where

M(ω̂) =

∣∣∣∣ i
2γ2

[
1
2
+

1
γ(1 + i)

− 2
γ(1 + i)[1 + exp(−γ(1 + i))]

]∣∣∣∣ (19)

φd(ω̂) = −arctan
1− γ− (1 + γ)e−2γ − 2e−γ[γ cos γ− sin γ]

1− e−2γ − 2e−γ sin γ
(20)

where lR is the length of exciting resistance, δ−1(x) is the first derivative of Dirac function,
and λ is the thermal conductivity of monocrystalline silicon. Moreover, where γ = h/δ,
δ = (2λ/ρcω̂)1/2.

It is assumed that the vibration displacement of the nonlinear vibration parameter
expression of the resonant beam is expanded according to the main mode as follows:

w(x, t) =
n

∑
i=1

ui(t)ϕi(x) (21)

where ϕi(x) is the i-th linear undamped mode function, and satisfies the
following relationship:

EJϕiv
i (x) = ρbhl4ω2

i ϕi(x) + (Nt + Np + Nr)l2 ϕ
′′
i (x) (22)

ϕi = 0 and ϕ′i = 0 at x = 0 and x = 1 (23)

Since the frequency ω̂ of the driving moment Mth1(x̂, t̂) is set approximately to the
fundamental natural frequency ω̂1 of the resonant beam by the PLL circuit, it is reasonable
to assume that the fundamental mode should be dominant in the vibration. Hence, let
n = 1 in (21), and then a reduced order model of the resonant beam is obtained:

..
u1(t) + 1

Q1

.
u1(t) + u1(t) + εu3

1(t)
= F1(ω̂)cos[ωt− φd(ω̂)] + F2(2ω̂)cos[2ωt− φd(2ω̂)]

(24)

where F1(ω̂) and F2(2ω̂) are the amplitudes of the two excitation forces, respectively. The
reason why the second-order mode component is introduced as the excitation signal, which
is to compensate for the part of energy lost by the nonlinear influence. Q1 and ε can be
presented as [26]:

Q1 =
ρbhω̂1

c
ε =

ζEr2

2ρω̂2
1 l4

= 0.1098 (25)

Typically, ε is small (ε = 0.1098, when ω̂1 = 2π× 40,000 rad/s). Thus, ε can be used as
the small perturbation parameter in the subsequent perturbation analysis. Q1 is the quality
factor of the resonant beam for the fundamental mode. Noted that since normal operation
is under vacuum, 1/Q1 << 1 can be expressed in terms of the ε:

1/Q1 = 2εµ (26)

where

µ =
cω̂1l4

ξEbhr2 (27)
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The coefficient ξ in (27) is a constant and can be calculated as [26].

ξ = −
∫ 1

0 ϕ
′′
1 (x)ϕ1(x)dx

∫ 1
0 ϕ′1

2(x)dx∫ 1
0 ϕ2

1(x)dx
≈ 60.0087 (28)

In order to quantitatively describe the proximity between the excitation frequency and
the natural vibration frequency of the resonant beam, a detuning parameter σ is introduced,
as is given by:

ω = 1 + εσ (29)

In addition, set F1(ω̂) = εK1(ω̂) and F2(2ω̂) = εK2(2ω̂),
where

K1(ω) =
48UacUdc JαLlϕ

′′
1 (x0)

λRb2hr3
∫ 1

0 ϕ
′′
1 (x0)ϕ1(x)dx

∫ 1
0 ϕ′1

2(x)dx
M(ω̂) (30)

K2(2ω) =
12U2

ac JαLlϕ
′′
1 (x0)

λRb2hr3
∫ 1

0 ϕ
′′
1 (x0)ϕ1(x)dx

∫ 1
0 ϕ′1

2(x)dx
M(2ω̂) (31)

Therefore, F1(ω̂) and F2(2ω̂) can be expressed as:

F1(ω̂) = ε
[
K1(ω̂1) + εK′1(ω̂1)ω̂1σ + o(ε2)

]
(32)

F2(2ω̂) = ε
[
K2(2ω̂1) + 2εK′2(2ω̂1)ω̂1σ + o(ε3)

]
(33)

Substituting (26), (29), (32), and (33) into (24) yields:

..
u1(t) + 2εµ

.
u1(t) + u1(t) + εu3

1(t)
= [εK1(ω̂1) + ε2K′1(ω̂1)ω̂1σ + o(ε3)]× cos[2(1 + εσ)t− φd(ω̂)]
+[εK2(2ω̂1) + 2ε2K′2(2ω̂1)ω̂1σ + o(ε3)]× cos[2(1 + εσ)t− φd(2ω̂)]

(34)

Using the multi-scale method of perturbation method to solve Equation (34), the
amplitude frequency response and phase frequency response of nonlinear vibration for
resonant beam can be obtained as follows:

ω̂ = ω̂1 +
3â2

8r2 ω̂1ε±
[

K2
1(ω̂1)r2

4â2 − µ2

]0.5

ω̂1ε (35)

ω̂ = ω̂1 +
3εω̂1K2

1(ω̂1)

32µ2 sin2[φ− φd(ω̂)]− µεω̂1 cot[φ− φd(ω̂)] (36)

3.3. Measurement Error Caused by Nonlinear Vibration

In the phase-locked closed-loop test system of the silicon-micro resonant sensor, the
phase-locked loop utilizes the frequency response characteristics to track and lock the
natural frequency of the sensitive structure. When the resonant beam vibrates in the
linear state, the difference between the excitation and the detection signal is π/2, and the
natural frequency can track the resonant beam vibrates at its natural frequency. When the
resonant beam vibrates in the nonlinear state, the resonant beam will bend the frequency
response characteristic curve, making it difficult for the phase-locked loop to accurately
lock the natural frequency, resulting in the measurement error of the sensor. The vibration
displacement of the resonant beam is defined as φ = π/2, and then the vibration frequency
of the resonant beam is obtained as follows:

ω̂ = ω̂1 +
3εω̂1K2

1(ω̂1)

32µ
cos2[φd(ω̂)]− tan[φd(ω̂)]

2Q1
ω̂1 (37)
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The frequency output error can be written as:

ω̂− ω̂1

ω̂1
= E1 + E2 (38)

where E1 = (3/8)ε3Q2
1K2

1(ω̂1) cos2[φd(ω̂)] and E2 = − tan[(φd(
_
ω))/2Q1] are errors caused

by the resonant beam nonlinear vibration and the phase shift of the electrothermal ex-
citation, respectively. Due to the phase shift of the electrothermal excitation φd(ω̂) ≈ 0,
there are:

E1 ≈
3
8

ε3Q2
1K2

1(ω̂1) (39)

The resonant beam amplitude â(φ = π/2) is:

â =
K1(ω̂1)r

2µ
(40)

Substituting (26) and (30) into (40) leads to:

E1 = ε
3
8

(
â
r

)2
(41)

Obviously, the measurement error of the resonant sensor caused by nonlinear vibration
is not only related to the resonant beam amplitude, but also affected by the coefficient of
nonlinear vibration.

3.4. Circuit Verification of Nonlinear Vibration Measurement Error

The nonlinear vibration of the silicon-micro resonant sensor will shift the natural
frequency of the resonant beam, and then produce measurement errors. Based on the
vibration theory and electro-mechanical equivalent principle of the silicon-micro resonant
pressure sensor, this section introduces the construction of the equivalent circuit block,
which imitates the mentioned nonlinear vibration parameter characterization. The fre-
quency characteristics of the equivalent circuit output waveform are analyzed qualitatively
to verify the influence of nonlinear vibration on the measurement error.

Before designing the circuit for characterizing nonlinear vibration parameters, Equa-
tion (24) needs to be rewritten to Equation (42) as follows:

..
u1(t) = − 1

Q1

.
u1(t)− u1(t)− εu3

1(t)
+F1(ω̂) cos[ωt− φd(ω̂)] + F2(2ω̂) cos[2ωt− φd(2ω̂)]

(42)

In (42), u1(t) can be obtained by two integral calculators. −(1/Q1)
.
u1(t) can be

achieved by integrating
..
u1(t) and scaling up. −u1(t) can be connected directly to the

circuit as a feedback signal. −εu3
1(t) can be realized by the multiplier and proportional

amplifier. The verification circuit works by self-oscillation; F1(ω̂) cos[ωt− φd(ω̂)] and
F2(2ω̂) cos[2ωt− φd(2ω̂)] are used as excitation signals only to make the resonant beam
vibrate at its natural frequency, and therefore are not considered. The equivalent verification
circuit block diagram of the silicon-micro resonant pressure sensor can be obtained by
adding each term involved in Equation (42).

As shown in Figure 3, the equivalent verification circuit block diagram includes
proportional amplifier units, a multiplier unit, an adder unit, and integrator units. The
proportional amplifier unit 1© amplifies the output signal u1(t) of the integrator 5©. The
proportional amplifier unit 2© amplifies the output signal

.
u1(t) of the integrator 4©. The

proportional amplifier unit 3© amplifies the output signal of the multiplier. The adder unit
realizes the accumulation of the output signal of the proportional amplifier units. Since
the adder has the function of an inverter at the same time,

..
u1(t) can be acquired according

to (42), and u1(t) can be obtained by the integral circuit 4© and the integral circuit 5©. The
u1(t) is input to the proportional amplifier circuit to form a closed loop; thus, a complete



Sensors 2021, 21, 2545 9 of 17

equivalent circuit is constructed. The equivalent circuit diagram of the silicon-micro
resonant pressure sensor is shown in Figure 4. The black dotted boxes are the proportional
amplifier modules, the orange dotted box is the multiplier, and the purple dotted box and
red dotted box are the adder and integrator module, respectively, in Figure 4. Moreover,
the parameters setting of each operational amplifier in the circuit is achieved by calculation
using the geometric parameters of the resonant beam, according to the characterization
model shown in Equation (24). This realizes the transformation between the dynamic
model and verification circuit. Where −(1/Q1) corresponds to U6A, −ε corresponds to
U3A and U2A, the coefficient of output signal u1(t) corresponds to U4A and U5A, and
the circuit parameters of the integrators U7A and U8A are designed by calculating the
stiffness of the resonant beam. Therefore, the parameters characterization corresponding
to the nonlinear vibration of the silicon-micro resonant pressure sensor is established by
using the basic circuit units, and the equivalence between the verification circuit and the
structural parameters of the silicon-micro resonant pressure sensor is proved. In order to
obtain the output waveform with stable amplitude and frequency in a certain range, some
parameters of the verification circuit have been optimized.

Figure 3. Equivalent verification circuit block diagram of the silicon-micro resonant pressure sensor.

Figure 4. Equivalent verification circuit diagram of the silicon-micro resonant pressure sensor.

Since the nonlinear coefficient characterizes the strength of the nonlinear vibration,
it is convenient to analyze the influence of nonlinear vibration on the measurement error
of the silicon-micro resonant pressure sensor by changing the nonlinear coefficient. In
Equation (42), the nonlinear term u3

1(t) is regulated by ε, while in the equivalent circuit,
ε corresponds to U3A and U2A. Therefore, the nonlinear coefficient can be jointly deter-
mined by R10 and R12, Similarly, R18 and R20 can also regulate the output signal u1(t),
thus keeping the resistance of R12 unchanged here, setting R10 with different resistances,
and fine-tuning the feedback resistance R18 and the integrator capacitance C3 to make
the output waveform stable. The frequency deviation can be obtained by the difference
between the self-oscillation frequency of the output waveform and its natural frequency.
The value of R10 and the corresponding frequency deviation are shown in Table 2. Figure 5
is the curve of frequency offset varying with nonlinear coefficient. The measurement error
can be obtained from Equation (39). Figure 6 shows how the measurement error varies as
the nonlinear coefficient does.
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Table 2. Resistance and frequency offset.

R10 Frequency Offset

80 Ω −0.285 kHz
85 Ω −0.251 kHz
90 Ω −0.188 kHz
95 Ω −0.177 kHz

100 Ω −0.043 kHz
105 Ω 0.026 kHz
110 Ω 0.056 kHz
115 Ω 0.092 kHz
120 Ω 0.128 kHz
125 Ω 0.157 kHz
130 Ω 0.187 kHz

Figure 5. The frequency offset of the nonlinear coefficient.

Figure 6. The influence of nonlinear coefficient on measurement error.

It can be seen from Figures 5 and 6 that the frequency offset and measurement error
are approximately linearly related to the nonlinear coefficient when the output waveform is
stable. With the increase of the nonlinear coefficient, the frequency offset and measurement
error also increase. According to (42), the measurement error of the silicon-micro resonant
pressure sensor caused by nonlinear vibration is proportional to the strength of nonlinear
vibration directly.

The experimental results of the circuit simulation confirm the influence of nonlinear
vibration on the measurement error; moreover, they verify the reliability of the theoretical
analysis conclusion given in the previous section.

4. The Measurement Error Compensation Method for Nonlinear Vibration
4.1. Compensation Principle

As shown in Figure 7, the error compensation method for nonlinear vibration is intro-
duced by taking the double beam silicon-micro resonant pressure sensor as an example.



Sensors 2021, 21, 2545 11 of 17

The sensitive structure consists of a square diaphragm, two resonant beams, and a pe-
ripheral fixed structure. One of the resonant beams is situated on the upper surface of
the square diaphragm. When the diaphragm deforms under the measured pressure, the
resonant beam is stretched and its natural frequency shifts, so it is called the working beam.
Another resonant beam is in the fixed area, which isolates the influence of the measured.
The natural frequency of this resonant beam is independent of the measured pressure.
This resonant beam is mainly used to compensate for the natural frequency deviation of
the working beam due to the nonlinear vibration, so it is called the compensation beam.
Diffusion resistors are installed at the center and root of the upper surface of the working
and compensation beam, respectively, which is used to excite and detect their vibration.
All the parameters applied on the working and compensation beams are identical, such as
the material, geometric dimension, excitation and detection resistance parameters, and the
excitation signal, etc.

Figure 7. Double silicon-micro resonant pressure sensor.

Under the measured pressure, the natural frequency of the working beam changes
with the measured pressure, while the natural frequency of the compensation beam is
independent of the measured pressure owing to the fixed structure. Because the parameters
of the resonant beam are the same, when the resonant beam is in the nonlinear vibration
due to the excessive amplitude, the natural frequency shift of the working beam caused by
the nonlinear vibration is also approximately equal to the natural frequency offset of the
compensation beam. Taking the difference between the natural frequency of the working
beam and the compensation beam as the frequency output of the sensor can greatly reduce
the sensor measurement error caused by the nonlinear vibration.

From (35), the resonant frequency of the resonant beam nonlinear vibration can be
expressed as:

ω̂r = ω̂1 +
3â
8r2 ω̂1ε (43)

For both the working beam and compensation beam in the double silicon-micro reso-
nant pressure sensor, the resonant frequency of them could be described in a normalized
expression as:

ω̂ri = ω̂1i +
3εω̂1iK2

1i
32µ2

1
= ω̂1i + ∆ω̂ni (44)

where subscripts i = a, b represent the working beam and compensation beam, respectively,
ω̂1i is the resonant beam natural frequency, and ∆ω̂ni is the difference between the resonant
frequency and the natural frequency of the resonant beam caused by the nonlinear vibration.
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The natural frequencies of the working beam and compensation beam can be written as
follows according to (13):

ω̂1i =

[
1 +

0.295l2

12EJ
Nri +

0.295l2

12EJ
Npi +

0.295l2

12EJ
Nti

]0.5

× 4.73
l2

(
EJ
ρbh

)0.5
(45)

Since −1 << 0.295Nti/(12EJ) < 0 and 0 << 0.295Npi/12EJ << 1, (45) can be
rewritten as:

ω̂1i ≈ ω̂i + ∆ω̂pi + ∆ω̂ti (46)

where

ω̂i =
4.732

l2

(
EJ
ρbh

)0.5[
1 +

0.295l2

12EJ
Nri

]0.5

(47)

∆ω̂pi =
4.732

24

(
EJ
ρbh

)0.5[
1 +

0.295l2

12EJ
Nri

]0.5 0.295
EJ

Npi (48)

∆ω̂ti =
4.732

24

(
EJ
ρbh

)0.5[
1 +

0.295l2

12EJ
Nri

]0.5 0.295
EJ

Nti (49)

where ∆ω̂pi and ∆ω̂ti are the changes of the resonant beam natural frequency caused
by the measured pressure and the electrothermal excitation thermal effect, respectively.
Substituting the Equation (47) into (45) yields:

ω̂ri = ω̂i + ∆ω̂pi + ∆ω̂ti + ∆ω̂ni (50)

The difference between the resonant frequency of the working beam and the compen-
sation beam is:

_
ωra −

_
ωrb = (

_
ωa −

_
ωb) + (∆

_
ωpa − ∆

_
ωpb) + (∆

_
ωta − ∆

_
ωtb) + (∆

_
ωna − ∆

_
ωnb) (51)

As the geometric, material physical parameters and processing technology of the
working beam and compensation beam are the same, there is ω̂a = ω̂b. The compensation
beam is in the isolation area, its natural frequency is not related to the measured pressure;
as a result, the change of natural frequency caused by the measured pressure is ∆ω̂pb = 0.
The electro-thermal excitation parameters of the working beam and the compensating
beam are the same. It can be considered that the change of the natural frequency of double
beams caused by thermal effect is approximately equal, i.e., ∆ω̂ta = ∆ω̂tb.

The frequency output of the double beam silicon-micro resonant pressure sensor is
defined as:

ω̂out = ω̂re f + (ω̂ra − ω̂rb) = ω̂re f + ω̂pa + (∆ω̂na − ∆ω̂nb) (52)

where ω̂re f is the natural frequency of the resonant beam under linear vibration without
measured pressure. ∆ω̂na − ∆ω̂nb is the frequency output of the double beam silicon-micro
resonant pressure sensor caused by the nonlinear vibration. Based on the above calculation
and analysis, as shown in Figure 8, the block diagram of the error compensation system of
pressure sensor with double resonant beam is given.

The measurement error caused by the nonlinear vibration is given by:

Edouble =
∆ω̂na − ∆ω̂nb
ω̂re f + ∆ω̂pa

(53)

The measurement error (42) of the single beam resonant pressure sensor and caused
by nonlinear vibration is compared with the measurement error (53) of the double beam
silicon-micro resonant pressure sensor. This is shown in Figure 9, in which the quality
factor Q1 is 30,000, the static thermal power PS is 20 mW, the dynamic thermal power
components P1 and P2 are 0 mW and 20 cos(2ωt) mW , respectively, and the residual stress
Nr is 0.0237 N . When the measured pressure is zero, the axial internal force and amplitude
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of the working beam and compensation beam are the same, and the resonant frequency
offset of the working beam and compensation beam caused by the nonlinear vibration
is the same ∆ω̂na = ∆ω̂nb, so it can be seen from (53) that the measurement error of the
double beam silicon-micro resonant pressure sensor caused by the nonlinear vibration
without the measured pressure is zero. When the measured pressure increases gradually
from zero, the bending coefficient of the working beam is less than the compensation
beam, and the resonant frequency shift of the working beam caused by the nonlinear
vibration is smaller than the resonant frequency shift of the compensation beam caused by
the nonlinear vibration. The measurement error of the double beam silicon-micro resonant
pressure sensor is negative and increases with the increase of the measured pressure. It also
can be seen in Figure 9 that the measured pressure reaches 1 standard atmospheric pressure,
and the measurement error of double beam silicon-micro resonant pressure sensor caused
by nonlinear vibration is −0.26%, which is far less than that caused by the single beam
resonant pressure sensor under the same working conditions.

Figure 8. The block diagram of the error compensation system of the pressure sensor with the double
resonant beam.

Figure 9. Measurement error of resonant pressure sensor caused by nonlinear vibration.

4.2. Experiment of Error Compensation Method

In order to verify the feasibility of the nonlinear vibration error compensation method,
the frequency response test system is used to obtain the nonlinear vibration frequency
response curve of the double beam silicon-micro resonant pressure sensor under different
static thermal power, measured pressure, and temperature, as shown in Figure 10.
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Figure 10. Nonlinear vibration frequency response test system.

It can be concluded that the frequency output offset caused by nonlinear vibration of
the single beam resonant pressure sensor and double beam silicon-micro resonant pressure
sensor are ∆ω̂na and ∆ω̂na − ∆ω̂nb, respectively. In order to describe the effectiveness of
the compensation method more intuitively, ξ is defined as the compensation rate of the
nonlinear vibration error of the double beam silicon-micro resonant pressure sensor, and is
formulated by:

ξ =

(
1−

∣∣∣∣∆ω̂na − ∆ω̂nb
∆ω̂na

∣∣∣∣)× 100% (54)

If the measured pressure and excitation power were given, according to the nonlinear
frequency response curve of the working beam and compensation beam, the resonant
frequency shift caused by nonlinear vibration can be obtained, respectively. Then, the
compensation rate of nonlinear vibration error is calculated by (54), given that the measured
pressure is 10 kPa, 20 kPa, 30 kPa, 40 kPa, 50 kPa, 60 kPa, 70 kPa, 80 kPa, 90 kPa, and 100 kPa,
and the excitation power and temperature are set to 98.70 mW and 40 ◦C, respectively. The
compensation rate changes with the measured pressure, as shown in Figure 11. The broken
line and straight line represent the experimental and theoretical values of the nonlinear
vibration compensation rate under different pressures, respectively. It is shown in Figure 11
that the differential compensation method can eliminate the nonlinear vibration error up
to 97% at 0–1 standard atmospheric pressure. At the same time, the effectiveness of the
compensation method is also proven.

Figure 11. Compensation rate of resonant pressure sensor caused by nonlinear vibration.

In order to further verify the advantages of the compensation method, the double
resonant beam structure can be as a single resonant beam pressure sensor, except for the
compensation beam. The output pressure can be calculated from the pressure characteristic
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curve of the sensor, and the measurement residual can be expressed as the difference
between the output pressure and the standard input pressure. Figure 12 shows the variation
of the measurement residual error with the single resonant beam pressure sensor, and
Figure 13 shows the variation of the measurement residual error with the double resonant
beam pressure sensors. When the measured standard pressure is 10 kPa, 40 kPa, 70 kPa,
100 kPa, and 130 kPa, the excitation power is 98.70 mW, the temperature is 20 ◦C, and
the maximum measurement residual of the single resonant beam structure is 3.4 kPa,
while the maximum measurement residual of the double beam structure is 0.24 kPa,
which is about 1/10 of the former. It proves that the double resonant beam structure is
more effective than the single resonant beam structure in nonlinear measurement error
suppression. In addition, when the temperature is −40 ◦C, 20 ◦C, and 60 ◦C, respectively,
the measurement residuals of the single resonant beam structure and double resonant
beam structure pressure sensor are compared. It can be concluded that the measurement
residual of the single resonant beam structure pressure sensor is smaller at 20 ◦C, but it is
larger at −40 ◦C and 60 ◦C, and the minimum relative residual is 26%. At the same time,
the results show that the maximum relative residual of the double resonant beam structure
pressure sensor is 1.9% at −40 ◦C, 20 ◦C, and 60 ◦C, which further proves the effectiveness
of the double resonant beam structure to compensate for the nonlinear error drift caused
by temperature fluctuation.

Figure 12. Measurement residual of the single resonant beam pressure sensor.

Figure 13. Measurement residual of the double resonant beam pressure sensor.

Based on the above experiments results, it can be concluded that the compensa-
tion method of the double resonant beam structure is not sensitive to the temperature
deviation. Additionally, the compensation rate is more significant in a low-pressure envi-
ronment according to Figure 11, which has a promoting effect on the development of the
aerospace industry.
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5. Conclusions

• The working principle of the silicon-micro resonant sensor is analyzed, the model of
the resonant beam is simplified, and the parameter characterization of the resonant
beam nonlinear vibration is obtained. The multiscale method in the perturbation
method is used to solve the parameter characterization to obtain the amplitude-
frequency response and phase-frequency response. Furthermore, the measurement
error of the resonant beam is obtained, and it is verified by the verification circuit
that the frequency offset and measurement error are positively correlated with the
nonlinear vibration.

• In order to compensate for the measurement error considered nonlinear vibration, a
compensation method applying double silicon-micro resonant beams for the pressure
sensor is proposed. The compensation principle, algorithms, and measurement error
are discussed.

• A series of measurement experiments were carried out, which were used to obtain
the nonlinear vibration frequency response curve under different measured pressure
and temperature; it can be obtained that the measurement error and compensation
rate were a good match in the predicted trends, which verifies the effectiveness of the
compensation method.

• From the measured pressure residual experiments results, which further verified
the advantages of the compensation method, it was also verified that the double
resonant beam structure is not sensitive to the temperature deviation. Therefore, the
double silicon-micro resonant beam pressure sensor has a promoting effect on the
development of the aerospace industry.

• In the future, we will consider an algorithm that automatically tunes some of the
parameters to counteract the nonlinearity induced frequency error instead of using
the typical structural compensation approach.
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