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Abstract: In this paper, we explore the performance of the distance-weighting probabilistic data
association (DWPDA) approach in conjunction with the loopy sum-product algorithm (LSPA) for
tracking multiple objects in clutter. First, we discuss the problem of data association (DA), which is
to infer the correspondence between targets and measurements. DA plays an important role when
tracking multiple targets using measurements of uncertain origin. Second, we describe three methods
of data association: probabilistic data association (PDA), joint probabilistic data association (JPDA),
and LSPA. We then apply these three DA methods for tracking multiple crossing targets in cluttered
environments, e.g., radar detection with false alarms and missed detections. We are interested in two
performance metrics: tracking accuracy and computation time. LSPA is known to be superior to PDA
in terms of the former and to dominate JPDA in terms of the latter. Last, we consider an additional
DA method that is a modification of PDA by incorporating a weighting scheme based on distances
between position estimates and measurements. This distance-weighting approach, when combined
with PDA, has been shown to enhance the tracking accuracy of PDA without significant change in
the computation burden. Since PDA constitutes a crucial building block of LSPA, we hypothesize
that DWPDA, when integrated with LSPA, would perform better under the two performance metrics
above. Contrary to expectations, the distance-weighting approach does not enhance the performance
of LSPA, whether in terms of tracking accuracy or computation time.

Keywords: multiobject tracking; high-clutter tolerant multiobject tracking; probabilistic data associa-
tion (PDA); joint probabilistic data association (JPDA); loopy sum-product algorithm (LSPA)

1. Introduction

Since probabilistic data association (PDA) was introduced for tracking in a cluttered
environment [1], engineers have been trying to optimize the data association (DA) tech-
nique for implementing in a Kalman filter (KF) [2] tracker. With the inception of the
sum-product algorithm (SPA) [3], a new graphical approach for KF tracking was developed
that is more efficient in dealing with the complex problem of multiple target tracking (MTT).
To develop a robust algorithm that is also scalable for tracking multiple objects in clutter,
in this paper we examine the performance of the distance-weighting probabilistic data
association (DWPDA) [4] in conjunction with the loopy sum-product algorithm (LSPA) [5].

The problem of DA is finding the correspondence between the targets and the mea-
surements of uncertain origins. There are several approaches to tackle this problem, such
as the nearest neighbor (NN), PDA, and joint probabilistic data association (JPDA) [1,6,7].
The NN approach is one of the easiest and uses at any time only the nearest measurement
to the predicted measurement as if it were the one originated from the target of interest [6].
The NN approach is suboptimal and can only work well in case of widely spaced targets,
accurate measurements, and few false alarms. Finding some association between all the
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targets and measurements is computationally expensive. Therefore a gate is formed around
the predicted measurement based on some predefined threshold called the validation
region. The PDA algorithm obtains the probability of each measurement lying inside the
validation region as being the correct measurement and updates the state estimates accord-
ing to an appropriately modified tracking filter, called PDAF [1]. One major drawback of
the PDA algorithm is that it treats every measurement inside the validation region of a
target of interest as if it were originated from the said target or as a Poisson-distributed
false alarm. PDA does not take into account the possibility that a validated measurement
for one target might be a measurement originated from another nearby target. The JPDA
algorithm improves this deficiency of the PDA algorithm by computing the association
probabilities for the validated measurements from the joint likelihood functions corre-
sponding to all feasible joint events such that no more than one measurement originates
from each target [7]. However, with an increasing number of targets and/or clutter, the
JPDA algorithm becomes impractical for real-time applications due to its combinatorial
complexity because it considers all feasible joint events of measurements to targets to
obtain the joint association probabilities [8].

PDA and JPDA are zero-scan algorithms, meaning that all hypotheses are combined
after computation of the probabilities, for each target at each time step [1,7]. Alternatively,
multiple hypothesis tracking (MHT) is a deferred decision logic algorithm. In the case of
a conflicting target-measurement association, the MHT algorithm formulates alternative
data association hypotheses instead of choosing the best-combined hypothesis. The ambi-
guities between the alternative hypotheses are resolved using the measurements that arrive
later into the future [9]. JPDA is shown to produce reasonable results compared to the
computationally expensive multi-scan MHT algorithm [7–10]. Both the PDA and the JPDA
algorithms utilize known targets for forming validation gates in the measurement space
to compute the posterior probabilities and are therefore categorized as target-oriented
approaches. There exist measurement-oriented algorithms, such as the one described
in [11] and others, where hypotheses are formed for each measurement to have originated
from a known target, a new target, or clutter. Both sets of algorithms have shown to yield
an equivalent expression for posterior probabilities with appropriate assumptions [7,11,12].

As we realize that calculating DA probabilities for MTT is a process that involves a
complicated global function of many variables that can be broken down into a product of
local functions each of which depends on a subset of the variables, we look for alternate
methods that can exploit this trait. SPA is one such method that operates in a factor
graph [13] and attempts to compute, either exactly or approximately, various marginal
functions associated with the global function [3]. SPA operates by passing messages, called
beliefs, between the nodes of a factor graph, i.e., variables and local functions, that involve
summations and products of factors. Implementation of a factor graph for the MTT DA
problem requires a loopy sum-product solution which is neither guaranteed to converge
nor produce the correct marginal functions if convergence occurs. A simultaneous target-
oriented and measurement-oriented factor graph formulation of the DA problem has been
shown that is guaranteed to converge and results in accurate association probabilities [5,14].
A simplified implementation of LSPA results in a significant reduction in computational
complexity without loss of accuracy [14,15], which makes LSPA more appealing than PDA
or JPDA for DA.

In recent years, the use of LSPA for DA in MTT has been gaining traction. A belief-
propagation approach to multi-target multi-sensor tracking is proposed in [16] by formu-
lating a detailed factor graph where every single target and data-association variable is
modeled as an individual node. To tackle the problem of tracking an unknown number of
targets, where targets appear and disappear, an LSPA-based method is proposed in [17]
that creates augmented target states for keeping track of existing and non-existing tar-
gets. A more comprehensive derivation of the message-passing algorithm for multi-sensor
multi-target tracking is given in [18,19]. An extension of the LSPA-based MTT framework
for target estimation is given in [20] that exploits additional target information provided



Sensors 2021, 21, 2544 3 of 20

by a classifier. All these efforts highlight the potential of SPA for solving the complicated
problem of DA in MTT.

The data association probabilities obtained using PDA are a crucial part of the beliefs
being passed between nodes during the convergence of LSPA. Modifying the DA proba-
bilities according to a weighting scheme based on distances between the predicted and
validated measurements has been shown to enhance the tracking accuracy of PDAF while
tracking a single target in a densely cluttered environment [4]. In this paper, we want to
explore whether this distance-weighting approach for PDA, when integrated with LSPA,
would improve the performance of LSPA even further. To evaluate this possibility, we
formulate a distance-weighting LSPA (DWLSPA) and compare its performance in terms of
tracking accuracy and computation time against DWPDA, JPDA, and LSPA for tracking
multiple targets crossing at a small angle in different density clutter. Our results turn out
to be contrary to expectations.

The main contribution of this performance study is to explore the idea of modifying
one of the building blocks for a state-of-the-art data-association algorithm [15] for multi-
target tracking and to compare the tracking accuracy of the modified algorithm to that
of the original algorithm. The distance-weighting modification analyzed in this paper is
based on a recent successful implementation of a similar modification to one of the earliest
data-association frameworks for tracking targets in cluttered environments [4]. In doing so,
we develop the mathematical formulation for each data-association filter being considered
and evaluate its performance in terms of tracking accuracy and computation time over a
wide range of easy-to-replicate multi-object-tracking scenarios.

We introduce our notations and the target tracking system in Section 2. In Section 3,
we describe the problem of PDA, DWPDA, JPDA, and LSPA. We present simulation results
for these methods and our analysis in Section 4. In Section 5, we conclude the paper with
our observations and final remarks regarding the performance of these methods.

2. Target Tracking Dynamic System Model and Assumptions

We describe the classic data association problem in which a single sensor surveils a
large number of targets. The number of targets under surveillance is assumed to be known
and is denoted by NT . The measurements are comprised of possible target detections
and false alarms. A target is detected with a known probability of detection PD and is
independent of time. The false alarms, modeled according to the Poisson point process
with a known spatial density λ, are uniformly distributed in the measurement space.
A validation region, with the threshold γ corresponding to certain gate probability PG, is
set up at every sampling time around the predicted measurement and possibly several
measurements fall in it. Each algorithm differs in how these measurements are used (or
not) in the estimation of the state of the target. We assume that each target can generate at
most one measurement and each measurement can have only one source.

We denote by xi(k), i ∈ {1, . . . , NT}, the state of i-th target of dimension nx at time
k. The complete set of target states at time k is denoted by X(k) = (x1(k), . . . , xNT (k)).
At time k, the total number of measurements is denoted by M(k). We denote by zj(k),
j ∈ {1, . . . , M(k)}, the value of j-th measurement of dimension nz. The complete set of
measurements at time k is denoted by Z(k) = (z1(k), . . . , zM(k)(k)), and the complete set
of measurements up to and including time k is denoted by Zk = (Z(1), . . . , Z(k)).

The state and measurement equations are assumed linear with additive zero-mean
white noise with known covariances. The state of target t evolves in time according to
the equation

xt(k + 1) = F(k)xt(k) + G(k)u(k), (1)

and the true measurement for target t is given by

zt(k) = H(k)xt(k) + w(k) (2)
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where u(k) and w(k) are zero-mean mutually independent white Gaussian noise sequences
with known covariances Q(k) and R(k), respectively. Functions F(k), G(k), and H(k)
are known matrices for state transition, noise gain, and sensor, respectively. The past
information (through time k− 1) about the target t is assumed to be known and summarized
approximately by the Gaussian posterior

p[xt(k− 1)|Zk−1] = N [xt(k− 1); x̂t(k− 1|k− 1), Pt(k− 1|k− 1)] (3)

where x̂t(k− 1|k− 1) and Pt(k− 1|k− 1) are the state estimate and covariance for target t.

3. Algorithm Description
3.1. Probabilistic Data Association Filter

The PDA algorithm calculates the association probabilities for each validated mea-
surement at the current time for the target of interest. PDA assumes that all the validated
measurements are generated by either the target of interest or clutter. The association prob-
abilities are used for calculating the mean squared error (MSE) estimate and covariance
of the target’s state. An appropriately modified KF, called PDAF, is used to account for
the uncertainty of origins for the validated measurements while estimating the state of the
target. The algorithm can be given as follows.

3.1.1. Prediction

The prediction of the state and measurement of target t at time k is done as in the
KF, i.e.,

x̂t(k|k− 1) = F(k− 1)x̂t(k− 1|k− 1) (4)

ẑt(k|k− 1) = H(k)x̂t(k|k− 1). (5)

The covariance of the predicted state for target t is

Pt(k|k− 1) = F(k− 1)Pt(k− 1|k− 1)F(k− 1)′ + G(k− 1)Q(k− 1)G(k− 1)′. (6)

Here, x̂t(k− 1|k− 1) and Pt(k− 1|k− 1) are available from Equation (3). The innova-
tion covariance of the target t (for the correct measurement) is

St(k) = H(k)Pt(k|k− 1)H(k)′ + R(k). (7)

3.1.2. Measurement Validation

The validation region for target t at time k is the elliptical region given by

Vt(k, γ) = {z ∈ Z(k) : [z− ẑt(k|k− 1)]′St(k)−1[z− ẑt(k|k− 1)] ≤ γ}. (8)

Here, γ can be obtained according to

V(k) = cnz |γS(k)|1/2 (9)

where V(k) is the volume of the validation region given by Equation (8) and cnz is the
volume of the unit hypersphere of dimension nz [12]. The validated measurements for
target t according to Equation (8) are

Zt(k)
∆
= {zi(k)}

mt(k)
i=1 (10)

where mt(k) is the number of validated measurements for target t at time k.
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3.1.3. Data Association Probabilities

The association probability βt
i for each validated measurement of target t is obtained as

βt
i(k) =


Li(k)

1−PD PG+∑
mt(k)
j=1 Lj(k)

i = 1, . . . , mt(k)

1−PD PG

1−PD PG+∑
mt(k)
j=1 Lj(k)

i = 0
(11)

where i = 0 indicates probability of associating none of the validated measurements to the
target. In Equation (11), Li(k) the likelihood ratio (LR) of measurement zi(k) originating
from the target t vs. from clutter and is obtained as

Li(k)
∆
=
N [zi(k); ẑt(k|k− 1), St(k)]PD

λ
, zi(k) ∈ Zt(k). (12)

3.1.4. State Estimation

The state estimation for target t is done according to PDAF by

x̂t(k|k) = x̂t(k|k− 1) + Wt(k)vt(k) (13)

where the combined innovation for target t is

vt(k) =
mt(k)

∑
i=0

βt
i(k)v

t
i(k), (14)

and
vt

i(k) = zi(k)− ẑt(k|k− 1) (15)

is the innovation of measurement for zi(k) ∈ Zt(k). The filter gain is calculated as

Wt(k) = Pt(k|k− 1)H(k)′St(k)−1. (16)

The covariance estimation for target t associated with the updated state is

Pt(k|k) = β0(k)Pt(k|k− 1) + [1− βt
0(k)]P

c
t (k|k) + P̃t(k) (17)

where the covariance of the state updated with the correct measurement, Pc, and the
innovation spread, P̃, for target t are given by

Pc
t (k|k) = Pt(k|k− 1)−Wt(k)St(k)Wt(k)′ (18)

and

P̃t(k) = Wt(k)

[
mt(k)

∑
i=1

βt
i(k)v

t
i(k)v

t
i(k)

′ − vt(k)vt(k)′
]

Wt(k)′, (19)

respectively.
The estimated state in PDAF from Equation (13) is for a single target xt. To estimate

the state of every target xt, t ∈ {1, . . . , NT}, we need to apply PDAF to the targets one by
one sequentially. This means that for each target xt, t ∈ {1, . . . , NT}, we perform state and
measurement prediction, form a validation region around the predicted measurement and
prune off potentially unrelated measurements, obtain data-association probabilities for the
validated measurements, and, finally, update the state estimate according to Equation (13).
The order in which PDAF is applied to the targets is irrelevant because the outcome is
independent of the order.
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3.2. Distance-Weighting Probabilistic Data Association Filter

In the PDA algorithm, the association probability β is calculated as the likelihood ratio
of a validated measurement to have originated from a target vs. from clutter. Chen et al. [4]
have pointed out that a true measurement from a target of interest is more likely to be near
the target’s predicted measurement. Since false alarms are uniformly distributed in the
measurement space, the measurement nearest to that of the predicted measurement from a
target of interest should carry more weight while calculating the association probabilities
for the target. The distance weight proposed in [4] is calculated as

∆t
i(k) =

1/δt
i (k)

∑
mt(k)
i=1 1/δt

i (k)
(20)

where δt
i (k) is the Mahalanobis distance between validated measurement i and predicted

measurement of target t at time k. The Mahalanobis distance is calculated as the norm of
the innovation squared and is given by

δt
i (k) = vt

i(k)
′St(k)−1vt

i(k) (21)

where vt
i(k) is the innovation as defined in Equation (15).

The new data association probabilities for target t at time k are calculated as

Bt
i (k) = βt

i(k)∆
t
i(k) i = 1, . . . , mt(k) (22)

and are normalized according to

Bt
i (k) = Bt

i (k)/
mt(k)

∑
j=0
Bt

i (k) i = 0, 1, . . . , mt(k). (23)

The data association probabilities obtained in Equation (23) are used for estimating
target state as explained previously in PDAF Section 3.1.4. Similar to PDAF, the DWPDA
filter is designed for tracking a single target. For the purpose of tracking multiple targets,
we need to update the states of the targets one by one.

3.3. Joint Probabilistic Data Association Filter

The PDA algorithm is designed for tracking a single target in clutter. Because the
PDA algorithm assumes all the incorrect measurements in the validation region of a target
of interest are clutter, it is susceptible to scenarios where these incorrect measurements
might have originated from another nearby target. Situations may arise in MTT where the
validation regions of nearby targets may overlap for several time frames in a row and cause
persistent interference that can lead to track deterioration or track loss altogether with
PDA. JPDA improves on PDA by calculating joint association probabilities at each time
step. Marginalized association probabilities for each target can be obtained using these
joint association probabilities, which are then used for estimating the state of each target.

3.3.1. Measurement Validation

A major difference between the PDA and the JPDA algorithm is that no individual
validation gates will be assumed for the various targets. A uniform validation region for
all targets is obtained by taking a union of individual validation gates. This way each
measurement is assumed to be validated for each target and false alarms will be assumed
to be uniformly distributed across the entire validation region. Predictions for each target
are done at each time step similar to the PDA algorithm using Equations (4)–(7).
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Once the validated measurements are obtained for each target using Equations (8)
and (10), the combined validated measurements at time k are given according to

ZNT (k) =
NT⋃
i=1

Zi(k). (24)

The number of combined validated measurements is mNT (k) at time k.

3.3.2. The Validation Matrix

A validation matrix Ω of size mNT × (NT + 1) with binary elements is created using
the combined validated measurement.

Ω(k) = [ωjt] j = 1, . . . , mNT (k); t = 0, 1, . . . , NT (25)

where

ωjt =

{
1 if zj(k) ∈ Zt(k)
0 otherwise.

(26)

The first column of Ω(k) corresponding to t = 0 is all unity indicating that each
measurement could be a false alarm.

3.3.3. The Feasible Joint Events

The joint association events for time k are given by

θ(k) =
mNT⋂
j=1

θjtj j = 1, . . . , mNT (k); t = 0, 1, . . . , NT (27)

where in the event of θjt, measurement j is originated from target tj. An event matrix Ω̂
consisting of the units in Ω corresponding to the association in θ is used to represent a joint
association event θ.

Ω̂(θ(k)) = [ŵjt(θ(k))] j = 1, . . . , mNT (k); t = 0, 1, . . . , NT (28)

where

ω̂jt(θ(k)) =

{
1 if θjt ∈ θ(k)
0 otherwise.

(29)

Not all joint association events are feasible joint events. As per our target tracking
model assumptions, feasible association events are only those where no more than one
measurement is associated with each target. Therefore a feasible association event is the
one which satisfies the following two conditions:

1. A measurement can have only one source, i.e.,

NT

∑
t=0

ω̂jt(θ(k)) = 1 ∀j. (30)

2. Each target can generate at most one measurement, i.e.,

δt(θ(k))
∆
=

mNT

∑
j=1

ω̂jt(θ(k)) ≤ 1 t = 1, . . . , NT . (31)
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δt(θ(k)) in Equation (31), called the target detection indicator, indicates if a measurement is
associated with target t in event θ(k). Similarly, we define the measurement association
indicator τ(θ(k)) to indicate if measurement j is associated with a target in event θ(k).

τj(θ(k))
∆
=

NT

∑
t=1

ω̂jt(θ(k)) j = 1, . . . , mNT (k). (32)

We can obtain the number of false alarms in event θ(k) as

φ(θ(k)) =
mNT (k)

∑
j=1

[1− τj(θ(k))]. (33)

3.3.4. Joint Data Association Probabilities

The joint data association probabilities are calculated as

P{θ(k)|Zk} = 1
c
[ZmNT (k)

(k)|θ(k), mNT (k), Zk−1]P{θ(k)|mNT (k)} (34)

where P{·} indicates the probability mass function (PMF) and c is the normalization
constant. The marginal association probabilities are obtained from the joint DA probabilities
by summing over all the joint events according to Equation (29). The marginal association
probabilities at time k are then given as

βt
j(k) = ∑

θ(k)
P{θ(k)|Zk}ω̂jt(θ(k)) j = 1, . . . , mNT (k); t = 0, 1, . . . , NT (35)

βt
0(k) = 1−

mNT (k)

∑
j=1

βt
j(k) t = 0, 1, . . . , NT (36)

where the probability βt
j represents that the measurement j is associated with target t and

βt
0 indicates that none of the validated measurements is associated with target t. The

expression for the joint association probabilities in Equation (35) can be given in terms of
the variables defined in JPDAF Section 3.3.3 as

P{θ(k)|Zk} = 1
c1

mNT (k)

∏
j=1
{λ−1[Λ

tj
j (k)]}

τj(θ(k))
NT

∏
t=1

(PD)
δt(θ(k))(1− PD)

1−δt(θ(k)) (37)

where Λ
tj
j is the Gaussian density of measurement j associated with target of index tj

given by

Λ
tj
j (k) = N [zj(k); ẑtj(k|k− 1), Stj(k)] (38)

and c1 is the new normalization constant. The marginal association probabilities obtained
in Equations (35) and (36) are used in conjunction with the state estimation equations given
in PDAF Section 3.1.4 for estimating state of each target separately.

3.4. Loopy Sum-Product Algorithm

Graphical models can be used for representing the joint probability distributions of
many variables efficiently by exploiting factorization. For SPA, factor graphs are utilized for
representing the DA relations between multiple targets and their validated measurements.
SPA is then conducted on the resulting loopy factor graph for obtaining the marginal DA
probabilities. The algorithm for the loopy-SPA can be given as follows.
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3.4.1. Belief Propagation in Factor Graphs

Kschischang et al. [3] demonstrated how factor graphs can be used to interpret a
variety of algorithms such as the KF, the Viterbi algorithm, the Hidden Markov Model,
etc. A factor graph is a standard bipartite graphical representation of a mathematical
relationship between random variables and local functions. While formulating a factor
graph to express the structure of the factorization of a global function of many variables
into several local functions, each node represents each random variable n ∈ N, each factor
represents each local function f ∈ F, and an edge connects a node n to a factor f if and
only if n is an argument of f .

The SPA algorithm, also called as Belief Propagation (BP), passes messages, called
beliefs, between nodes and factors in an iterative manner for conducting optimal inference
on a tree-structured factor graph. We denote by ψ·(·) the joint probability distribution
function, by µn→ f (xn) the message sent from node n ∈ η f to factor f , by µ f→n(xn) the
message sent from factor f to node n ∈ η f , by η f ⊆ N the set of neighboring nodes of
f , and by ηn = { f ∈ F|n ∈ η f } the factors involving node n. The message computation
performed by SPA can be given as

µn→ f (xn) = ∏
ξ∈ηn\{ f }

µξ→n(xn) (39)

µ f→n(xn) = ∑
∼{xn}

ψ f (xη f ) ∏
ξ∈η f \{n}

µξ→ f (xξ)

 (40)

where ∼ {xn} denotes the summation over all arguments of f except xn. For factorization
involving continuous variables, the summation is replaced with an integral taken over a
Lebesgue measure. The algorithm is known as sum-product because the steps involved are
summations (or integrals) and products of factors and messages.

SPA extended to loopy graphs is called LSPA. LSPA simply requires repeated ap-
plication of SPA until convergence occurs. Practically, this means computing messages
continuously using Equations (39) and (40) until the maximum error between subsequent
messages is less than a pre-set threshold. However, LSPA is neither guaranteed to converge
to the right answer nor to converge at all.

3.4.2. Factor Graphs for Data Association

We consider the DA problem involving known and fixed NT targets and their combined
validated measurements ZNT (k) at time k obtained as explained in JPDAF Section 3.3.1.
The number of combined validated measurements are mNT (k) at time k. Formulating a
factor graph for the DA problem that is guaranteed to converge according to [5,14,15], we
need the following two sets of association variables:

1. Target oriented association variable (a): Create an association variable ai(k) ∈ {0, 1, . . . ,
mNT (k)} for each target i ∈ {1, . . . , NT}. The value assigned to ai(k) is an index to
the measurement with which target i is hypothesized to be associated at time k (zero
if the target is hypothesized to not have been detected). The complete set of target
oriented association variables at time k is denoted by a(k).

2. Measurement oriented association variable (b): Create an association variable bj(k) ∈
{0, 1, . . . , NT} for each measurement j ∈ {1, . . . , mNT (k)}. The value assigned to bj(k)
is an index to the target with which measurement j is hypothesized to be associated
at time k (zero if the measurement is hypothesized to be clutter). The complete set of
measurement oriented association variables at time k is denoted by b(k).

Given one set of association variables, the other set can be perfectly reconstructed. As
shown in [5,14,15], this use of seemingly redundant information while forming a factor
graph leads to the remarkable result of guaranteed convergence of LSPA computed on the
said factor graph. A bipartite graphical model formed using the association variables a(k)
an b(k) is shown in Figure 1.
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a1(k)

a2(k)

...

aNT (k)

b1(k)

b2(k)

...

bmNT
(k)

Figure 1. Bipartite graphical model formulation for data association at time k. The value assigned to
ai(k) is an index to the measurement with which target i is hypothesized to be associated at time k
and the value assigned to bj(k) is an index to the target with which measurement j is hypothesized
to be associated at time k.

Our goal is to estimate state vectors xi(k), i ∈ {1, . . . , NT} from the measurement
vectors Z(k) at time k. Introducing the data-association variables a(k) and b(k), a Bayesian
approach to state estimation of xi(k) produces a posterior probability density function
(PDF) f (xi(k), a(k), b(k)|Z(k)). This can be achieved by marginalizing the joint posterior
PDF f (X(k), a(k), b(k)|Z(k)), where X(k) = (xi(k), . . . , xNT (k)). However, direct marginal-
ization of f (X(k), a(k), b(k)|Z(k)) is not always feasible. Assuming that the posterior PDF
of X(k) factorizes into a product of terms associated with each target xi(k), an efficient
marginalization is given as

f (X(k), a(k), b(k)) ∝
NT

∏
i=1

ψi(xi(k), ai(k))
mNT (k)

∏
j=1

ψi,j(ai(k), bj(k)) (41)

where

2ψi(xi(k), ai(k)) =

{
[1− PD(xi(k)) f (xi(k)|Z(k− 1))] if ai(k) = 0

[PD(xi(k)) f (zai(k)|xi(k)) f (xi(k)|Z(k− 1))]/λ(zai(k)) if ai(k) 6= 0
(42)

and

ψi,j(ai(k), bj(k)) =

{
0 if ai(k) = j, bj(k) 6= i or bj(k) = i, ai(k) 6= j
1 otherwise.

(43)

Here, ∝ indicates equality up to a normalization factor, ψi(xi(k), ai(k)) indicates the
dependence of the factors ψi(·) on Z(k), ψi,j(ai(k), bj(k)) enforces consistency of the redun-
dant association variables ai(k) and bj(k) describing the same association configuration,
PD(xi) gives the probability of detection for target xi, and λ(zj) gives the PDF value of
measurement zj occurring as a result of false alarm with a Poisson point process.

The factorization structure in Equation (41) can be represented by a factor graph.
As an example, for X(k) = (x1(k), x2(k)) and Z(k) = (z1(k), z2(k)), the factor-graph
representation of Equation (41) is shown in Figure 2. Since the target states xi(k) in
Figure 2 are leaf nodes, we can marginalize these and replace the factor ψi(xi(k), ai(k))
with ψi(ai(k)). In a factor graph, each parameter variable is represented by a variable node
(circle node), and each factor is represented by a rectangle node, as shown in Figure 2. Each
variable node and each factor node are connected by an edge if the variable is an argument
of the factor. For each node, certain messages are calculated according to Equations (39)
and (40). Message passing is started at variable nodes with only one edge (which pass a
constant message) and/or factor nodes with only one edge (which pass the corresponding
factor). Finally, for each variable node, a belief (posterior PDF value) is calculated as
the product of all incoming messages (passed from all adjacent factor nodes) followed
by a normalization. For a tree-structured factor graph, these beliefs are exactly equal to
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marginal posterior PDF values. For a loopy factor graph, the beliefs are in general only
approximations of the respective marginal posterior PDF values. A detailed description of
the messages passed between each variable node and factor node is given in [19]. A sample
MATLAB program for implementing one iteration of loopy SPA is given in [14].

a1 ψ1(a1, b1)

ψ1(a1, b2)

ψ1(a2, b1)

ψ1(a2, b2)a2

ψ1(x1, a1)

ψ2(x2, a2)

x1

x2

b1

b2

z1

z2

Figure 2. Factor graph representing the factorization of the joint posterior probability density
function (PDF) f (x1, x2, a1, a2, b1, b2|z1, z2) according to Equation (41), depicted for one time step.
For simplicity, the time index k is omitted.

3.4.3. Joint Data Association Probabilities

Once the combined validated measurements are obtained as given in Equation (24), the
joint data association probabilities under the stated assumptions at time k are calculated as

p(a(k), b(k)|Zk) =
NT

∏
i=1

ψi(ai(k))
mNT (k)

∏
j=1

ψi,j(ai(k), bj(k)) (44)

where

ψi,j(ai(k), bj(k)) =

{
0 if ai(k) = j, bj(k) 6= i or bj(k) = i, ai(k) 6= j
1 otherwise

(45)

enforce consistency of the redundant association variables ai(k) and bj(k) describing the
same association configuration, and ψi(ai(k) = 0) = 1 and ψi(ai(k) = j > 0) are the
(unnormalized) single target data association probabilities obtained as explained in PDAF
Section 3.1.3. Equation (44) can be expressed as the formulation of SPA for a bipartite
model illustrated in Figure 1 in which all target association variables ai(k) are connected
to all measurement association variables bj(k). In this case, LSPA may be implemented
via two half iterations, alternating between the two sets of messages µai(k)→bj(k)(bj(j)) and
µbj(j)→ai(k)ai(k). The message updating equations according to Equations (39) and (40) can
be given as

µai(k)→bj(k)(bj(k)) = ∑
ai(k)

ψi(ai(k))ψi,j(ai(k), bj(k)) ∏
j′ 6=j

µbj′(k)→ai(k)(ai(k)) (46)

=

ψi(j)∏j′ 6=j µbj′(k)→ai(k)(j) if bj(k) = i

∑ai(k) 6=j ψi(ai(k))∏j′ 6=j µbj′ (k)→ai(k)(ai(k)) if bj(k) 6= i
(47)

and

µbj(k)→ai(k)(ai(k)) = ∑
bj(k)

ψi,j(ai(k), bj(k)) ∏
i′ 6=i

µai′ (k)→bj(k)(bj(k)) (48)

=

{
∏i′ 6=i µai′→j(i) if ai(k) = j

∑bj(k) 6=i ∏i′ 6=i µai′→j(bj(k)) if ai(k) 6= j.
(49)
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These messages can be further simplified as shown in [14,15]. Upon convergence of
LSPA, the approximate marginal association probabilities can be given as

p(ai(k) = j|Zk) =
ψi(j)µbj(k)→ai(k)(ai(k))

∑
mNT (k)
j′=0 ψi(j′)µbj′ (k)→ai(k)(ai(k))

(50)

p(bj(k) = i|Zk) =
µai(k)→bj(k)(bj(k))

∑NT
i′=0 µai′ (k)→bj(k)(bj(k))

(51)

where µbj(k)=0→ai(k)(ai(k))
∆
= 1 and µai(k)=0→bj(k)(bj(k))

∆
= 1. The marginal association

probabilities are used to estimate target states as per PDAF Section 3.1.4.

3.5. Distance-Weighting Loopy Sum-Product Algorithm

Since the factor-graph representation for the MTT DA problem contains loops, and
the convergence process of calculating the marginal data-association probabilities using
LSPA is governed by some heuristically determined preset threshold, different initiation
messages can lead to different final beliefs. These initiation messages for the convergence
process happen to be the (unnormalized) single-target data-association probabilities. These
probabilities directly influence the marginal data-association probabilities at the end of
the convergence process and, consequently, the estimation of the target state. We would
expect that a more accurate initial set of single-target probabilities leads to either more
accurate final beliefs, a faster convergence to the final beliefs, or both. The distance-weight-
based association probabilities have been proven to be more accurate for tracking a single
target in densely cluttered environments [4]. We would expect this adjustment to the
initial condition to change the calculation of the association probabilities and hence the
overall tracking process in terms of tracking accuracy or computation time, and therefore
worth exploring.

Here we formulate a modification for the joint data association probabilities calculated
using LSPA under the stated assumptions as described in Section 3.4. The distance-weight
based joint data association probabilities at time k can be given as

p(a(k), b(k)|Zk) =
NT

∏
i=1

ψi(ai(k))
mNT (k)

∏
j=1

ψi,j(ai(k), bj(k)) (52)

where

ψi,j(ai(k), bj(k)) =

{
0 ai(k) = j, bj(k) 6= i or bj(k) = i, ai(k) 6= j
1 otherwise

(53)

enforce consistency of the redundant association variables ai(k) and bj(k) describing the
same association configuration, and ψi(ai(k) = 0) = 1 and ψi(ai(k) = j > 0) = Bt

i (k) are
the (unnormalized) distance-weight based single target data association probabilities ob-
tained in Equation (22). The approximated marginal association probabilities are obtained
from the joint DA probabilities as described in Section 3.4.

4. Simulation and Analysis
4.1. The Dynamic Model

We assume a two-dimensional system where the target state vector consists of position
and velocity in each of the two coordinates. For target i at time k, the target state xi(k) =
[x(k), ẋ(k), y(k), ẏ(k)] has four components: The first and second components are the
horizontal location and velocity, respectively, while the third and fourth components are
the vertical location and velocity, respectively. The system is equipped with the nearly
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constant velocity (NCV) model (also sometimes called the constant velocity (CV) model).
The system is described by Equations (1) and (2) with

F(k) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (54)

G(k) =


T2/2 0

T 0
0 T2/2
0 T

 (55)

H(k) =
[

1 0 0 0
0 0 1 0

]
(56)

Q(k) =
[

q 0
0 q

]
(57)

R(k) =
[

r 0
0 r

]
(58)

where T is the sampling interval.

4.2. Simulation Parameters

For our simulations, we set the probability of detection PD = 0.9, the gate threshold
γ = 9.21 corresponding to gate probability PG = 0.99, sampling interval T = 1 s, the
process noise variance q = 0.05, and the measurement noise variance r = 5. To better
evaluate the accuracy of different algorithms under multiple conditions, we varied the
clutter density generated according a Poisson point process from λ = 1.0× 10−4/scan/m2

to λ = 5.0× 10−4/scan/m2. We also varied the number of tracked targets from 1 to 6. The
initial state of the first target is always set at x1(1) = [100 m, 30 m/s, 100 m, 30 m/s]. We
set the initial state of each consecutive target by xi(1) = [100 m, 30 m/s, (100− i× 100×
c(i)) m, (30− i× 30× c(i)) m/s] where i is the target index and c(i) is a single uniformly
distributed random number in the interval (0, 1) independent of each other. To compare
the performance, we performed 500 Monte Carlo simulations on MATLAB (Natick, MA,
USA) [21].

4.3. Results and Discussion

When choosing an optimal tracking algorithm, there is typically a trade off between
tracking accuracy and computation time. Maintaining a high-level accuracy in complex
scenarios where multiple targets need to be tracked simultaneously and the environment
is particularly noisy requires significant computation time. Traditionally, the tracking
accuracy of an estimator is calculated in terms of a miss-distance, or localization error,
between a reference value and its estimated value. In our context, we are also interested
in evaluating missed detections and false alarms. The generalized optimal sub-pattern
assignment (GOSPA) metric has been designed to reflect this performance [22]. Informally,
the GOSPA metric can be defined as

GOSPA = ∑ localization error +
cutoff distance

2
(# of missed detections + # of false alarms)

(for a precise detailed description of GOSPA, see [22]). The localization error is for pairs of
true targets and target estimates that are sufficiently close. A missed detection is declared
if there is no corresponding target sufficiently close to it, and a false alarm is declared if
there is no corresponding true target sufficiently close to it. To evaluate the performance
of the different tracking algorithms described in Section 3 in terms of the miss-distance,
the GOSPA metric, and computation time, we considered multiple scenarios with varying
levels of complexities.
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Figures 3a,b depict two such scenarios where the trajectories of three targets are shown
for clutter densities λ = 1× 10−4/m2 and λ = 5× 10−4/m2, respectively. The scenario
depicted in Figure 3b is more demanding because of the increased number of false alarms.
Figure 4a,b compares the performance of LSPA and DWPDA in terms of tracking accuracy,
calculated using the root mean square (RMS) position error, over a period of 100-time
intervals for the above two scenarios, respectively. We see that the RMS position errors for
LSPA stay close to 0 over the entire period while they are always increasing for DWPDA
as time progresses. We see similar results while tracking six crossing targets with clutter
densities λ = 1× 10−4/m2 and λ = 5× 10−4/m2, as depicted in Figure 5a,b. Figure 6a,b
show that the computation times for the two clutter scenarios as the number of targets
increases from one to six. We see that the computation times required for LSPA are only
slightly higher than those of DWPDA. Finally, Tables 1 and 2 summarize the results for the
performance in terms of the GOSPA metric based on the Euclidean distance with a cutoff
parameter of 30. Table 1 shows the average GOSPA errors as we increase the number of
targets from 1 to 6 while keeping the clutter density constant at λ = 3× 10−4/m2. We can
see that irrespective of the number of targets that are being tracked, GOSPA errors for LSPA
are only a fraction of the errors for DWPDA. We see a similar pattern in Table 2 where we
increase the clutter density from λ = 1× 10−4/m2 to λ = 5× 10−4/m2 while keeping the
number of targets fixed. The poor performance of DWPDA is expected, since the algorithm
is ill-equipped to deal with the problem of DA in MTT, and GOSPA appropriately penalizes
any missed detections and false alarms. From the above results, it is evident that LSPA
is superior to DWPDA in terms of tracking accuracy in all scenarios without trading off
much computation time. This superior tracking accuracy can be attributed to the reduction
in the association probabilities of false measurements in the overlapping validation regions
from multiple targets and, at the same time, the increase in the association probabilities for
actual target measurements. From the above results, we know that LSPA can improve the
tracking performance for MTT in densely cluttered environments.

X (m)

Y
 (

m
)

Target 1

Target 2

Target 3

Clutter

(a)

X (m)

Y
 (

m
)

Target 1

Target 2

Target 3

Clutter

(b)
Figure 3. True target positions for three crossing targets with different clutter densities. (a) Clutter density λ = 1× 10−4/m2;
and (b) clutter density λ = 5× 10−4/m2.

Table 1. Average generalized optimal sub-pattern assignment (GOSPA) errors for tracking multiple
crossing targets with clutter density λ = 3× 10−4/m2.

Number of Targets

1 2 3 4 5 6

LSPA 0.4571 0.9103 1.5033 1.9659 2.3441 2.9000
DWLSPA 0.4435 0.8787 1.5243 1.8601 2.2664 2.8253

JPDA 0.6751 2.5626 4.6425 6.1505 9.3851 11.5240
DWPDA 4.7454 9.1838 14.2879 18.5087 23.3401 27.4684
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Table 2. Average GOSPA errors for tracking three targets with different clutter densities.

λ

1 × 10−4 2 × 10−4 3 × 10−4 4 × 10−4 5 × 10−4

LSPA 1.4280 1.6058 1.4056 1.6628 1.7690
DWLSPA 1.3718 1.5652 1.3388 1.5289 1.6257

JPDA 3.5367 4.2030 4.3475 4.4828 5.2677
DWPDA 7.4128 11.8464 14.4591 15.0590 15.8318
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Figure 4. RMS position error for three crossing targets using DWPDA and LSPA with different clutter densities. (a) Clutter
density λ = 1× 10−4/m2; and (b) clutter density λ = 5× 10−4/m2.
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Figure 5. RMS position error for six crossing targets using DWPDA and LSPA with different clutter densities. (a) Clutter
density λ = 1× 10−4/m2; and (b) clutter density λ = 5× 10−4/m2.
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Figure 6. Average computation time for obtaining association probabilities using DWPDA and LSPA for tracking mul-
tiple crossing targets with different clutter densities. (a) Clutter density λ = 1 × 10−4/m2; and (b) clutter density
λ = 5× 10−4/m2. Error bars indicate 95% confidence intervals.
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Next, we compare the performance of LSPA with JPDA, in terms of computation time
and RMS position error, as the number of targets increases from one to six. Figures 7 and 8
show the results of this comparison for the two clutter scenarios. We can clearly see that
the average computation time of LSPA is much smaller than that of JPDA, so much so that
the LSPA computation times are not even visible in Figures 7a and 8a. However, in contrast
to the comparison of LSPA and DWPDA in terms of the RMS position error, in the case of
LSPA compared with JPDA, Figures 7b and 8b clearly show that there is little difference in
RMS position error. The same observation applies in terms of computation time and RMS
position error in Figure 9a,b respectively when we compare LSPA with JPDA in scenarios
involving a fixed number of targets as the clutter density increases from λ = 1× 10−4/m2

to λ = 5× 10−4/m2. While there is little difference between LSPA and JPDA in terms of
RMS position errors, Tables 1 and 2 show that GOSPA errors for LSPA are less than 1/3rd of
GOSPA errors for JPDA across almost all scenarios. These relatively higher GOSPA errors
for JPDA can be explained by a few missed detections when multiple target paths overlap.
These missed detections are rightly penalized in the GOSPA metric. These results show
that LSPA dominates JPDA in terms of computation time while maintaining a high level of
tracking accuracy. This dramatic reduction in computation time for LSPA can be explained
by the implementation of the loopy factor graph, resulting in simultaneous updating of the
joint association probabilities for multiple targets during each iteration of LSPA. The results
show that LSPA scales well for real-time applications involving complex tracking scenarios.
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Figure 7. Tracking multiple crossing targets using LSPA and JPDA with clutter density λ = 1× 10−4/m2. (a) Average
computation time for obtaining association probabilities; (b) average RMS position error. Error bars indicate 95% confidence
intervals.
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Figure 8. Tracking multiple crossing targets using loopy sum-product algorithm (LSPA) and joint probabilistic data
association (JPDA) with clutter density λ = 5 × 10−4/m2. (a) Average computation time for obtaining association
probabilities; (b) average root mean square (RMS) position error. Error bars indicate 95% confidence intervals.
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Figure 9. Tracking three crossing targets using LSPA and JPDA. (a) Average computation time for obtaining association
probabilities; (b) average RMS position error. Error bars indicate 95% confidence intervals.

Finally, to see whether the integration of LSPA with the distance-weighting scheme
has any effect on its performance, we compare LSPA with DWLSPA in terms of the same
two metrics as above. Figures 10 and 11 show the results of this comparison for two
clutter scenarios respectively, as the number of targets increases from one to six. There
is little difference between LSPA and DWLSPA in terms of computation times, as shown
in Figures 10a and 11a. Similarly, we can see that the RMS position errors for LSPA and
DWLSPA are almost identical in Figures 10b and 11b. Figure 12a,b show that the difference
between LSPA and DWLSPA remains negligible, in terms of both computation time and
RMS position error, for scenarios with a fixed number of targets and varying clutter densi-
ties. Tables 1 and 2 show that GOSPA errors for LSPA and DWLSPA are comparable across
all tested scenarios. This means that in addition to the localization errors, the missed detec-
tions and false alarms remain consistent between LSPA and DWLSPA, and the potential
advantage of DWLSPA with the additional distance-weighting information is not apparent.
Surprisingly, LSPA and DWLSPA perform equally well in every scenario in terms of both
tracking accuracy and computation time. The unchanged performance of DWLSPA can
be explained by the initiation of LSPA with small improvements in single-target associa-
tion probabilities having insignificant effect on joint association probabilities calculated at
the end of a large number of iterations. However, this unexpected lack of improvement
contrasts sharply with results reported in [4] showing significant improvement when intro-
ducing distance weighting relative to PDA. This result is interesting and useful because
we can see that distance weighting does not always lead to better performance. Moreover,
the following important observation remains: LSPA is reliable and efficient for tracking
multiple objects in cluttered environments.
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Figure 10. Tracking multiple crossing targets using LSPA and DWLSPA with clutter density λ = 1× 10−4/m2. (a) Av-
erage computation time for obtaining association probabilities; (b) average RMS position error. Error bars indicate 95%
confidence intervals.
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Figure 11. Tracking multiple crossing targets using LSPA and DWLSPA with clutter density λ = 5× 10−4/m2. (a) Av-
erage computation time for obtaining association probabilities; (b) average RMS position error. Error bars indicate 95%
confidence intervals.
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Figure 12. Tracking three crossing targets using LSPA and DWLSPA. (a) Average computation time for obtaining association
probabilities; (b) average RMS position error. Error bars indicate 95% confidence intervals.

5. Conclusions

In this paper, we formulated a distance-weighting PDA approach for LSPA and
examined its effect for tracking multiple objects in cluttered environments. It has been
previously shown that a modification of PDA according to a weighting scheme based on
distances between predicted and true target positions improves the tracking accuracy of
PDA. LSPA is known to be better than PDA and JPDA and, since PDA constitutes a crucial
building block of LSPA, we expected the integration of DWPDA with LSPA to boost the
overall performance even further. We studied the performance of LSPA against DWPDA,
JPDA, and DWLSPA for a wide range of tracking scenarios involving multiple targets and
varying clutter densities. Our results confirm that LSPA is superior to DWPDA in terms of
tracking accuracy and dominates JPDA in terms of computation time. However, contrary
to expectations, we found that the distance-weighting approach, when integrated with
LSPA, does not enhance the performance of LSPA in terms of either tracking accuracy
or computation time. The simulation scenarios in the experiment could be made more
realistic with the addition of appearing and disappearing targets and time-varying target
velocities. These scenarios add extra layers of complexity to the DA without affecting the
conclusions we draw in this paper. Regardless, we demonstrated the validity of LSPA
having computational requirements suitable for real-time processing and accuracy of
tracking multiple targets in cluttered environments.
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DA Data Association
MTT Multiple Target Tracking
KF Linear Kalman Filter
NN Nearest Neighbor
PDA Probabilistic Data Association
DWPDA Distance-Weighting Probabilistic Data Association
PDAF Probabilistic Data Association Filter
JPDA Joint Probabilistic Data Association
JPDAF Joint Probabilistic Data Association Filter
MHT Multiple Hypothesis Tracking
SPA Sum-Product Algorithm
LSPA Loopy Sum-Product Algorithm
DWLSPA Distance-Weighting Loopy Sum-Product Algorithm
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PDF Probability Distribution Function
PMF Probability Mass Function
NCV Nearly Constant Velocity
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