
sensors

Article

Deep Reinforcement Learning for End-to-End Local Motion
Planning of Autonomous Aerial Robots in Unknown Outdoor
Environments: Real-Time Flight Experiments

Oualid Doukhi 1 and Deok-Jin Lee 2,∗

����������
�������

Citation: Doukhi, O.; Lee, D.-J. Deep

Reinforcement Learning for

End-to-End Local Motion Planning of

Autonomous Aerial Robots in

Unknown Outdoor Environments:

Real-Time Flight Experiments.

Sensors 2021, 21, 2534. https://

doi.org/10.3390/s21072534

Academic Editor: Aboelmagd

Noureldin

Received: 30 January 2021

Accepted: 23 March 2021

Published: 4 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Artificial Intelligence & Autonomous Systems, Kunsan National University, 558 Daehak-ro,
Naun 2(i)-dong, Gunsan 54150, Jeollabuk-do, Korea; doukhioualid@kunsan.ac.kr

2 School of Mechanical Design Engineering, Smart e-Mobilty Lab, Center for Artificial Intelligence &
Autonomous Systems, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si 54896,
Jeollabuk-do, Korea

* Correspondence: deokjlee@jbnu.ac.kr

Abstract: Autonomous navigation and collision avoidance missions represent a significant challenge
for robotics systems as they generally operate in dynamic environments that require a high level
of autonomy and flexible decision-making capabilities. This challenge becomes more applicable
in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper
presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range
finder to autonomously navigate among obstacles and achieve a user-specified goal location in a
GPS-denied environment, without the need for mapping or path planning. The proposed system uses
an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator
to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan
measurements to continuous motion control. The obtained policy can perform collision-free flight in
the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time
experiments were conducted and compared with a nonlinear model predictive control technique to
show the generalization capabilities to new unseen environments, and robustness against localization
noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the
desired points by planning smooth forward linear velocity and heading rates.

Keywords: autonomous navigation; collision-free; deep reinforcement learning; unmanned aerial
vehicle

1. Introduction

Research and development in respect of unmanned aerial vehicles (UAVs) have
increased dramatically in recent years, particularly in respect of multirotor aerial vehicles,
due to their agility, maneuverability, and ability to be deployed in many complex missions.
Based on this, the research community has mainly focused on autonomous navigation
applications where the environment is static and mapped, and obstacle locations are
assumed to be known in advance. Moreover, the accessibility of Global Navigation Satellite
System (GNSS) information helps a UAV’s autonomous navigation. However, nowadays,
there is an expanding demand for complex outdoor applications, such as rescue, search,
and surveillance. In this type of task, the absence of GNSS and environment knowledge
due to their dynamics makes it mandatory to use the aerial robot’s exteroceptive sensors
for navigation and collision avoidance.

The constraints mentioned above are present in most point-goal autonomous nav-
igation and collision avoidance (PANCA) scenarios. Earlier methods have tackled this
issue by dividing it into two modules: a global planning module, which creates trajectories
from the robot’s current position to a given target-goal [1]; and path following module,
which keeps the robot close to the planned path [2]. However, both modules depend on

Sensors 2021, 21, 2534. https://doi.org/10.3390/s21072534 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9038-405X
https://doi.org/10.3390/s21072534
https://doi.org/10.3390/s21072534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21072534
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/7/2534?type=check_update&version=2


Sensors 2021, 21, 2534 2 of 18

environment characteristics and robot dynamics, making them sensitive and needing them
to be re-tuned for each scenario. Nevertheless, these methods suffer from the stochastic
dynamic behavior of the obstacles and high computational cost when applied to highly
unstructured environments.

More recently, the success of deep learning (DL) in solving artificial intelligence
problems [3] has motivated researchers in the field of autonomous systems to apply recent
algorithms to common robotic issues like navigation, decision making, and control [4].
However, DL algorithms work in a supervised fashion, and use structured datasets to
train models that require a lot of data and manual labeling, which is a time-consuming
process. Reinforcement learning frameworks have been merged with DL to address these
limitations, which has led to a new research area called deep reinforcement learning (DRL)
[5]. DRL automates the process by mapping high-dimensional sensory information to
robot motion commands without referencing the ground-truth (unsupervised manner). It
requires only a scalar reward function to motivate the learning agent through trial-and-
error experiences of interacting with the environment by seeking to find the best action
for each given state. Even though significant progress has recently been made in the DRL
area and its application to autonomous navigation and collision avoidance problems [6],
existing approaches are still limited mainly to two aspects: (i) some of the algorithms
require billions of interactions with the environment, which can be costly. They need very
sophisticated computing resources, and the obtained policies are prone to failure in many
PANCA scenarios where a GPS signal is not available, which makes them inapplicable
in real robotic systems [7]; (ii) methods suffer from the generalization capability to new
unseen environments or target goals. These limitations degrade the performance of the
navigation system in complex and unstructured scenes.

This work addresses the above-motioned issues by proposing an onboard actor–critic
deep reinforcement learning (DRL) approach that allows safe goal navigation by mapping
exteroceptive sensors, robot state, and goal information to continuous velocity control
inputs, which allows better generalization and learning efficiency. The proposed method
has been evaluated for different tasks: (1) generalization capabilities to new unseen goals,
where the mission objective is to navigate toward a target goal that was not seen during
training; (2) robustness against localization noise, where a Gaussian noise was added to
the robot localization system during the testing phase before moving to the real-world
experiments; (3) optimal motion, where the developed approach was compared with a
nonlinear model predictive control (NMPC) technique, in terms of path shortness toward
the goal; (4) sim-to-real generalization, where the obtained policies were tested in a real
aerial robot to demonstrate the navigation efficiency.

In summary, a novel navigation system for a micro aerial vehicle (MAV) has been pro-
posed. To train and test the developed approach, we created a simulation framework based
on the Gazebo open-source 3D robotics simulator. The reality gap was closed by simulating
the aerial robot and the sensors using the original specifications. A vast set of simulation
experiments shows that the proposed approach can achieve point-goal navigation in opti-
mal paths, outperforming the NMPC method. The developed algorithm runs in real-time
onboard the UAV using an NVIDIA Jetson board TX2 GPU. The obstacle detection was
performed using Hokuyo 2D lidar measurements. The UAV state estimation was achieved
by using Intel’s tracking camera RT265. The remainder of this paper is organized as follows.
Section 2 introduces related work. Section 3 describe the aerial robot platform, and the
architecture of the developed algorithm. Section 4 presents the simulation results. Section 5
presents the real-time experiments, and we finally conclude in Section 6.

2. Related Work

Moving from an initial position to another target location is an ordinary task for
humans. For a robot, such a job is a significant challenge due to the environment dynamics,
especially in respect of aerial robotics. Several works have been proposed for autonomous
navigation, and collision avoidance when the obstacles’ location or an environment map



Sensors 2021, 21, 2534 3 of 18

are known in advance based on the simultaneous localization and mapping (SLAM)
algorithm [8]. Under this assumption, the collision-free trajectory can be computed offline.
In the literature, many different approaches exist that perform the path-planning task,
for instance, the road-map approach and its different methods [9], artificial potential field
approach [10], and other graph-search-based approaches, such as the A∗ (AStar) algorithm
and breadth-first search (BFS) [11].

Those algorithms are highly dependent on the environment map representation
method (metric or feature-based). The map’s accuracy and the number of obstacles have a
significant influence on the path-finding algorithm. One of our approach’s primary advan-
tages compared to these methods is that it does not require a prior map of the environment
or obstacle location. Other classical approaches rely on predefined landmarks that are used
on the run time for navigation [12]. Our method does not make any assumption on the
landmarks of the environment. With the recent development in edge computing systems,
alternative approaches have been proposed for reactive planning, where the system relies
on the immediate perception of its surrounding environment for decision-making. This
increases the autonomy of the robotic systems and makes them avoid dynamic obstacles.
For instance, in [13], the authors proposed an approach based on nonlinear model predic-
tive control (NMPC) for dynamic collision avoidance for a multi-rotor unmanned aerial
vehicle. The presented technique combines the optimal path planning and optimal control
design into a unified optimization problem; it was tested only in simulation, and it does
not consider the model uncertainty and external disturbances. Another work applies an
adaptive NMPC for quadrotor navigation, while taking into account specific exogenous
signals [14]. This technique seems to be computationally heavy due to the combined online
parameter estimation and safe trajectory generation. Ref. [15] presents an NMPC-based
strategy for a quadrotor UAV in a 3D unknown environment. This approach is still limited
because it assumes that the obstacle is static, which is not the case in the real world. These
MPC-based approaches are prone to failure and are vulnerable to the local minima problem.

Attractive alternative approaches for robot motion planning are based on machine
learning techniques. Typical methods are supervised imitation learning [16] and deep
reinforcement learning [17]. Imitation learning uses expert demonstrations that are saved
as datasets for training the navigation policies. The work in [18] showed that it is possible
to navigate an autonomous UAV in a forest-like environment by imitating human control.
The work presented in [19] extends this approach to an indoor environment where a
quadrotor learns to cross a corridor. In [20], the authors explored the application of
imitation learning for an unmanned ground vehicle (UGV). However, these algorithms
suffer from generalization capabilities to scenarios not included in the training data, which
are primarily held for flying robots in 3D environments. Moreover, collecting useful, expert
demonstrations for aerial robots is a nontrivial task as these robots can be hard to control,
need an expert pilot, and cannot operate for a long time due to the power limitations.

More recently, deep reinforcement learning (DRL) has been used in many robotic ap-
plications [21]. For instance, in [22], the authors proposed a proximal policy optimization
approach for fixed-wing UAV attitude control. Other work has used the same algorithm
for quadrotor UAV attitude control [23]. In [24], navigation of an autonomous underwa-
ter vehicle (AUV) was addressed using the deep deterministic policy gradients (DDPG)
algorithm. Other work has used the same technique (DDPG) for landing a quadrotor in
a moving object [25]. Ref. [26] discusses asynchronous off-policy updates for learning
robotic manipulation tasks. Regarding the DRL application for navigation and collision
avoidance tasks, there are few works that have addressed these issues. In [27], the authors
reported that deep RL-based navigation could be useful in crowded spaces by modeling
human–robot and human–human interactions as a reinforcement learning framework.
The learned socially cooperative policies were tested on a real ground robot. A differential
drive mobile robot point stabilization problem was addressed in [28] by adopting the
DDPG algorithm for calculating the desired velocities while taking both kinematic and
dynamic constraints into account, such as speed and acceleration limits. Ref. [29] presented



Sensors 2021, 21, 2534 4 of 18

a map-based DRL for mobile robot navigation by formulating the obstacle avoidance task
as a DRL problem based on a generated local probabilistic cost map, which was treated as
an input for the dueling double deep Q-network (DQN) algorithm. This technique is prone
to failure in crowded environments where the map is unreliable or unavailable.

However, DRL algorithms’ applications for aerial robotic navigation tasks are still in
the early stages of development. In [30], the authors proposed a learning method called
CAD2RL. It takes RGB images as its input and generates velocity commands. The policy
was trained using the Monte Carlo policy evaluation algorithm. Memory-based DRL
for obstacle avoidance in an unknown environment was presented in [31], and the work
considers a UAV performing a random exploration in an indoor environment, which is
relatively easy compared to a point-goal navigation task. In [32], the authors presented a
motion planning technique for a quadrotor UAV. The approach uses a depth image as the
input for the DQN algorithm and returns a discrete set of actions to guide the UAV. This
approach is still limited; it lacks the generalization capabilities toward new target goals,
and the discrete action can create undesirable osculation, which makes the aerial robot
drift from the desired trajectory. The work in [33] addressed this limitation by adopting
the DDPG algorithm with continuous action space for UAV navigation in 3D space, yet
still in an unrealistic simulated environment. The work in [34] applies a DQN algorithm
for a drone delivery task, where the UAV tries to reach a predefined goal while avoiding
obstacles based on depth images. This approach’s main drawback is that it uses a discrete
action space for guiding the UAV, and it was tested only in simulation. Other recent works
have applied actor–critic architecture to achieve UAV autonomous navigation in large-scale
complex environments, and this was tested only in a simulated environment [35].

3. Robot Platform and System Description

Experiments were performed using a customized quadrotor MAV (Figure 1). The aerial
robot includes an autopilot for flight control and an Nvidia Jetson TX2 onboard computer,
mounted on top of the Auvidea J120 carrier board. The developed algorithms use a Hokuyo
UST-10LX laser scan measurement within the field of view of 90 degrees and the MAV’s
position, ground velocity, and orientation, which was estimated using a forward-facing
fish-eye Intel tracking camera T265 module fused with other sensors (e.g., IMU data) using
an extended Kalman filter (EKF) running on Pixhawk open-source flight control software
[36]. For accurate altitude feedback, the system uses a Lidar-Lite V3 laser range finder.
A software part relay on the JetPack 3.2 (the Jetson SDK) and a robot operating system
(ROS kinetic) were also installed for sensor interfacing. The deep reinforcement learning
(DRL) module plays an essential role by adjusting the MAV’s linear velocity vx and heading
rate vψ towards the goal point while avoiding possible obstacles in the path. The detailed
configuration of the aerial robot is shown in Table 1. The commanded velocities serve as
a set-point for the high-level flight velocity controller. The complete architecture of the
proposed system is presented in Figure 2. The human pilot can select between two flight
modes, manual or auto, using a radio transmitter. If the auto mode is selected, the DRL
module will guide the drone towards the predefined goal-point while avoiding obstacles,
and this makes the drone fully autonomous and able to navigate in an unknown outdoor
environment. In case of an emergency, the pilot can intervene at any time by switching to
manual flight mode.



Sensors 2021, 21, 2534 5 of 18

Table 1. Aerial robot configuration.

Component Specs

Hokuyo lidar 270 degrees, UST-10 LX laser scan
Localization camera Fish-eye camera, Intel T265

Autopilot Pixhawk V2
Embedded GPU Nvidia Jetson TX2

Altimeter Lidar lite V3
Motors LDPower MT2213-920kv

Propellers 1045MRP
Battery 4S 14.8V, 2200 MAH, 65C
Frame X Configuration 450 mm

Figure 1. CAD design for the custom-built micro aerial vehicle (MAV).

Figure 2. The complete system architecture.

Problem Formulation

Conventional autonomous navigation and collision avoidance methods require prior
knowledge of the environment for decision making (e.g., obstacle location assumed to be
known, availability of the environment map). In an outdoor scenario, the environment is
continuously changing, and building an accurate map representation in such cases becomes
difficult and unfeasible. The point-goal autonomous navigation and collision avoidance
(PANCA) have been formulated as a Markov decision process (MDP) to overcome these
limitations. The MAV seeks to find the goal in a forest-like scenario by interacting with
the environment using a lidar range finder. The MAV interacts with the environment by



Sensors 2021, 21, 2534 6 of 18

performing a continuous action at ∈ A2, which includes two moving commands (forward
velocity and heading rate vx, vh), and the environment provides a reward scalar r ∈ R at
time t = 0, 1, 2, . . . , T. to show how good or bad the taken action was in a particular state
st ∈ S366. These interactions can be represented by a tuple τ = (s0, a0, r1, s1, a1, . . . , sT),
where sT is the terminal state. In the PANCA task, the MAV reaches the terminal state
when it finds the goal-point within 2 m of accuracy, when it crashes into an obstacle, or
when the maximum number of steps is reached. To solve this MDP problem, we proposed
a learning-based actor–critic architecture that learns the optimal navigation policy π∗θ ,
which is parameterized by the weights of the actor neural network θ. The actor-network
is designed to map the input states represented by the MAV’s current linear velocities
vx, vy, current distance, and heading from the goal-point; and their rate of change and the
laser scan data to a probability distribution over all possible actions. The critic-network
approximates the action-value function, as shown in Figure 3.

Figure 3. Deep-reinforcement-learning-based goal-driven navigation: the selected state is laser
scan measurements di , robot velocities V, distance, and heading from the goal point, and their
rate of change [dg, h, dgr, hr]. The outputs are the commanded velocities scaled to 0 ≤ vx ≤ 1 and
−0.8 ≤ vh ≤ 0.8, and also to the value function v(s; φ).

Both neural networks are the same, containing an input layer with a size of 366,
followed by a hidden layer with 64 neurons. Finally, the output is forwarded to the last
layer to generate the velocity commands vx, vh in the body frame of the MAV. The Tanh
activation function follows each layer. The proposed algorithm is a model-free, on-policy,
actor–critic, policy-gradient method, in which we try to learn a policy π(θ) by maximizing
the true value-function vπθ

directly by calculating the gradient of the objective function
J(θ) with respect to the neural network’s weights θ.

J(θ) = Es0∼p0 [vπθ
(s0)] (1)

∇θ J(θ) = ∇θEs0∼p0 [vπθ
(s0)] (2)

To calculate the gradient, we take a full interaction trajectory τ, which can be repre-
sented as

τ = s0, a0, r1, s1 . . . sT−1, aT−1, sT , aT (3)

The G(τ) function below represents the sum of all rewards obtained during the course
of a trajectory τ within T step

G(τ) = r1 + γr2+, . . . ,+γT−1rT (4)

G(τ) =
T

∑
t=τ

γτ−trτ (5)



Sensors 2021, 21, 2534 7 of 18

where γ is the discount factor. Then we can calculate the probability P(τ|πθ) of the
trajectory τ given policy πθ as follows

P(τ|πθ) = P0(s0)π(a0|s0; θ)P(s1, r1|s0, a0)

. . . P(sT , rT |sT−1, aT−1)
(6)

The gradient of the objective function J(θ) is

∇θEτ∼πθ
[G(τ)] = ∇θEs0∼p0 [vπθ

(s0)] (7)

Using the score function gradient estimator, we can estimate the gradients of the
expectation ∇θEτ∼πθ

[G(τ)] as follows:

∇θEτ∼πθ
[G(τ)] = Eτ∼π0 [∇θ logP(τ|πθ)G(τ)] (8)

∇θEτ∼πθ
[G(τ)] = Eτ∼πθ

[
T

∑
t=0
∇θ logπ(At|st; πθ)G(τ)] (9)

where At is the advantage that can be estimated using the n-step λ-target generalized
advantage estimation (GAE) as follows:

At(st, at; φ) = Gt − v(st; φ)

A1
t (st, at; φ) = rt + γv(st+1; φ)− v(st; φ)

A2
t (st, at; φ) = rt + γrt+1γ2v(st+2; φ)− v(st; φ)

An
t (st, at; φ) = rt + γrt+1 + . . . γnv(st+n; φ)− v(st; φ)

(10)

As a result, the estimated advantage At can be expressed with TD-λ as

AGAE(γ,0)
t (st, at; φ) =

∞

∑
l=0

(γλ)l Al+1
t (st, at; φ) (11)

in which if λ = 0 we can get the one-step advantage estimate

AGAE(γ,1)
t (st, at; φ) = A1

t (st, at; φ) (12)

Similarly, if λ = 1, the infinite-step advantage estimate will be obtained.

AGAE(γ,1)
t (st, at; φ) =

∞

∑
l=0

(γ)l Al+1
t (st, at; φ) (13)

where φ is the critic network weight, and γ is the discount factor. To reduce the gradient
estimate’s high-variance after an optimization step, we clip the gradient update to be in a
specific interval [−ε, ε] with 0.1 ≤ ε ≤ 0.3, which leads to minimal variance.

To successfully perform the desired PANCA task, a hybrid reward function r(t)
(shaped: with respect to flight time; sparse: with respect to laser scan data and the current
distance from the goal) was designed for training the learning agent. The shaped function
motivates the flying robot to reach the goal-point in minimal time, while the sparse function
lets it avoid colliding with obstacles, it provides a negative reward robs if the minimum
distance from any obstacle is lower than 1.0m. If the distance from any obstacle is greater
than 1.0m and the MAV reaches the goal-point within an accuracy of 2m, a significant
positive reward is assigned rgoal , the training episode finishes, and the MAV is randomly
reinitialized to a new position. Hence, if the MAV is still far from the goal, a shaped reward
will be given r f t. By summing the three rewards, we obtain the final reward function r(t).
Algorithm 1 presents the designed reward function in detail. The full workflow for the
presented approach is shown in Algorithm 2.



Sensors 2021, 21, 2534 8 of 18

Algorithm 1 Reward Function Definition r(t)
Get the MAV heading Hg with respect to the goal-point.
Calculate the current distance D from the goal.
Read the laser scan data.
Resize the laser scan data.
Lidar = [1 . . . 360], within 90◦ field of view.
Initialization: robs = 0, rgoal = 0
if Min(Lidar) > 1.0m then

if D < 2m then
rgoal = 1000

end
else

robs = −500
end
r f t = 0.5− f lighttime− Hg/360
r(t) = rgoal + robs + r f t

Algorithm 2 Learning-based control policy for the point-goal autonomous navigation and collision avoidance
(PANCA) tasks

initialization :
- Initialize the policy network parameters θ0
- Initialize the value function v(st; φ) network parameters φ
for T = 1,2,3 . . ., M do

- Collect a set of roul-out trajectories τ by following the policy πθT

τ = s0, a0, r1, s1 . . . sT−1, aT−1, sT , aT

- Calculate the obtained return G(τ) using the following equation and Algorithm 1.

G(τ) = r1 + γr2+, . . . ,+γT−1rT

- Compute the advantage estimate A(st, at; φ) using the current value function v(st; φ)

An
t (st, at; φ) = rt + γrt+1 + . . .

γnv(st+n; φ)− v(st; φ)

AGAE(γ,0)
t (st, at; φ) =

∞

∑
l=0

(γλ)l Al+1
t (st, at; φ)

- Update the policy πθ by maximizing the objective function by taking T step of minibatch (SGD).

θT+1 = argmax(J(θ))

end

Moreover, to verify the learning-based algorithm’s effectiveness, a comparison with
a monlinear model predictive (NMPC) technique has been proposed in simulation ex-
periments. To reduce the computational cost of the NMPC, 10 steps ahead was used for
prediction, and the direct multiple shooting method was used to convert the optimal con-



Sensors 2021, 21, 2534 9 of 18

trol problem (OCP) into a nonlinear programming problem (NLP). The simplified discrete
differentially flat prediction plant model that was used for the MAV is presented below.

x(k + 1) = x(k) + v(k)cos(ψ(k))

y(k + 1) = y(k) + v(k)sin(ψ(k))

ψ(k + 1) = ψ(k) + vψ(k)

(14)

where v, vψ are the commanded linear forward velocity and the heading rate, respectively.
The NMPC task formulates an optimal control problem (OCP) with constraints on states,
manipulated variables, and obstacles that were detected using 2D laser scan measurements,
which were considered as a state inequality constraint of a collision-free area. The complete
OCP can be formulated as follows:

min
X

J =
T

∑
h=0

(X− Xg)
2P + U2

h Q

with UT = [U1, U2]

s.t. x(k + 1) = x(k) + v(k)cos(ψ(k))

y(k + 1) = y(k) + v(k)sin(ψ(k))

ψ(k + 1) = ψ(k) + vψ(k)

X = X0 = [x0, y0, ψ0]

− px − py + sd ≤ 0

vmin ≤ U1 ≤ vmax

vψmin ≤ U2 ≤ vψmax

(15)

where X = [x, y, ψ], Xg = [xg, yg, ψg] are the MAV’s current state and the desired goal,
respectively; U represents the lumped control inputs U1, U2; and P, Q are the diagonal
weighting matrices as shown in Equation (14).

P =

1 0 0
0 1 0
0 0 0.1

, Q =

[
0.5 0
0 8

]
(16)

X0 is the MAV’s initial state and px, py is the 2D point cloud reflected from the nearest
obstacle from the MAV. sd is the desired safety distance given by the user.

4. Training and Testing the Navigation Policy in Simulation

The main objective of point-goal navigation is to find the shortest path from a random
initial position to the target goal location. To train and test the navigation policy, a simulated
outdoor environment that contains multiple obstacles placed randomly was built on top of
the Gazebo simulator (see Figure 4). Firstly, training was performed in the environment by
generating samples from a single simulated MAV equipped with a localization system and
a 2D lidar. The MAV starts from a random initial position and tries to reach the goal. If the
MAV arrives at the goal point, it gets a positive reward, both the MAV’s position and the
goal position change, and a new episode begins. By doing this, the sample’s correlation
will be reduced effectively. The training was performed using an Nvidia GTX 1080Ti GPU,
Intel Xeon(R) CPU E5-2650v4 2.20 GHz × 24, and 125 GB of RAM. The MAV’s altitude
was 1.2 m and it had a maximum forward speed of 1 m/s and maximum heading rate of
0.8 rad/s. The policy was trained using the Pytorch framework, CUDA 10.0, and CuDNN
7.5. It took approximately 4 days to reach the 8 millionth training step. Table 2 shows the
learning parameters in detail.



Sensors 2021, 21, 2534 10 of 18

Figure 4. The simulated environment and MAV: The policy was trained in this simulated environment
before transferring it to the real world.

Table 2. The learning parameters.

Parameter Value

γ 0.98
GAE λ 0.95

Trajectory size 2048
Learning rate actor 1 × 10−6

Learning rate critic 1 × 10−5

Gradiednt clip ε 0.2
Epochs 10

Batch size 128
Max Altitude 1.2 m

Max Forward velocity 1.0 m/s
Max Heading rate 0.8 rad/s

Figure 5 shows the learning curve. Starting from a negative value of −400, the curve
increases gradually until it converges to a particular positive value, around 500. This
indicates that the MAV is learning gradually to avoid obstacles and reach the desired
goal, leading to positive cumulative rewards. After the training finished, the obtained
models were saved for testing purposes. Several performance metrics have been imposed
to verify our algorithm’s effectiveness, such as generalization capabilities to new unseen
goals, different initial takeoff positions, robustness against localization noise, and motion
optimality. In the first simulation tests, the goal and takeoff positions were changed to new
places not seen during the training phase. The developed algorithm was benchmarked with
the NMPC technique presented earlier. Figure 6 shows the paths taken by the MAV while
trying to reach the desired goal location, starting from three different initial positions; both
algorithms successfully guided the MAV towards the goal while avoiding the obstacles.

Figure 7 presents the obtained results from the second simulation tests. After takeoff,
the MAV was ordered to reach two way-points T1, T2 within an accuracy of 2 m. In this
simulated scenario, the learning-based algorithm showed better performance in terms of
trajectory smoothness and shortness compared with the NMPC technique.



Sensors 2021, 21, 2534 11 of 18

Figure 5. The training curve.

Figure 6. The learned policy vs. nonlinear model predictive control (NMPC): the path taken by the
MAV while trying to reach the new goal position starting from 3 different locations.

Figure 7. The learned policy vs. NMPC: the path taken by the MAV while trying to reach the new
unseen goal positions T1, T2.



Sensors 2021, 21, 2534 12 of 18

Samples from the commanded linear and angular velocities are shown in Figure
8. The NMPC control inputs are more oscillating and jerky, which leads to undesirable
motion. In contrast, the learned policy shows smooth velocity commands, making it more
suitable for the real MAV.

Figure 8. The learned policy vs. NMPC: the commanded heading rate and forward linear velocity.

In addition to the generalization capability requirements, robustness against noise also
was verified by adding Gaussian noise to the localization system (position and velocity) to
mimic the real sensor measurements. In this third test, the MAV took off from an initial
position of (0, 0) under noisy localization input, and was ordered to reach the desired goal
(19, 20, 1.2). Figure 9 shows the current path taken by the aerial robot. The obtained results
show that the NMPC could handle the localization noise at all; even with a small variance
of σ = 0.2, the MAV failed to find the goal and at the end it crashed. However, the new
proposed learning-based algorithm shows better results. Under the same simulated noise,
the MAV avoided the obstacles and achieved the goal with an accuracy of 2 m. Another
test was carried out in the same environment where the desired goal was closer (9,−1, 1.2)
and relatively easy to find; the NMPC was still not able to guide the MAV towards it, while
the learned policy was able to guide the MAV to reach the goal smoothly and robustly. To
understand the simulated scenarios, the reader is encouraged to watch the videos included
in the Data Availability Statement.

Figure 9. The learned policy vs. NMPC: the path taken by the MAV while trying to reach the new
unseen goal position.



Sensors 2021, 21, 2534 13 of 18

5. Real-Time Flight Experiments

After validating our simulated scenarios, the obtained trained models were deployed
in a real MAV without tuning. Three real-time flight test scenarios were conducted in
an outdoor dense forest environment on a sunny day with a wind speed up to 1 m/s.
The aerial platform we used is shown in Figure 10. The drone’s onboard flight controller
allows control of the MAV through high-level desired velocity commands generated from
the learning-based guidance system. Due to the computational limitation, the maximum
forward velocity was limited to 1 m/s, and the yaw angle rate of change to 0.8 rad/s, as in
the simulation.

Figure 10. Real hardware platform used for the flight tests.

5.1. Scenario 1: Sim-to-Real Generalization

The mean objective of this flight test was to validate the trained policy on a real
hardware system; Figure 11 shows the test environment where the MAV was commanded
to reach a goal point T1 = (18.0, 0.0, 1.2), which was seen already in simulation; this
means that the policy was trained to reach the same goal point in a simulated environment.
After reaching the desired goal, the MAV was ordered to go back to the initial takeoff home
point T0 = (0.0, 0.0, 1.2). The MAV’s path while trying to reach the goals T1, T0 is shown in
Figure 12. The obtained results show that the trained policy was able to guide the MAV
towards the goal T1 within an accuracy of 2m while avoiding colliding with obstacles; once
the MAV reaches T1, the goal point changes to the home point T0, which makes the policy
adjust the commanded velocities and head back towards the initial position.

Figure 11. The test environment for scenario 1: after takeoff from T0 try to reach T1 within 2 m
accuracy then go back to the initial position.



Sensors 2021, 21, 2534 14 of 18

(a) The 2D view (b) The 3D view

Figure 12. The path followed by the MAV while flying towards the goal and going back to the home point.

5.2. Scenario 2: Motion Optimality

To verify the motion optimality, the second test scenario2 has been performed, in which
the desired goal point was changed to new location T3 = (10.0,−2.0, 1.2) in the presence of
more obstacles as shown in Figure 13. The MAV should adjust its heading and forward
velocity such that it follows the shortest path towards the goal position while avoiding
obstacles. Figure 14 shows the path followed while heading towards the goal point T3;
the obtained results show that the planned path was near-optimal in terms of shortening
the path toward the goal point and the MAV was able to avoid all obstacles and reach
the goal within an accuracy of 2 m. The accuracy of reaching the desired goal can be
tuned accordingly by setting a certain threshold. If the desired threshold is lower than 2 m,
the MAV takes longer to learn the navigation policy. We found that 2 m is the most suitable
threshold we can use for this application.

Figure 13. Test environment for the second scenario.



Sensors 2021, 21, 2534 15 of 18

(a) 2D path view (b) 3D path view

Figure 14. The path taken by MAV in example scenario-2.

5.3. Scenario 3: The Generalization to New Goal Points

Finally, the last experimental scenario 3 was represented by a medium-range flight,
in which the MAV was ordered to reach three waypoints (T1, T2, T3) while avoiding obsta-
cles. The desired waypoints are shown in Figure 15. The environment is unstructured and
unknown; the trained policy should generate safe velocity commands to reach the points,
knowing that these points were not seen during training. Throughout this experiment,
the generalization capabilities of the policy can be verified. The path followed by the MAV
is shown in the Figure 16, the MAV was able to reach the target points with an accuracy of
2 m while avoiding colliding with the obstacles represented by trees, during this experi-
ment we noticed that the policy always guided the MAV towards the empty space where
there were no obstacles then headed towards the goal.

Figure 15. Test environment for scenario 3: multi-waypoint navigation.



Sensors 2021, 21, 2534 16 of 18

(a) 2D path view (b) 3D path view

Figure 16. The path taken by the MAV in example scenario 3.

6. Conclusions

In this paper we have presented a novel approach for point-goal autonomous naviga-
tion and collision avoidance missions for a MAV quadrotor using an actor–critic-based deep
reinforcement learning algorithm. The proposed algorithm’s inputs are lidar range finder
distance measurements, the MAV’s position, velocity, distance from the target, current
heading from the target point, and their rate of change. The navigation policy was entirely
trained in a 3D Gazebo-based simulation environment. A comparative study was carried
out in simulation with a nonlinear model predictive technique; afterwards, the obtained
trained models were deployed on a real MAV platform without any tuning. The simulation
and real-world experiments show that the proposed technique was able to guide the MAV
towards the desired goal with an accuracy of 2 m in an unknown environment in the
presence of localization noise. Future work will address the problem of dynamic obstacle
avoidance in 3D space using more sophisticated sensor inputs.

Author Contributions: Conceptualization, O.D.; methodology, O.D. and D.-J.L.; validation, O.D.;
formal analysis, O.D.; investigation, O.D.; resources, O.D.; writing—original draft preparation, O.D.;
supervision, D.-J.L.; funding acquisition, D.-J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Spatial Information Research Institute funded by LX
(No : 2020-254). and also was supported by the Unmanned Vehicles Core Technology Research and
Development Program through the National Research Foundation of Korea(NRF) and Unmanned
Vehicle Advanced Research Center(UVARC) funded by the Ministry of Science and ICT, the Repub-
lic of Korea, grants number (2020M3C1C1A02084772), and (2020M3C1C1A01082375). This work
was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean
government(MSIT) (2019R1F1A1049711).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Videos for the real-time flight experiments can be found at the follow-
ing link https://doi.org/10.5281/zenodo.4480825 (accessed on 30 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.5281/zenodo.4480825


Sensors 2021, 21, 2534 17 of 18

References
1. Liu, Z.; Zhang, Y.; Yuan, C.; Ciarletta, L.; Theilliol, D. Collision avoidance and path following control of unmanned aerial vehicle

in hazardous environment. J. Intell. Robot. Syst. 2019, 95, 193–210. [CrossRef]
2. Eskandarpour, A.; Sharf, I. A constrained error-based MPC for path following of quadrotor with stability analysis. Nonlinear Dyn.

2020, 99, 899–918. [CrossRef]
3. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey.

Int. J. Comput. Vis. 2020, 128, 261–318. [CrossRef]
4. Kahn, G.; Abbeel, P.; Levine, S. Badgr: An autonomous self-supervised learning-based navigation system. arXiv 2020,

arXiv:2002.05700.
5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
6. Zhang, W.; Zhang, Y.; Liu, N. Map-less Navigation: A Single DRL-based Controller for Robots with Varied Dimensions. arXiv

2020, arXiv:2002.06320.
7. Wijmans, E.; Kadian, A.; Morcos, A.; Lee, S.; Essa, I.; Parikh, D.; Savva, M.; Batra, D. Dd-ppo: Learning near-perfect pointgoal

navigators from 2.5 billion frames. arXiv 2019, arXiv:1911.00357.
8. Chen, Y.; Huang, S.; Fitch, R. Active SLAM for mobile robots with area coverage and obstacle avoidance. IEEE/ASME

Trans. Mechatron. 2020, 25, 1182–1192. [CrossRef]
9. Šeda, M. Roadmap methods vs. cell decomposition in robot motion planning. In Proceedings of the 6th WSEAS International

Conference on Signal Processing, Robotics and Automation. World Scientific and Engineering Academy and Society (WSEAS),
Corfu Island, Greece, 16–19 February 2007; pp. 127–132.

10. Filimonov, A.; Filimonov, N.; Barashkov, A. Construction of Potential Fields for the Local Navigation of Mobile Robots.
Optoelectron. Instrum. Data Process. 2019, 55, 371–375. [CrossRef]

11. Wu, G.; Sun, X. Research on Path Planning of Locally Added Path Factor Dijkstra Algorithm for Multiple AGV Systems; IOP Conference
Series: Materials Science and Engineering; IOP Publishing: Hefei, China; 2020; Volume 711, p. 012036.

12. Hu, M.; Ao, H.; Jiang, H. Experimental Research on Feature Extraction of Laser SLAM Based on Artificial Landmarks. In Pro-
ceedings of the IEEE 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 5495–5500.

13. Castillo-Lopez, M.; Sajadi-Alamdari, S.A.; Sanchez-Lopez, J.L.; Olivares-Mendez, M.A.; Voos, H. Model predictive control for
aerial collision avoidance in dynamic environments. In Proceedings of the 2018 26th Mediterranean Conference on Control and
Automation (MED), Zadar, Croatia, 19–22 June 2018; pp. 1–6.

14. Garimella, G.; Sheckells, M.; Kobilarov, M. Robust obstacle avoidance for aerial platforms using adaptive model predictive control.
In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 5876–5882.

15. Nascimento, I.B.; Ferramosca, A.; Piment, L.C.; Raffo, G.V. NMPC Strategy for a Quadrotor UAV in a 3D Unknown Environ-
ment. In Proceedings of the IEEE 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil,
2–6 December 2019; pp. 179–184.

16. Wang, X.; Huang, Q.; Celikyilmaz, A.; Gao, J.; Shen, D.; Wang, Y.F.; Wang, W.Y.; Zhang, L. Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6629–6638.

17. Shah, P.; Fiser, M.; Faust, A.; Kew, J.C.; Hakkani-Tur, D. Follownet: Robot navigation by following natural language directions
with deep reinforcement learning. arXiv 2018, arXiv:1805.06150.

18. Ross, S.; Melik-Barkhudarov, N.; Shankar, K.S.; Wendel, A.; Dey, D.; Bagnell, J.A.; Hebert, M. Learning monocular reactive uav
control in cluttered natural environments. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, 6–10 May 2013; pp. 1765–1772.

19. Kim, D.K.; Chen, T. Deep neural network for real-time autonomous indoor navigation. arXiv 2015, arXiv:1511.04668.
20. Fu, Y.; Jha, D.K.; Zhang, Z.; Yuan, Z.; Ray, A. Neural network-based learning from demonstration of an autonomous ground

robot. Machines 2019, 7, 24. [CrossRef]
21. Li, Z.; Zhao, T.; Chen, F.; Hu, Y.; Su, C.Y.; Fukuda, T. Reinforcement learning of manipulation and grasping using dynamical

movement primitives for a humanoidlike mobile manipulator. IEEE/ASME Trans. Mechatron. 2017, 23, 121–131. [CrossRef]
22. Bøhn, E.; Coates, E.M.; Moe, S.; Johansen, T.A. Deep reinforcement learning attitude control of fixed-wing uavs using proximal

policy optimization. In Proceedings of the IEEE 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta,
GA, USA, 11–14 June 2019; pp. 523–533.

23. Koch, W.; Mancuso, R.; West, R.; Bestavros, A. Reinforcement learning for UAV attitude control. ACM Trans. Cyber-Phys. Syst.
2019, 3, 1–21. [CrossRef]

24. Carlucho, I.; De Paula, M.; Wang, S.; Menna, B.V.; Petillot, Y.R.; Acosta, G.G. AUV Position Tracking Control Using End-to-End
Deep Reinforcement Learning. In Proceedings of the IEEE OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25
October 2018; pp. 1–8.

25. Rodriguez-Ramos, A.; Sampedro, C.; Bavle, H.; De La Puente, P.; Campoy, P. A deep reinforcement learning strategy for UAV
autonomous landing on a moving platform. J. Intell. Robot. Syst. 2019, 93, 351–366. [CrossRef]

http://doi.org/10.1007/s10846-018-0929-y
http://dx.doi.org/10.1007/s11071-019-04859-0
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1109/TMECH.2019.2963439
http://dx.doi.org/10.3103/S8756699019040071
http://dx.doi.org/10.3390/machines7020024
http://dx.doi.org/10.1109/TMECH.2017.2717461
http://dx.doi.org/10.1145/3301273
http://dx.doi.org/10.1007/s10846-018-0891-8


Sensors 2021, 21, 2534 18 of 18

26. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3
June 2017; pp. 3389–3396.

27. Chen, C.; Liu, Y.; Kreiss, S.; Alahi, A. Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep
reinforcement learning. In Proceedings of the IEEE 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 20–24 May 2019; pp. 6015–6022.

28. Butyrev, L.; Edelhäußer, T.; Mutschler, C. Deep Reinforcement Learning for Motion Planning of Mobile Robots. arXiv 2019,
arXiv:1912.09260.

29. Chen, G.; Pan, L.; Chen, Y.; Xu, P.; Wang, Z.; Wu, P.; Ji, J.; Chen, X. Robot Navigation with Map-Based Deep Reinforcement
Learning. arXiv 2020, arXiv:2002.04349.

30. Sadeghi, F.; Levine, S. Cad2rl: Real single-image flight without a single real image. arXiv 2016, arXiv:1611.04201.
31. Singla, A.; Padakandla, S.; Bhatnagar, S. Memory-based deep reinforcement learning for obstacle avoidance in UAV with limited

environment knowledge. IEEE Trans. Intell. Transp. Syst. 2019. [CrossRef]
32. Camci, E.; Kayacan, E. End-to-End Motion Planning of Quadrotors Using Deep Reinforcement Learning. arXiv 2019,

arXiv:1909.13599.
33. Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. Autonomous UAV Navigation: A DDPG-based Deep Reinforcement

Learning Approach. arXiv 2020, arXiv:2003.10923.
34. Muñoz, G.; Barrado, C.; Çetin, E.; Salami, E. Deep reinforcement learning for drone delivery. Drones 2019, 3, 72. [CrossRef]
35. Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous navigation of UAVs in large-scale complex environments: A deep

reinforcement learning approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. [CrossRef]
36. Meier, L.; Tanskanen, P.; Heng, L.; Lee, G.H.; Fraundorfer, F.; Pollefeys, M. PIXHAWK: A micro aerial vehicle design for

autonomous flight using onboard computer vision. Auton. Robot. 2012, 33, 21–39. [CrossRef]

http://dx.doi.org/10.1109/TITS.2019.2954952
http://dx.doi.org/10.3390/drones3030072
http://dx.doi.org/10.1109/TVT.2018.2890773
http://dx.doi.org/10.1007/s10514-012-9281-4

	Introduction
	Related Work
	Robot Platform and System Description
	Training and Testing the Navigation Policy in Simulation
	 Real-Time Flight Experiments
	Scenario 1: Sim-to-Real Generalization 
	Scenario 2: Motion Optimality
	Scenario 3: The Generalization to New Goal Points

	Conclusions
	References

