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Abstract: The direct-sequence spread-spectrum (DSSS) technique has been widely used in wireless
secure communications. In this technique, the baseband signal is spread over a wider bandwidth
using pseudo-random sequences to avoid interference or interception. In this paper, the authors
propose methods to adaptively detect the DSSS signals based on knowledge-enhanced compressive
measurements and artificial neural networks. Compared with the conventional non-compressive
detection system, the compressive detection framework can achieve a reasonable balance between
detection performance and sampling hardware cost. In contrast to the existing compressive sam-
pling techniques, the proposed methods are shown to enable adaptive measurement kernel design
with high efficiency. Through the theoretical analysis and the simulation results, the proposed
adaptive compressive detection methods are also demonstrated to provide significantly enhanced
detection performance efficiently, compared to their counterpart with the conventional random
measurement kernels.

Keywords: DSSS; compressive detection; mutual information; adaptive detection; artificial neu-
ral network

1. Introduction

In this era, the direct-sequence spread-spectrum (DSSS) has become one of the most
widely used spread-spectrum (SS) techniques in the wireless secure communications [1].
In DSSS, the baseband digital code streams are spread into a much wider band through the
modulation with pseudo-noise (PN) sequences. Due to the wide bandwidths, the DSSS
signals usually keep a low power-spectrum density and are hidden under the channel
noise. For cooperative receivers, the PN sequences are exactly known. Thus, the baseband
signals can be directly recovered through demodulation. In contrast, for a non-cooperative
receiver without the exact knowledge of the PN sequence, the DSSS signals appears merely
noise [2]. Moreover, without precise knowledge of the PN sequence, the conventional non-
cooperative receivers must operate at a high sampling rate to catch the signal, according
to Nyquist sampling theorem. This significantly increases the system cost and sometimes
makes the system impossible to be implemented.

The detection of the DSSS signals is the prerequisite to the following signal processing
and information extraction steps [3,4]. It has been intensively studied ever since the begin-
ning years of the DSSS technique. To detect the DSSS signals, many methods have been
proposed, such as energy-based, analysis of fluctuation based on second-order statistics,
dirty template-based, etc. The most commonly used method among them is the energy-
based detection [5], which is easier and relatively less expensive to be implemented [6,7].
However, due to the wide bandwidths of the DSSS signals, high sampling rates are required
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in those methods to capture the entire spread-spectrum, which usually brings a burden on
the hardware cost.

In last decade, the compressive sensing (CS) theorem was rendered [8,9], which pro-
vided perspectives on sufficient sampling on image and communication signal processing
techniques [10–12]. Motivated by the CS theorem, many compressive signal detection
methods were proposed, such as sparse signal reconstruction-based methods. However,
only random measurement kernels were proposed in most of these methods. In [13], the
measurement kernels were proposed to be designed based on recursive information opti-
mization. However, the high time and computational costs determined that the method
was not feasible in the adaptive measurement and detection scenarios.

Presently, with the rapid development of the computer technologies, especially the par-
allel computing, the artificial neural network (or neural network) and the deep learning [14]
techniques have been widely used in the area of signal processing, such as topics on biomed-
ical and civil engineering [15,16]. The well-trained neural networks can efficiently extract
the features of the signals, and are proved to have good performance in pattern recogni-
tion, signal parameter estimation, prediction, etc. Therefore, it is possible to improve the
detection performance and adaptability through the neural networks.

In this paper, we propose methods to detect the DSSS non-cooperatively and adap-
tively based on knowledge-enhanced compressive measurements and artificial neural
networks. The measurements are done with compressive rates to reduce the costs of
sampling process and the detection decisions are made based on measurement energy
thresholding. The detection task-specific information (TSI) quantitative analysis with the
signal posterior probability updates is introduced in the adaptive measurement design to
improve the detection accuracy. To greatly improve the efficiency of the algorithm, the
artificial neural networks are trained based on the TSI optimization. The resulting neural
networks can take the posterior probabilities of the signals from the Bayes updates as the
inputs and directly give the adaptively designed measurement kernels.

Our work makes several novel contributions:

(1) Compared to the existing compressive detection methods, the proposed methods
enable an adaptive compressive measurement framework, where the measurement
kernels can be flexibly adjusted to track the DSSS signals without the exact prior
knowledge of the PN sequences in the detection.

(2) To ensure the gain of the detection accuracy, the quantitative information analysis from
the previous measurements is implemented in the following adaptive measurement
matrix design, ensuring the gradually increased correlation to the most probable
signals.

(3) Through the effective combination of knowledge-enhanced compressive measure-
ment with TSI optimization and the artificial neural network techniques, the compres-
sive measurement matrix can be designed in an both adaptive and efficient manner.
Compared to the recursive measurement kernels directly optimized based on quanti-
tative information analysis in the literature, the artificial neural networks are trained
based on TSI optimization off-line and implemented repeatedly and efficiently in the
online adaptive measurement kernel design, which not only improves the adaptability,
but also saves a lot of detection time.

From the aspect of the signal processing systems, with the proposed method, both
the efficiency of the adaptive measurement system and the adaptability of the neural
network-based system are achieved.

The remainder of the paper is organized as follows: In Section 2, the existing methods
in DSSS signals detection are briefly discussed as the background of this paper. Then in
Section 3, the framework and the principle of the proposed DSSS signals adaptive compres-
sive measurement and detection methods are introduced. In Section 4, the design and the
implementation of the artificial neural networks in the proposed adaptive measurement
and detection framework are detailed. Then in Section 5, the proposed methods are evalu-
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ated and discussed through the theoretical analysis and the simulations with DSSS signals.
Finally, the conclusions are drawn in Section 6.

2. Related Works

With the rapid development of the communication technology, spread-spectrum
communication has become an important way in the modern communication system. DSSS
communication system has been widely used in the military and civil communication
domain. From the electronic countermeasure perspective, to intercept or interfere signals
that may be transmitted in the DSSS mode, it is necessary to first detect whether there is
a DSSS signal present in the wireless channel, before finally recovering the information
contained in the signal. Therefore, the detection of the DSSS signals is indispensable in the
entire DSSS signal reception process.

Due to the importance of the DSSS signal detection step, a lot of research has been
done in this area with a series of detection methods proposed, which can be basically
classified as non-compressive and compressive detection methods. In the following part of
this section, the two types of methods are introduced as the background of the DSSS signal
detection techniques.

2.1. Non-Compressive Detection Methods

As is implemented in conventional methods of the signal processing, the signals were
sampled according to the Nyquist sampling rate to capture their entire spectrum and avoid
aliasing. Before the CS theory was rendered, researchers proposed many non-compressive
detection methods, such as energy-based detection methods [17], auto-correlation-based
detection methods [18,19] and spectrum-based detection methods [20–22], etc. These
methods are introduced in the remainder of this subsection.

Back to the early 1960s, H. Urkowitz proposed the energy-based detection method [17],
where the detection was done based on the fact that the energy of noise is small than the
total energy of the signal and noise. By calculating the energy of the received signal
and selecting an appropriate threshold, the DSSS signals can be detected in the DSSS
signal present case. In the existing non-compressive detection methods, the energy-based
detection method is the simplest and least expensive, and thus is commonly used.

The autocorrelation-based detection methods [18,19] were first used to detect the
frequency hopping spread-spectrum (FHSS) signals, and later researchers extended it
to the detection of the DSSS signals. These detection methods perform auto-correlation
operation on the received signal based on the difference between signal and noise in the
auto-correlation domain. Then the correlative peaks are implemented to detect the DSSS
signals. Burel et al. rendered a detection method of fluctuation analysis based on second-
order statistics, which was done by dividing the received signal into analysis windows,
calculating second-order statistics on each window, and then using the results to compute
the fluctuations [23]. However, as a drawback of all these methods, the correlative peaks or
the second-order statistics are still not easy to be extracted if the signal-to-noise ratio (SNR)
is low, which makes these detection scheme not viable in low SNR scenarios.

The spectrum-based detection methods (time-frequency analysis-based [20,21], short-
time Fourier transform-based [22], etc.) model the DSSS signals as periodic stationary,
and perform the detection decisions in the transform domain. These methods have good
detection performance for the non-periodic stationary signals or the low SNR environment,
but suffer from cross-interferences. Moreover, the computational complexity was high,
which results in slow detection speed and difficulty in real-time implementation. In 2019,
Lee and Oh proposed to implement a dirty-template-based scheme in the detection of
SS signals [24], which could also be implemented in the DSSS signals detection. This
detection method was done by calculating the cross-correlation between the template and
the received signals in the frequency domain. However, the ‘dirty’ template was obtained
from the received signal in frequency domain, which would make the template difficult to
be obtained in the low SNR scenarios.
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Although various methods based on non-compressive sampling were rendered in the
past few decades, a common shortcoming exists within them: The high sampling rates are
required to capture the entire spectrum of the DSSS signals, resulting in expensive sampling
and signal processing hardware. Especially in this cases of ultra-band DSSS signals, these
methods may become infeasible. Moreover, there is a lack of adaptability in these methods,
leading to a constraint on the further improvement of their detection performance.

2.2. Compressive Detection Methods

In 2006, the compressive sensing (CS) theorem [8,9] was rendered by Candes et al. and
Donoho. In contrast to the conventional Shannon-Nyquist sampling theorem, the CS theo-
rem states that a signal can be recovered from much lower number of its linear projections
(i.e., low measurement rates), if the signal can be sparsely represented on a transform or a
dictionary. The signal recovery can be done by solving non-linear optimization problems
respective to its sparse representation. Motivated by the measurement rates in this theorem,
a series of DSSS signal detection methods based on CS have been proposed.

Most of the existing CS-based DSSS signal detection methods were proposed based on
random measurement kernels and CS recovery methods. Some of these methods retained
the information carried by a signal, which could be sparsely represented based on a trans-
form or a dictionary [25–29]. Others cooperatively detected the signal based on the signal
reconstruction or the expression of the original signal [30,31]. However, the reconstruction
algorithms usually require high computational complexity, which greatly affect the compu-
tational efficiency of the algorithms, especially in the online signal detection scenarios.

Although most of the literature on CS used random measurement kernels, Gu et al. [32]
and Neifeld et al. [33] illustrated that the signal recovery accuracy could be improved, if
the compressive measurement kernels were designed using prior knowledge of the signal.
More recently, Liu et al. proposed non-cooperative compressive DSSS signals detection
methods [13]. In contrast to most of the existing literature in area of the CS-based DSSS
signal processing that included an intermediate step of signal or information recovery, the
detection decision was directly made from the compressive measurements. Besides random
measurement kernels, the designed measurement kernels were also proposed based on
the prior knowledge of the signals and the quantitative information optimization [33].
However, as the measurement kernel optimizations were conducted using a recursive
method and could take an extremely long time, the measurement kernels in Liu et al. [13]
had to be designed prior to the measurement procedure and could not be used in the
adaptive regimes.

In this paper, we propose methods to detect adaptive DSSS signals based on knowledge-
enhanced compressive measurements and artificial neural networks. With the compressive
measurements, the hardware burden caused by the non-compressive detection methods
are solved. The detection decisions of the DSSS signals are made by the observation of
the measurement energy, which is easier and less expensive than most of the compressive
measurement-based detection methods. Moreover, with posterior knowledge of the signal
updated and the implementations of the artificial neural networks, the measurement ker-
nels are designed adaptively and efficiently with the quantitative TSI optimized, leading to
improved detection performance.

3. The Framework and Principle of the Adaptive Compressive Measurement and
Detection of the DSSS Signals

The proposed compressive measurement and detection framework is shown in Figure 1.
In the measurement step, the received signal is first preprocessed by a band-pass filter to
remove frequency components outside the spectrum of interest. The preprocessed signal
is then multiplied by the compressive measurement kernels and passed through a low-
pass filter, which works as an integrator. The filtered result is sampled with a sampling
rate that is much lower than the Nyquist sampling rate indicated by the DSSS spectrum.
The sampling results form the measurement vector. The measurement vector is analyzed
based on Bayes rule and the analyzed results are used in the adaptive measurement kernel
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design for the following measurements, as the knowledge enhancement in the compressive
measurement procedure. Finally, in the detection step, the energy of the measurement
vector is calculated and thresholded to determine if the DSSS signal is present.

Figure 1. The Adaptive Compressive Measurement and Detection Framework.

In this paper, we focus on the non-fading communication channels and the signal detec-
tion using the framework in Figure 1 can be formulated as a decision from two hypotheses:

H0: y = An H1: y = A(s + n) , (1)

where H0 and H1 represent the signal absent and signal present hypotheses of the DSSS
signal, respectively. A is the compressive measurement matrix, s is the DSSS signal at
the receiver in the signal present case, n is the channel noise and y is the compressive
measurement vector. The compression ratio (CR) of the system is defined by the ratio
between the number of Nyquist samples with respect to the spread bandwidth and the
number of compressive measurements in a given time period. For the system in Figure 1,
the measurement matrix is block-diagonal, where each single block is a row vector. The
coefficients in each row block of the measurement matrix form the measurement kernel of
the corresponding measurement.

In this paper, we take the phase-shift-keying (PSK) DSSS signals as examples, which
can be represented as:

s(t) = c(t)×d(t)ej(2π fct+φ), (2)

In Equation (2), c(t) is the baseband PSK signal, d(t) is the binary-valued (1 or −1)
periodic signal modulated by the PN sequence, fc is the carrier frequency and φ is the
initialized random phase.

In this paper, we model the wireless channel as additive white Gaussian noise (AWGN)
channel over the DSSS spectrum with the noise variance of σ2

n. Let us consider that the
rows of measurement matrix are normalized to unit energy. According to the noise folding
theory [34], the measurement vector would become a zero-mean circularly symmetric
complex random vector with the variance of σ2

n. Then in the signal absent case, the
theoretical probability density function (PDF) of the energy in a measurement vector y at
the length M can be expressed as:

pe(λ|H0) =
λ(M−1)e

− λ

σ2
n

σ2M
n Γ(M)

, (3)

where λ = ||y||2l2 is the energy of y.
If the coefficients in each single block of the measurement matrix are randomly selected

from the identically independent complex Gaussian distributions and normalized to unit
energy, the DSSS signal can also be modeled as AWGN over the DSSS spectrum in the
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signal detection scenario. Then in the signal present case, the theoretical PDF of the energy
in an M-length measurement vector can be expressed as:

pe(λ|H1) =
λ(M−1)e

− λ

(σ2
n+σ2

s )

(σ2
n + σ2

s )
MΓ(M)

, (4)

where σ2
s is the signal power.

The signal detection is done by energy thresholding. More specifically, given a thresh-
old T, the theoretical false positive rate (FPR) and false negative rate (FNR) follow:

FPR =
∫ +∞

T
pe(λ|H0)dλ (5)

and

FNR =
∫ T

−∞
pe(λ|H1)dλ , (6)

respectively.
In this paper, we focus on adaptive knowledge-enhanced compressive measurements

based on the TSI optimization. If we conduct the adaptations within symbol periods
and design the measurement kernels for the measurements (i.e., the row blocks of the
measurement matrix) sequentially, the measurement kernel for the mth measurement is
designed by solving the following optimization problem:

Am = arg max
Am

I(xm; ym|ℵm−1, Am)

s.t. ym = Amxm and ||Am||l2 = 1 ,
(7)

where ℵm−1 = {A1, A2, · · · , Am−1, y1, y2, · · · , ym−1} is the collection of the measurement
kernels and the measurement data in the 1st through the (m− 1)th measurements. Am, xm
and ym represent the measurement kernel, preprocessed signal from the input filter and
the measurement data at the mth measurement, respectively. ‖ · ‖l2 represents the l–2 norm
operation. The mutual information between xm and ym, i.e., I(xm; ym|ℵm−1, Am), is defined
as the TSI in the signal detection.

During the operation period of Am, if the channel noise and the DSSS signal in the
signal present case are denoted as nm and sm, then:

xm =

{
nm if the DSSS signal is absent ,

sm + nm if the DSSS signal is present .
(8)

According to the information theory,

I(xm; ym|ℵm−1, Am)

= h(ym|ℵm−1, Am)− h(ym|ℵm−1, Am, xm) ,
(9)

where h(·|·) denotes the conditional differential entropy. If sm is known in the signal
present case or in the signal absent case, the measurement data ym only depends on
Am and the channel noise. Therefore, h(ym|ℵm−1, Am, xm) = h(ym|Am, xm) = h(Amnm).
As the measurement noise Amnm is a zero-mean circularly symmetric complex random
variable with the variance of σ2

n according to the noise folding theory, h(ym|ℵm−1, Am, xm)
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is a constant given the noise power. Thus, the optimization problem in Equation (7) is
equivalent to:

Am = arg max
Am

h(ym|ℵm−1, Am)

s.t. ym = Amxm and ||Am||l2 = 1 .
(10)

In this paper, we focus on short-code DSSS (SC-DSSS) signals, where the period of the
PN sequence is equal to the symbol period. In the case of measurements within symbol
period, the measurement kernel Am is designed to cover at most the period of the PN
sequence. To solve the statistical signal processing problems, the mixture of Gaussian
(MoG) models has usually been used [35,36]. In measurement design stage of this paper,
we establish a dictionary B of the DSSS signals. The atoms of the dictionary, denoted by bl
(l = 1, 2, ..., L), are taken to be the Nyquist rate sampled DSSS signals in a symbol period,
which carry a fixed symbol content and are modulated by the possible PN sequences. Based
on the dictionary, we establish a MoG model of the posterior distribution for the signal sm
in the DSSS signal present case:

g(sm|H1,ℵm−1) =
L

∑
l=1

Pb(l|H1,ℵm−1)gl(sm) , (11)

where L is the number of possible PN sequences, and Pb(l|H1,ℵm−1) (1, 2, ..., L) denotes the
posterior probability that the lth PN sequence is used in the DSSS signal present case, given
the measurement kernels and data in the 1st through the (m− 1)th measurements. The
component gl(sm) (1, 2, ..., L) is modeled with a complex zero-mean Gaussian distribution
with the covariance matrix:

C(m,l)
ss = b(m)

l (b(m)
l )H , (12)

where b(m)
l is a vector taken from the dictionary atom bl , according to the locations of

the coefficient block in the mth row of the measurement matrix. (·)H represents the
Hermitian operation.

With a simplified assumption that the single measurements are independent to each
other, Pb(l|H1,ℵm−1) (m > 1) in Equation (11) can be obtained by:

Pb(l|H1,ℵm−1) =
Pb(l|H1,ℵm−2)

e
−
|ym−1 |

2

σ2
l,m−1

σ2
l,m−1

L
∑

l=1
Pb(l|H1,ℵm−2)

e
−
|ym−1 |2

σ2
l,m−1

σ2
l,m−1

, (13)

where σ2
l,m−1=Am−1C(m−1,l)

xx AH
m−1, with C(m−1,l)

xx = C(m−1,l)
ss + σ2

nEm−1. Em−1 denotes the

identity matrix in the same size of C(m−1,l)
ss .

With the MoG signal and AWGN channel models, if the rows of the compressive
measurement matrix are normalized, it can be further proved that the signal absent case
can be ignored in the optimization problem. Therefore, Equation (10) can be derived into
the following form:

Am = arg max
Am

h(ym|H1,ℵm−1, Am)

s.t. ym = Am(sm + nm) and ||Am||l2 = 1 ,
(14)
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where h(ym|H1,ℵm−1, Am) is the conditional differential entropy of ym on Am in the signal
present case, with the known measurement kernels and data in the 1st through the (m− 1)th
measurements. h(ym|H1,ℵm−1, Am) can be approximated as:

h(ym|H1,ℵm−1, Am) ≈ −log
[ L

∑
l=1

Pb(l|H1,ℵm−1)

π[AmC(m,l)
xx AH

m ]

]
, (15)

where C(m,l)
xx = C(m,l)

ss + σ2
nEm, with Em representing the identity matrix in the same size

of C(m,l)
ss .
In the literature, to solve an optimization problem such as Equation (14), a recursive

gradient method has usually been used [13,37]. In this method, the refinement of the
measurement kernel Am at the kth iteration is performed using:

Ā(k)
m = A(k−1)

m + µ∇Am h(ym|H1,ℵm−1, Am)

A(k)
m =

Ā(k)
m

||Ā(k)
m ||l2

,
(16)

where µ is the optimization step size, and the gradient item can be approximated as:

∇Am h(ym|H1,ℵm−1, Am)≈

− ∑L
l=1 Pb(l|H1,ℵm−1)(AmC(m)

xx AH
m)
−2AmC(m)

xx
H

∑L
l=1 Pb(l|H1,ℵm−1)(AmC(m)

xx AH
m)
−1

.
(17)

The derivations to Equations (14), (15) and (17) are provided in the Appendix A.

4. Adaptive Compressive Detection of Direct Spread-Spectrum Signals with the
Artificial Neural Network

4.1. Design of the Artificial Neural Networks

To get the convergence of the recursive method described in Equation (16) and achieve
improved detection performance over the conventional compressive measurement method
with random kernels, usually thousands of recursive steps are needed for one single
measurement design. This can be extremely time-consuming. In the online adaptive
measurement scenario, the low efficiency of the recursive optimization method makes its
implementations infeasible.

To improve the algorithm efficiency, we propose to implement the artificial neural
networks to conduct the adaptive measurement kernel design. The architecture of the
neural networks is described in Figure 2.

Figure 2. The Architecture of the Artificial Neural Networks in the Adaptive Measurement Ker-
nel Design.

In Figure 2, the nodes of the input layer represent the posterior probabilities of the
possible PN sequence usages in the signal present case, given the 1st through the (m− 1)th
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measurements, i.e., Pb(l|H1,ℵm) (1, 2, ..., L) in Equation (11). The neural network is fully
connected and real valued. The nodes of the output layer hold the designed coefficients for
the measurement kernels. Considering that the coefficients in the measurement kernels are
complex valued, half of the nodes in the output layer represent their real parts, while the
other nodes represent their imaginary parts. The resulting coefficients from the output layer
are used in the measurement matrix, where the rows are further normalized to unit energy.

In this paper, two neural network strategies are proposed for the adaptive measure-
ment kernel design. In the first strategy, independent neural networks are trained to design
the measurement kernels for different measurements in a single symbol period, respectively.
Thus, the number of neural networks to be trained is equal to the number of measurements
for a symbol period. In the second strategy, a single neural network that can be used to
get the measurement kernels for all the measurements in a symbol period is designed.
In this case, only a part of the designed coefficients are used for each measurement. To
be concise, the two neural network strategies above are referred to as “multiple neural
network strategy” and “single neural network strategy” in the remainder of this paper.

The training of the neural networks follows the gradient back-propagation algorithm.
The training data are the randomly generated usage probability vectors of the possible
PN sequences. To train the neural network to get the measurement kernel of the mth
measurement in the multiple neural network strategy, the training penalty function is
taken to be the negativity of the conditional differential entropy in Equation (15), i.e.,
−h(ym|H1,ℵm−1, Am). Such a penalty function depends on the posterior probabilities of
the PN sequence usage and the designed measurement kernel, i.e., Pb(l|H1,ℵm−1) and
Am, according to Equation (15). In the single neural network strategy, the training penalty

function is then taken to be −
M
∑

m=1
h(ym|H1,ℵm−1, Am).

In contrast to the recursive measurement kernel optimization method discussed in
Section 2, the artificial neural networks proposed in this paper is trained once off-line and
implemented in the online adaptive measurements efficiently.

4.2. The Procedure of the Adaptive Measurement and Detection of Direct-Sequence
Spread-Spectrum Signals Using the Artificial Neural Network

With the combined operations of the adaptive compressive framework shown in
Figure 1 and the artificial neural networks described in Figure 2, the adaptive measurement
and detection procedure of the DSSS signals can be described in Figure 3.

In Figure 3, the non-zero coefficients of the measurement matrix for initial measure-
ment are generated according to the identically independent complex Gaussian distribu-
tions and then normalized to unit energy. With equal prior probabilities of usages for the
possible PN sequences, the posterior probabilities are then recursively updated with the
measurement kernels and data, according to Equation (13). Meanwhile, the measurement
kernels are adaptively designed using the neural networks.

The energy of the resulting measurement data from the entire procedure, i.e., λ, is
finally collected for signal detection. The detection of the DSSS signals is done based on
the measurement energy thresholding, as described in Section 3.

It is worth mentioning that although the adaptive measurements in the above discus-
sions are proposed within single symbol-period scale, the measurement procedure can
be extended across multiple symbol periods, depending on the number of measurements
needed to make the detection decision. The detection performance of this extension is also
simulated and discussed in Section 5.
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Figure 3. The Proposed Adaptive Measurement and Detection Procedure of the DSSS Signals.
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5. Evaluations and Discussions through Theoretical Analysis and Simulations

In this paper, we used the binary PSK (BPSK) modulated SC-DSSS signals in the
theoretical analysis and simulations. The possible candidate PN sequences were taken from
the maximum-length sequences (m-sequences) [19,38] of the orders 1 through 5, which
were commonly implemented in DSSS communications. The m-sequences at the order N
were generated with the feedback shift-registers with the structure described in Figure 4.

Figure 4. Structure of the Feedback Shift-Registers to Generate the M-Sequences.

In Figure 4, a seed to the shift-registers is a binary sequence at the length N, where not
all the entries are zero-valued. q0, q1, ...qN−1 ∈ {0, 1} are the values stored in the registers.
The binary multipliers k0, k1, ...kN−1 ∈ {0, 1} are generated from the primitive polynomials
k0 + k1x + ... + kN−1xN−1. The additions in Figure 4 are binary additions, and the module
at the end of registers coverts the binary {0, 1} to the values in {−1, 1}. The primitive
polynomials ordered from 1 to 5 and the number of the m-sequences are shown in Table 1.

Table 1. Primitive Polynomials and the Numbers of M-Sequences Ordered from 1 to 5.

Order Primitive
Polynomials

Number of M-Sequences at
This Order

Total Number of M-Sequences
Ordered 1–5

1 1 + x 1 × 1 = 1
2 1 + x + x2 3 × 1 = 3

3 1 + x + x3

1 + x2 + x3 7 × 2 = 14

4 1 + x + x4

1 + x3 + x4 15 × 2 = 30 234

5

1 + x2 + x5

1 + x + x2 + x3 + x5

1 + x3 + x5

1 + x + x3 + x4 + x5

1 + x2 + x3 + x4 + x5

1 + x + x2 + x4 + x5

31 × 6 = 186

The maximum length of the m-sequences specified in Table 1 is 31. Therefore, we took
the number of Nyquist samples from each symbol period as 62 in the theoretical analysis
and the simulations.

Both multiple neural network strategy and the single neural network strategy de-
scribed in Section 4 were performed in this section. 3 hidden layers were included for each
of the neural networks trained in this paper. For the single neural network strategy, the
widths of the 3 hidden layers were 350, 128 and 64, respectively. For the multiple neural
network strategy, the hidden layer widths were taken to be 512, 350, 256, respectively.

The neural networks were optimized using the TensorFlow 2.0 GPU version [39] based
on Python 3.7. To train each of the neural networks, 20,000 random probability vectors (at
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the batch size of 100 and 10 epochs) were used as the training data. The resulting neural
networks were used to evaluate the performance of the proposed adaptive methods.

In the simulations, we define the SNR as the ratio between the signal power and the
noise variance, i.e.,

SNR =
σ2

s
σ2

n
(18)

As is discussed in Section 4, the measurements and detections can be done within
single symbol period or across multiple symbol periods. In the remainder of this section,
we first evaluate theoretical analysis and simulated performance of the proposed adaptive
measurement and detection methods on single symbol-period basis. Then, the simulated
results with the measurements and detections across multiple symbol periods are provided
and discussed as an extension to the theory discussed in Sections 3 and 4.

5.1. The Theoretical Analysis and Simulations of DSSS Detection through Single
Symbol-Period Measurements

As is specified above, in the theoretical analysis and simulations of the measurements
and detection within single symbol period, the number of Nyquist samples was taken to
be 62. To conduct compressive measurements, the number of compression measurements
for detection were chosen from 6, 9 and 12 in this part, resulting in the CR values of about
10, 7 and 5, respectively.

We first analyzed the theoretical detection accuracies of the proposed methods through
single symbol-period measurements. As the adaptive measurement processes are stochastic
with feedbacks, it is difficult to analyze their theoretical detection performance with closed
formulas. To surrogate, we took an approximation, where the PN sequence used in the
DSSS signals was exactly known in each detection and the posterior probabilities of the PN
sequence usage in each measurement kernel adaptation were given as a binary 1-sparse
vector. In this case, we ran Monte-Carlo simulations with the SNR values ranging from
−30 dB to 20 dB. The curves of the FNR versus the SNR are plotted in Figure 5 for the
3 CR cases, where each point in the curves was generated using 100,000 simulations. In
each simulation, the PN sequence were selected randomly from the 234 possible candidates
with equal probabilities. The detection thresholds were obtained with the theoretical FPRs
to be 0.01, according to Equations (3) and (5). Consequentially, the curves of the proposed
adaptive methods in Figure 5 represent their best possible results and are regarded as their
theoretically analyzed detection accuracy results.

For comparison, the theoretical performance of the non-compressive energy detection
method and the conventional compressive detection method with random measurement
kernels at the 3 CR values were also analyzed according to Equations (3)–(6). The analyzed
results are shown in Figure 5. In the non-compressive energy detection, the measurement
matrix was an identity matrix, thus no compression was done during the measurements
and the number of measurements was equal to the number of Nyquist samples. In the
conventional compressive detection method, the coefficient blocks of each row in the
measurement matrix were randomly selected from the identically independent complex
zero-mean Gaussian distributions and then normalized to unit energy. The thresholds used
in these two methods were also obtained by taking their theoretical FPRs as 0.01.
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(a) CR ≈ 5 (b) CR ≈ 7 (c) CR ≈ 10

Figure 5. Theoretical Analysis of the Detection Accuracies from Single Symbol-Period Measurements
(Non-compressive: Non-compressive detection method; RC: Conventional compressive detection
with random measurement kernels; AC-multiple: Adaptive compressive detection with the mul-
tiple neural network strategy; AC-single: Adaptive compressive detection with the single neural
network strategy).

From Figure 5, we observe that the detection accuracies for all the methods generally
improve with decreased CR values. This improvement is resulted from the more and more
distinguished statistics of the measurement energies between the signal absent and present
cases. The non-compressed method gets the best detection accuracy and can be treated
as a benchmark. Comparing the detection accuracies of the compressive methods, we
observe that the theoretical optimal performance of the proposed methods are significantly
improved over the conventional compressive detection method with random measurement
kernels. For example, to achieve a given FNR value at CR ≈ 5, the proposed methods
can save up to about 5 dB in SNR at their theoretical best performance, compared to the
conventional compressed detection system with the random measurement kernel.

For the proposed adaptive methods, if we compare the multiple neural network and
single neural network strategies, we observe that the adaptive method with the multiple
neural network strategy shows slightly better performance in the detection accuracy than
the adaptive method with single neural network strategy. As a trade-off, a higher cost in the
hardware and network training time is introduced by the multiple neural network strategy.

Besides the theoretical analysis, the Monte-Carlo simulations of the DSSS signals
detection using the proposed adaptive methods were also performed for the 3 CR cases.
The system setups were similar to the theoretical analysis. The simulated FNR results
versus SNR for the proposed methods are shown in Figure 6. To generate each point in
these curves, 5,000,000 Monte-Carlo simulations were done. The simulation results of
non-compressive detection method and conventional compressive detection method with
random measurement kernels are also shown in Figure 6 for comparisons. Similar to the
theoretical analysis, the thresholds used in the detection step were generated according to
Equations (3) and (5), with the theoretical FPRs to be 0.01.
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(a) CR ≈ 5 (b) CR ≈ 7 (c) CR ≈ 10

Figure 6. Simulated Detection Accuracies from Single Symbol-Period Measurements. (Non-
compressive: Non-compressive detection method; RC: Conventional compressive detection with
random measurement kernels; AC-multiple: Adaptive compressive detection with the multiple
neural network strategy; AC-single: Adaptive compressive detection with the single neural net-
work strategy.)

Comparing Figures 5 and 6, we observe that the simulated performance of the non-
compressive detection method and the conventional compressive detection method with
random measurement kernels match well with their theoretically analyzed results. The
simulated detection accuracies of the proposed methods, although are slightly lower
than their theoretical optimum cases at given SNR and CR values sometimes, are still
significantly improved compared to the conventional compressive method with random
measurement kernels. In addition, we can see that the signal can also be detected even
when the SNR is lower than 0 dB. This is because that the designed measurement kernels
concentrated more and more on the signal as the adaptive measurements proceeded, which
leads to the increased SNRs in the measurement data.

To validate the discussions above and have a deeper insight into the proposed adaptive
methods, we conducted a further study on the correlations between the rows of the
designed measurement matrix and the PN sequence that was factually used in the DSSS
signal generation. In this paper, the correlation between the mth row of the measurement
matrix and the used PN sequence (assuming that the vth PN sequence was factually used)
is defined by:

ξm =
| < Am, bv > |
‖Am‖l2 · ‖bv‖l2

(19)

where < ·, · > and | · | denote the inner product operations and the absolute value,
respectively. Am is the mth row of the measurement matrix A, and bv represents the vth
dictionary atom discussed in the MoG model in Section 3. A larger correlation value from
Equation (19) indicates a higher SNR in the measurement result, which in turn leads to a
higher detection accuracy.

As a representative, Figure 7 depicts the correlation values versus the measurement
indices in a symbol-period adaptive procedure for the proposed adaptive methods at CR ≈ 5
and SNR = −10 dB. To compare, the curve for the conventional compressive detection
method with random measurement kernels is also shown in Figure 7. To generate each
point in the curves, 100,000 Monte-Carlo simulations were done, where the PN sequence
used in each simulation were randomly selected from the 234 possible candidates with
equal probabilities, and the resulting correlation values at each SNR were averaged.
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Figure 7. Correlations between the Compressive Measurement Kernels and the Used PN Sequence
(RC: Conventional compressive detection with random measurement kernels; AC-multiple: Adaptive
compressive detection with the multiple neural network strategy; AC-single: Adaptive compressive
detection with the single neural network strategy).

In Figure 7, it can be observed that the correlation values gradually increase for
the proposed adaptive methods, as the measurements proceed. This indicates that the
designed measurement kernels concentrate more and more on the signal as the adaptive
measurements proceed, leading to gradually increased SNRs in the measurement data and
the improved detection accuracies. In contrast, for the random measurement kernels, the
correlation values randomly fluctuate around the value of 0.4 and are lower than those
of the proposed adaptive case over almost the entire measurement procedure. Thus, the
SNR of the measurement data is relatively lower for conventional compressive detection
method, which in turn results in a lower detection accuracy. Comparing the curves of
the two proposed neural network strategies, we find that the correlation value from the
multiple neural network strategy increases slightly faster than that from the single neural
network strategy. This in turn results in slightly improved detection accuracy than the
single neural network strategy.

Besides the studies on the detection accuracies and the measurement procedures
of the proposed adaptive methods, we also conducted a study on the time costs of the
proposed adaptive measurement kernel design methods based on artificial neural networks
to observe their efficiencies. To validate, the time cost of the recursive optimization method
described in Section 3 was also observed for comparison. For quantitative evaluations, the
time costs of the measurement kernel design for 500 measurements (i.e., the time costs for
the adaptive measurements over 100 single symbol-period detections) were measured with
the proposed methods and the recursive optimization method at CR ≈ 10 and SNR = 4 dB.
For the recursive optimization method, to reach the detection accuracies using the artificial
neural networks, 2000 iterations are usually needed to design the measurement kernel for
a single method, which was implemented in this study. The simulations were done on a
computer with the CPU of Intel Core i5-9400 @ 2.90 GHz and the RAM size of 32.00 GB.
The timing information of the measurement kernel design for a single measurement are
shown in Table 2.

From Table 2, it can be seen that the efficiencies of the proposed methods are signifi-
cantly improved over the recursive optimization method in the measurement kernel design.
The improvement can be as high as around 10,000 times. Comparing the two strategies in
the proposed methods, the multiple neural network strategy results in slightly lower time
cost, as the structure of each neural network in this strategy is relatively simpler. Although
the time costs of the proposed methods shown in Table 2 are still relatively high for the
practical DSSS signals detection, the efficiency can be expected to be significantly improved
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with the specially designed hardware and software. This improvement will be studied in
our future work.

Table 2. Time Cost Information of the Measurement Kernel Design for a Single Measurement.

Method
Minimum

Time
Consumed

Average
Time

Consumed

Maximum
Time

Consumed

Recursive Optimization 4610.2430 s 4724.1410 s 4902.9858 s

Multiple Neural Network Strategy 0.4119 s 0.4324 s 0.4428 s

Single Neural Network Strategy 0.4328 s 0.4487 s 0.4543 s

5.2. The Simulations of DSSS Detection through Multi-Symbol-Period Measurements

It has been discussed in Section 4 that the proposed adaptive methods can be extended
for DSSS signals detection with the measurements over multiple symbol periods. In this
paper, with similar setups to those in the single symbol-period detection simulations, we also
conducted Monte-Carlo simulations for the DSSS signals detection over on multi-symbol-
period measurements. In these simulations, the coefficients in the measurement kernel for
the first measurement of the first symbol period were generated according to identically
independent complex zero-mean Gaussian distributions and then normalized. Then, the
measurement kernels for the other measurements are sequentially designed. The adaptations
within each symbol period were done similarly to single symbol period simulations. For
inter-symbol adaptations, the measurement kernels corresponding to the first measurements
in the 2nd though the last symbol periods were adaptively designed based on the posterior
information from measurements in the previous symbol periods. The simulated curves of the
FNR versus the SNR for the 3 CR values are shown in Figures 8 and 9, which corresponds
to the multiple neural network and single neural network strategies, respectively. The
numbers of symbol periods included in the entire measurement procedure were selected as
20 and 40. To compare, the simulated results of the conventional compressive method with
random kernels over single and multiple symbol periods, as well as the proposed adaptive
methods with single symbol-period measurements, are also plotted in Figures 8 and 9.

(a) CR ≈ 5 (b) CR ≈ 7 (c) CR ≈ 10

Figure 8. Simulated Detection Accuracies over Multiple Symbol Periods with the Multiple Neural
Network Strategy for the Proposed Adaptive Method (RC: Conventional compressive detection
with random measurement kernels; AC: Adaptive compressive detection with the multiple neural
network strategy. Ts represents the time of one symbol period).
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(a) CR ≈ 5 (b) CR ≈ 7 (c) CR ≈ 10

Figure 9. Simulated Detection Accuracies over Multiple Symbol Periods with the Single Neural
Network Strategy for the Proposed Adaptive Method (RC: Conventional compressive detection with
random measurement kernels; AC: Adaptive compressive detection with the single neural network
strategy. Ts represents the time of one symbol period).

In Figures 8 and 9, we find that at any given CR value, the multi-symbol-period
implementations of the proposed adaptive methods get better detection accuracies than
the conventional compressive method with random measurement kernels, which is similar
to the single symbol-period detection. For example, at CR ≈ 5 and SNR = −6 dB, the
conventional compressive detection method with 20 symbol periods yields an FNR of
0.1244 and the adaptive method with the single neural network strategy gets the FNR lower
than 0.001, which is about 100 times’ improvement. We also observe that the multi-symbol-
period signal detection performance of all systems, especially for the proposed adaptive
methods, gets improved over those of their single symbol-period implementations. In
particular, the more symbol periods that are included in the measurements, the better signal
detection accuracies the systems can achieve. For example, at CR≈5 and SNR = −6 dB,
the adaptive method using the multiple neural network strategy in single symbol period
yields an FNR of 0.7432, while the resulting FNRs of the adaptive methods over 20 and 40
symbol periods are lower than 0.001 and 0.0001, which are about 740 times’ and 7400 times’
improvement, respectively. Similar to the single symbol-period detection simulations, with
higher hardware and training time costs, the adaptive method with the multiple neural
network strategy also shows slightly better performance than the single neural network
strategy for multi-symbol-period implementations.

For the simulation results in Figures 8 and 9, besides the increased number of mea-
surements that makes the energy statistics in the signal absent and present cases get more
and more distinguished, the gradually increased correlation between the designed mea-
surement kernels and the signal (as more posterior information updates and measurement
kernel adaptations are done in this scenario) in the proposed adaptive methods also plays
an important role in the detection accuracy improvement. On the other hand, the time cost
in the detection task is increased in this scenario. Therefore, in practical implementations,
the trade-off between the time cost and the detection accuracy needs to be comprehensively
considered, according to the detailed detection tasks.

6. Conclusions

In this paper, we proposed adaptive methods to measure and detect the DSSS signals
using knowledge-enhanced compressive measurements. The detection was done based
on energy detection and the measurement matrix was designed adaptively based on TSI
optimization. To improve the measurement design efficiency and make the system feasible,
the artificial neural networks were trained and implemented in the adaptive measurement
kernel design, as a surrogate of the recursive optimization method in the literature. Theo-
retical analysis and simulations were performed to compare the proposed methods, the
non-compressive detection method and the conventional compressive detection method
using random measurement kernels. The theoretical and simulation results demonstrated
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that the proposed methods provided significantly enhanced detection accuracies with
high efficiency, compared to the conventional compressive detection method with random
measurement kernels.
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Abbreviations
The following abbreviations are used in this manuscript:

DSSS Direct-sequence spread-spectrum
SS Spread-spectrum
PN Pseudo-noise
CS Compressive sensing
TSI Task-specific information
CR Compression ratio
PSK Phase-shift-keying
AWGN Additive white Gaussian noise
PDF Probability density function
FPR False positive rate
FNR False negative rate
SC-DSSS Short-code DSSS
MoG Mixture of Gaussian
BPSK binary PSK
M-sequence maximum-length sequence
SNR signal-to-noise ratio

Appendix A
In the Appendix, we provide the details of the derivations used to obtain Equations (14),

(15) and (17). Recall that we established a MoG model for the signal sm (m ≤ 1), which
was defined as the noise-free DSSS signal measured by the measurement kernel in the
mth row of the measurement matrix in a symbol period in the signal present case. In this
scenario, as the channel noise is also modeled with Gaussian distributions, then given the
measurement kernel Am, the distribution of the mth measurement in that symbol period,
i.e., ym, is also an MoG distribution.

f (ym|ℵm−1, Am)

=PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(ym|Am) + PH(H0|ℵm−1) f0(ym|Am) ,
(A1)

where PH(H0|ℵm−1) and PH(H1|ℵm−1) denotes the probability of the signal absent and
signal present cases, respectively, given the measurement kernels and data in the 1st through
the (m− 1)th measurements (i.e., ℵm−1). Pb(l|H1,ℵm−1) denotes the probability that the lth
PN sequence is used in the signal present case, given the measurement kernels and data in
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the 1st through the (m− 1)th measurements. The Gaussian components of ym in the signal
absent case and present case with the lth PN sequence used are represented by:

f0(ym|Am) = CN(0, σ2
nAmEmAH

m) (A2)

and
fl(ym|Am) = CN(0, AmC(m,l)

xx AH
m) , (A3)

where CN(·, ·) denotes the complex Gaussian PDF, with the first and second parameters
representing the mean and the variance of the Gaussian component, respectively. σ2

n is the
noise variance. C(m,l)

xx = C(m,l)
ss + σ2

nEm, where C(m,l)
ss and Em are the covariance matrix of

sm with the lth PN sequence used in the signal present case and the identity matrix with
the size of C(m,l)

ss , respectively.
According to the information theory and the MoG distribution above, the condi-

tional differential entropy item h(ym|ℵm−1, Am) on Am with certain ℵm−1 can be derived
as follows:

h(ym|ℵm−1, Am) = −
∫

f (ym|ℵm−1, Am)log
[

f (ym|ℵm−1, Am)

]
dym

=−
∫

f (ym|ℵm−1, Am)

·log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(ym|Am) + PH(H0|ℵm−1

)
f0(ym|Am)

]
dym .

(A4)

If we approximate the logarithm item in Equation (A4) by the first two terms of its
Taylor expansion at ym = 0, we get:

log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(ym|Am) + PH(H0|ℵm−1) f0(ym|Am)

]

=log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(0|Am) + PH(H0|ℵm−1) f0(0|Am)

]
+ Ξ(0)ym

+ H.O.T

≈log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(0|Am) + PH(H0|ℵm−1) f0(0|Am)

]
+ Ξ(0)ym ,

(A5)

where

Ξ(0) =∇ym

{
log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(ym|Am)

+ PH(H0|ℵm−1) f0(ym|Am)

]}∣∣∣∣
ym=0

(A6)

and H. O. T denotes the higher order terms in the Taylor expansion.
Substituting Equations (A5) and (A6) into Equation (A4), we can get:

h(ym|ℵm−1, Am) ≈ −
∫

f (ym|ℵm−1, Am)

{
log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(0|Am)

+ PH(H0|ℵm−1) f0(0|Am)

]
+ Ξ(0)ym

}
dym

=− log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1) fl(0|Am) + PH(H1|ℵm−1) f0(0|Am)

]

=− log
[

PH(H1|ℵm−1)
L

∑
l=1

Pb(l|H1,ℵm−1)

π(AmC(m,l)
xx AH

m)
+

PH(H0|ℵm−1)

π(σ2
nAmEmAH

m)

]
.

(A7)

The posterior probabilities PH(H0|ℵm−1) and PH(H1|ℵm−1) are constants, when the
measurement kernels and data from the 1st through the (m − 1)th measurements are
known. Meanwhile, the rows of the compressive measurement matrix are normalized, i.e.,
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||Am||l2=1. Thus, the second term in result of Equation (A7) is also a constant, and the
optimization problem in Equation (10) is equivalent to the maximization of conditional
differential entropy h(ym|H1,ℵm−1, Am) as follows:

h(ym|H1,ℵm−1, Am) ≈ −log
[ L

∑
l=1

Pb(l|H1,ℵm−1)

π(AmC(m,l)
xx AH

m)

]
. (A8)

Using the chain rule of the gradient operation, we can then obtain the gradient of
h(ym|H1,ℵm−1, Am) in Equation (A8):

∇Am h(ym|H1,ℵm−1, Am)≈∇Am

{
− log

[ L

∑
l=1

Pb(l|H1,ℵm−1)

π(AmC(m,l)
xx AH

m)

]}

= −
∑L

l=1 Pb(l|H1,ℵm−1)π
−1∇Am

{
(AmC(m,l)

xx AH
m)
−1
}

∑L
l=1 Pb(l|H1,ℵm−1)π−1(AmC(m,l)

xx AH
m)
−1

= −∑L
l=1 Pb(l|H1,ℵm−1)(AmC(m,l)

xx AH
m)
−2AmC(m,l)

xx
H

∑L
l=1 Pb(l|H1,ℵm−1)(AmC(m,l)

xx AH
m)
−1

.

(A9)
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