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Abstract: Fog computing is a potential solution to overcome the shortcomings of cloud-based
processing of IoT tasks. These drawbacks can include high latency, location awareness, and security—
attributed to the distance between IoT devices and cloud-hosted servers. Although fog computing
has evolved as a solution to address these challenges, it is known for having limited resources that
need to be effectively utilized, or its advantages could be lost. Computational offloading and resource
management are critical to be able to benefit from fog computing systems. We introduce a dynamic,
online, offloading scheme that involves the execution of delay-sensitive tasks. This paper proposes
an architecture of a fog node able to adjust its offloading threshold dynamically (i.e., the criteria by
which a fog node decides whether tasks should be offloaded rather than executed locally) using two
algorithms: dynamic task scheduling (DTS) and dynamic energy control (DEC). These algorithms
seek to minimize overall delay, maximize throughput, and minimize energy consumption at the fog
layer. Compared to other benchmarks, our approach could reduce latency by up to 95%, improve
throughput by 71%, and reduce energy consumption by up to 67% in fog nodes.

Keywords: fog computing; computational offloading; dynamic offloading threshold; resource man-
agement; minimizing delay; minimizing energy consumption; maximizing throughputs

1. Introduction

The number of IoT devices and their generated tasks are constantly growing, imposing
a burden on cloud infrastructure, in particular if processing of these tasks must take place
within Quality of Services (QoS) constraints [1,2]. The processing of these tasks in the
cloud can trigger systems to suffer high communication latency, security issues, and
network congestion [3]. This is due to the distance between IoT devices and cloud-hosted
servers [4,5]. Fog computing has emerged to address limitation of processing IoT tasks
at the cloud and ensure the processing of these tasks takes place within pre-defined time
periods [6]. Fog computing is an intermediate layer situated between cloud and IoT devices
that brings location awareness, low latency, and wide-spread geographical distribution for
IoT devices [7,8]. It consists of limited-resource devices called fog nodes, providing storage,
processing, and networking resources close to IoT devices where tasks are produced [8,9].
Fog computing was introduced by Cisco in 2012 [4,10]. With limited-resource devices used
in fog systems, poor utilization of these resources would limit their benefit.

Computational offloading enables workload/computational tasks to be shared be-
tween IoT devices, fog nodes, and cloud servers [11–14]. When computational offloading
occurs between fog nodes, this is called “fog cooperation” [15], in which overloaded fog
nodes send part of their workload to other underloaded fog nodes to meet their QoS
requirements [16,17]. Resource management can involve multiple factors, saving energy
consumption in the fog environment is one of these factors, and is considered in this work.
Integrating computational offloading and resource management is essential to effectively
utilize fog resources [1].

In online dynamic fog systems, where uncertainties are arising due to multiple factors,
with no prior awareness of task arrival rate, the number of connected IoT devices, and
computational capacity of fog nodes, addressing computational offloading and resource
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management is challenging to obtain optimum outcomes [1]. Computational offloading has
mostly been explored in offline fog systems, where all system data are known beforehand,
and limited work has been carried out in online dynamic fog systems. There is also limited
work on understanding the impact of dynamically changing the offloading threshold,
which is a factor that determines when a fog node begins sharing its workload with other
neighboring fog nodes within its proximity.

1.1. Contributions

Specifically, this work provides the following contributions:

• We propose a fog node architecture that dynamically decides whether to process the
received tasks locally or offloads them to other neighbors. This is based on a dynamic
threshold that considers the queuing delay of the primary fog node and the availability
(i.e., the queuing delay) of its neighbors.

• Computational offloading and the associated computational resource management
was investigated using an online dynamic system with the aim to solve the multi-
objective problem that aims to minimize delay, minimize energy consumption, and
maximize throughput.

• We conducted extensive experiments to evaluate the performance of our proposed
scheme and compare our proposed algorithm to various benchmarks.

• This paper extends our previous work [1] by introducing a dynamic offloading thresh-
old, made use of in an online model for evaluating service delay.

1.2. Paper Organization

The remainder of this paper is organized as followed. Related work is provided in
Section 2, followed by the system model and associated constraints in Section 3. In Section 4,
we decompose the multi-objective problem into two sub-problems: delay minimization
and energy saving, followed by a description of our solution in Section 5. In Section 6, we
compare the performance of our proposed scheme against other benchmarks, followed by
conclusions in Section 7.

2. Related Work

This section is divided into three main parts. The first focuses on computational
offloading between entities within a specific system; the second addresses the impact
of dynamically managing servers to enhance power efficiency. Finally, a comparison of
state-of-the-art of related approaches in fog computing is provided and summarized in
Table 1.
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Table 1. Computational Offloading State-Of-Art Comparison.
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2.1. Computational Offloading

Computational offloading can be implemented offline or online. In offline imple-
mentation, all system information needed to make the offloading decision is previously
known and is based on historical or predictive knowledge, such as the computational
capabilities of fog nodes, the total number of IoT devices, and their total workload (num-
ber of requests). This is applied during the system design stage. In online deployment,
the computational offloading decision takes place at run-time and considers the current
system status and process characteristics, such as the current waiting time and the current
available computational resources, without prior knowledge of system inputs considered
in the offline deployment. Several studies investigate computational offloading in offline
deployment [8,11–14,18–23]. In [19], Wang et al. investigated the optimized offloading
problem to minimize task completion time given tolerable delay and energy constraints.
The optimization problem was formulated as a mixed integer nonlinear programming prob-
lem that jointly optimizes the local computation capability for IoT devices, the computing
resource allocation of fog nodes and the offloading decision. Wang et al. [19] decomposed
it into two independent sub problems to find the optimal amount of workload that should
be processed locally at IoT devices and at fog nodes. A hybrid genetic-simulated annealing
algorithm was developed to optimize the offloading decision. Tang et al. [18] aimed to
increase the total number of executed tasks on IoT devices and fog nodes under deadline
and energy constraints. The authors in [18] considered this as a decentralized, partially
observable offloading optimization problem in which end users are partially aware of their
local system status, including the current number of remaining tasks, the current battery
power, and the nearest available fog node. Such parameters are used to assess if tasks
should be processed locally or offloaded to the nearest fog node. Their approach enables
IoT devices to make an appropriate decision based on its locally observed system.

Liu et al. [11] addressed a multi-objective optimization offloading problem in a fog
environment with the aim of minimizing execution delay, energy consumed at mobile
devices, and offloading payment cost for using fog/cloud resources. The multi-objective
problem was formulated into a single problem using scalarization method [11]. The
proposed solution found the optimal offloading probability that accomplishes the stated
objectives. Mukherjee et al. [20] designed an offloading technique focusing on jointly
optimizing the computing and communication resources at fog systems to reduce end-
to-end latency. Their technique considers the trade-off between transmission delay and
task execution delay when making the offloading decision, in which a fog node can seek
additional computational resources from either one of its neighbors, or the cloud data center,
to reduce task execution delay at the expense of the transmission delay. The optimization
problem was transformed into convex quadratically constraint quadratic programming
and solved using CVX toolbar, which is a MATLAB-based modelling system for convex
optimization. Their simulation results demonstrated that their proposed solution offers
minimal end-to-end latency in comparison to executing all tasks at end-user devices and
executing all tasks at the primary fog nodes.

Zhu et al. [13] proposed a task offloading policy based on execution time and energy
consumption. This approach helps mobile devices to make an appropriate decision on
whether to process their tasks locally or offload them to a fog node, or the cloud. During
the decision-making procedure, mobile devices calculate both the execution time and the
energy consumed when executing the task on the local device and compare this with the
execution time and the energy consumed when offloading and receiving the processed
task on a fog node; the energy consumed when executing the tasks on fog nodes are not
considered. Based on this comparison, the IoT device makes a decision with the least
cost (execution time plus energy consumption). Comparing their scheme to Random, no
offloading, and only offloading when considering only execution time, their simulation
results showed an optimization of the execution time of tasks and energy consumption of
mobile devices. Mukherjee et al. [21] formulated the offloading problem as an optimization
problem with the goal to minimize the total system cost, which is the sum of the total
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delay of end-users’ tasks and the total energy consumed at end-users’ devices due to local
processing of tasks and uploading tasks to the fog environment for processing. Under delay
and energy constraint, the optimization problem was transformed into a quadratically
constraint quadratic programming problem and solved by semidefinite relaxation method.
Within a heterogeneous environment where fog nodes have different computational re-
sources, the proposed solution enables the optimal amount of workload to be identified
that should be processed at end-user devices, primary and neighboring fog nodes, and
cloud servers. The decision on when to offload depends entirely on the availability of
computational resources. The authors stated that having higher computational resources
at fog nodes helps to reduce the system cost. Increasing number of end-users leads to
greater congestion at fog nodes, leading to fog nodes preferring to send their workload to
the cloud server for processing rather than other neighboring fog nodes.

Chen and Hao [14] studied offloading problem in dense software-defined networks,
formulating this as a mixed-integer nonlinear problem that is decomposed into: (i) deciding
whether the task is processed locally at the end-user device or offloaded to the edge device;
(ii) determining the computational resources that are dedicated to each task. Chen and
Hao [14] developed an efficient software-defined task offloading scheme to solve these
sub-problems. The results of their proposed scheme demonstrated the superiority of their
approach at decreasing end user device energy consumption and overall task execution
latency. In IoT-Fog-Cloud architecture, Sun et al. [22] presented the “ETCORA” algorithm,
which consists of two parts. The first part aims to find the optimal offloading decision
based on minimizing time and energy, and the second part optimizes resource allocation in
terms of transmission power allocation. Their proposed solution helps to minimize energy
consumption and completion time of tasks compared to other schemes. Zhao et al. [12]
investigated the computational offloading problem in the context of radio access networks
to reduce the weighted sum of total offloading latency plus total energy consumption.
To improve the offloading decision and enhance the allocation of computation and radio
resources, the authors formulated the problem as a non-linear, non-convex joint optimiza-
tion problem. Their proposed solution was more effective than mobile cloud computing
(MCC), which processes all end-user tasks on a cloud server, and mobile edge computing
(MEC), which processes all end-user tasks in the edge computing system. The reason
their approach was more effective compared to MCC and MEC is that it made use of a
combination of available resources at the cloud and fog nodes, compared to cloud only as in
MCC, and edge only as in MEC.

The hybrid-computational offloading optimization problem was investigated by
Meng et al. [23], where two types of models were considered; namely cloud compu-
tational offloading and fog computational offloading. The authors aimed to minimize the
consumption of energy caused by transmitting and processing tasks at mobile terminals,
fog, and cloud servers under deadline constraints. Meng et al. [23] introduced a new
concept called computation energy efficiency that is defined as “the number of computation
tasks that are offloaded by consuming a unit of energy”, to solve the optimization problem.
Based on the proposed solution that considers offloading tasks to fog and cloud servers
for execution, simulation results show the effectiveness of the solution compared to only
offloading tasks to either cloud only or fog only resources. Xiao and Krunz [8] proposed a
workload scheduling method that ensures user response time is minimized under available
power constraints. In their study, the energy spent while processing tasks was ignored and
only the energy consumed for offloading each unit of received workload was considered.
Cooperation between fog nodes to offload workload by an agreement between neighboring
nodes, the workload arrival rates, and the workload processing capabilities determines the
amount of offloading carried out. Their experimental results indicated that the average
response time decreased due to allowing cooperation between fog nodes. Additionally, a
crucial trade-off between the fog node’s power efficiency and the average response time
was observed. Xiao and Krunz [8] proposed that the response time of end-user tasks
should be set to its highest tolerable point to optimize energy consumption at fog comput-
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ing systems. This enables most of the tasks to be processed at end-user devices, avoiding
any offloading.

Regarding online deployment of computational offloading, few studies have ad-
dressed this, such as [15–17,24–26]. Yousefpour et al. [16] suggested a delay-minimization
approach to reduce overall service delay. In their approach, the estimated queueing delay,
which is utilized as the offloading threshold, determines whether a fog node processes
its incoming task(s), or offloads these to one of its neighbors or the cloud server. If the
offloading threshold has been reached, then the best neighboring fog node in its domain
is selected to offload its upcoming tasks. The best neighboring fog node is chosen based
on having the minimum total of propagation delay and queuing delay. Compared to
other models, their results achieved the minimum average service delay. Yin et al. [24]
determined where to process end user tasks into task scheduling and resource allocation
problems, where tasks are either processed locally at end-user devices or offloaded to
fog nodes or cloud servers. In an intelligent manufacturing environment, the authors
introduced fog computing and utilized the concept of the container within the fog system,
intending to reduce overall delay and optimize the number of concurrent tasks for the fog
node. In their online model, generated tasks by end-users are transmitted to the request
evaluator, which is located at a fog node that decides whether to accept or reject the task
based on its deadline requirement. If the task is accepted, then the task is transmitted
to the task scheduler, which determines whether the task is processed at fog nodes or
cloud servers based on the available resources and the execution time of this task, which
involves computation and transmission time. Finally, the resource manager is responsible
for reallocating the required resources to process the task at fog nodes. Experimental results
showed the effectiveness of their approach compared to other benchmarks.

Al-Khafajiy et al. [15] proposed an offloading mechanism that allows fog-to-fog col-
laboration in heterogeneous fog systems, intending to minimize overall service latency.
Their mechanism utilizes a FRAMES load balancing scheme that aims to detect congested
fog devices, determine the amount of workload located at fog devices’ queues that require
offloading, based on their deadline requirement, and finally select the best fog node that
provides the minimal service latency for the selected workload. They evaluated their
proposed mechanism using a simulation. Their numerical results indicated the effective-
ness of their proposed model in terms of minimizing overall latency in comparison with
different algorithms. In a fog-cloud computing system, Gao et al. [17] investigated the
issue of dynamic computational offloading and resource allocation. In order to reduce
energy consumption and delay while having a stable queueing status, the authors for-
mulated the problem as a stochastic network optimization problem. They provided a
predictive approach to computational offloading and resource allocation that depended
on the trade-off between delay and energy use. Their approach implied that a delay re-
duction can be induced by increasing the allocation of computational resources at fog
nodes; however, because of the processing of more tasks, energy consumption increases,
and vice versa. Compared to other systems, the authors showed the importance of their
method. Mukherjee et al. [25] developed a scheduling strategy that managed to fulfil the
deadline constraint of end-user tasks, taking into account computational resources. The
deadline constraint of a given task and the availability of a neighbor, in their scheduling
policy, help to decide on whether to place a given task in the fog node queue, e.g., in
its high-priority queue or low-priority queue, or offload it to one of its neighboring fog
nodes. Their findings illustrated the efficacy of their suggested strategy as opposed to
the no offloading and random schemes. Table 1 presents a summary of relevant articles
concerning computational offloading at fog computing systems and the forms in which
these systems execute.

2.2. Dynamic Server Energy Management

Dynamic Server Energy Management has been used in the wireless local area network
and the cloud, and it has proven to be efficient in terms of improving power quality.
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Although up to the time of our study, this has not yet been implemented in the fog area. In
WLANs, the energy efficiency was enhanced by placing access points (APs) in sleep mode
or turning them off. In [27], Marsan and Meo observed that in a community of APs, getting
one AP in each community to control the system and service the incoming clients when all
others are turned off will minimize energy consumption by up to 40 percent. Furthermore,
an additional 60% of consumed energy can be saved if all APs are turned off, especially
during idle periods, e.g., at night. Li et al. [28] suggested an energy-saving method for
state transformations in which APs are not only turned on and off based on consumer
requirements, but there is also an intermediary stage that aims to reduce the frequency of
switching. The authors stated that increasing the switching frequency will shorten AP’s
service life. In addition to that, the intermediary stage will help to avoid latency and energy
overhead caused by switching on APs.

It was suggested that servers could be periodically switched off [29,30] or placed into
sleep mode [31–33] in cloud computing systems to conserve energy resources. In [29–33],
the authors examined the issue of the placement of virtual machines (VMs) to save resources
concerning energy and yet retain QoS. When underutilized data centers are detected, all
VMs are migrated to other active data centers, and these underutilized data centers are
placed in sleep mode according to [31–33] or shutdown as per [29,30]. This is intended
to reduce the consumption of energy at cloud computing systems and is called ‘VM
consolidation’. Numerous VM migration approaches were suggested to assess which
virtual machines can be migrated from overloaded data centers. Moreover, in order to
satisfy the QoS specifications of the system, a switched-off data center may also be activated
to handle the migrated VMs. According to Mahadevamangalam [31], the energy demand
for an idle data center is ~70% percent of the energy generated by a fully utilized data
center. Thus, by switching off idle-mode data centers, up to 70% of the energy consumed
can be saved in the cloud system.

2.3. Comparison of the State-of-the-Art

Table 1 provides a summary of related work in computational offloading in fog
computing systems, highlighting the architecture model, e.g., IoT-Fog means that end-user
tasks are processed locally at IoT devices or offloaded and processed at fog nodes, use of
fog cooperation, communication, the stated objectives of the work, and evaluation tools
arranged by offline or on-line offloading decisions. Offline deployment helps to predict
the best output for the system at its design stage; and online deployment mimics various
scenarios in real-world environments, involving uncertainty and unpredictable events, and
helps the system to produce a better outcome. However, most of the literature is focused
on offline deployment. Additionally, the problem of computational offloading is usually
investigated with the aim of minimizing an overall delay in the system; managing system
resources is sometimes included, especially minimizing energy consumption of IoT/end
user devices.

Managing resources in the system is much easier within offline deployment than
online deployment, especially when all the system data is known in advance. In offline
deployment, most attention has been given to addressing the energy consumed at IoT
devices compared to fog devices. Additionally, when considering energy consumed at fog
nodes, often the trade-off between delay and energy has been investigated.

In this work, we consider online deployment of computational offloading and the
potential for minimizing energy consumption at fog nodes (compared to energy consump-
tion of networks or cloud servers). Computational offloading and resource management at
fog environments has received limited attention so far. When considering computational
offloading, existing efforts utilize a fixed threshold that determines when to start offloading;
in the current work, a dynamic threshold is investigated to address its impact on the system.

3. System Modelling and Constraints

Based on the model in [1], we describe an extended fog node architecture in Section 3.1.3.
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3.1. System Model

The proposed model consists of one cloud server, ‘N’ fog nodes that are located at
roadside units (RSU), a fog controller, and M vehicle nodes. Each vehicle node connects to
the associated fog node through a wireless local area network, and the connection to the
remote cloud server is via a wide area network. A single task contains the following data,
T = {Type, Sm, Dm, TaskCPU, TaskNetwork}, where Type is the category of task being con-
sidered (e.g., urgent or non-urgent); Sm, Dm respectively represent the source application
module (from where the task is emitted) and the destination application module (where
the task is heading); TaskCPU indicates the computational complexity of the tasks, captured
in number of instructions (Million Instructions Per Second (MIPS)); TaskNetwork represents
the size of the encapsulated data in the task that needs to be transmitted across the net-
work. In iFogSim, the simulator used to model the system, tasks are represented as tuples.
A network diagram is presented in Section 3.1.1 and the associated application module is
described in Section 3.1.2.

3.1.1. Network Diagram

Figure 1 shows an illustration of the fog computing architecture, which comprises of
three layers:

• The IoT devices layer: This layer is composed of mobile vehicles—represented as
vehicle nodes, containing an actuator and a collection of sensors. Each sensor produces
a task, labelling it as “non-urgent” or “urgent”. Non-urgent tasks include data such
as current position, speed, and path. Urgent tasks require a quicker response and
can have stringent Quality of Service (QoS) requirements. This task may contain a
video stream around a moving vehicle, requiring short latency or processing. This is
necessary, for instance, in self-driving vehicles.

• Fog computing layer: This layer is comprised of a series of fog nodes and a fog
controller. Fog nodes are located in RSU that are installed alongside a road. If fog
nodes are situated in communication proximity of each other, they can interact and
share data with each other [34]. Hence, fog nodes form an ad hoc network to exchange
and share data. All fog nodes are linked to the fog controller, which is responsible for
managing fog resources and controlling fog nodes. Fog nodes process two different
types of tasks, urgent tasks are given priority and their processing results are sent
back to the vehicle. For non-urgent tasks, fog nodes process these tasks and transfer
the findings to the cloud for further analysis and storage, e.g., for retrieval by traffic
management organizations.

• Cloud computing layer: This layer is composed of a set of cloud servers, hosted
within one or more data centers. This layer is able to aggregate traffic information
across a geographical area over time.

Figure 1. Fog Computing Model.
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3.1.2. Application Module Description

Three modules: road control, global road monitor, and process priority tasks are part
of the application model. The first two modules focus on traffic light management, while
the last module is responsible for processing urgent tasks. The operations carried out by
these modules are outlined below.

• Road Monitor: This module is placed at fog nodes. When a vehicle comes into
communication proximity of a fog node, a sensor immediately sends data to the
connected fog node for analysis. This data contains the current position, the speed of
the vehicle, weather, and road conditions. After processing these data by the specified
module, the results are transmitted to a cloud server for further processing.

• Global Monitor: this module is placed at a cloud data center, receiving data that has
already been processed by the road monitor module.

• Process Priority task: this module is placed at fog nodes and is responsible for pro-
cessing priority requests from a user. The results are then sent back to the user. An
application in iFogSim is specified as a directed acyclic graph (DAG) = (M, E), where M
represents the deployed application modules M = {m1, m2, m3, . . . , mn}, e.g., process
priority task, road monitor, and global road monitor modules. ‘E’ represents a set of
edges describing data dependencies between application modules, as illustrated in
Figure 2.

Figure 2. Directed Acyclic Graph (DAG) of the application model.

3.1.3. Fog Node Architecture

The proposed fog node architecture consists of a task scheduler, best neighbor selector,
and threshold monitor (see Figure 3). Task scheduler receives tasks generated from IoT
devices within the proximity of the primary fog node and from other neighboring fog nodes.
If a fog node receives a task that is already offloaded from another neighbor, task scheduler
immediately inserts this task in the processing queue. If the task is generated from other
IoT devices, then task scheduler will check the offloading threshold and compare this
to the queuing delay at the current node. If the queueing delay reaches the offloading
threshold, then task scheduler sends this task to the best neighbor selection, which in turn
decides the best neighbor node to offload this task to. The selection of the best neighbor is
described in more detail in Section 3.2.2. Threshold monitor is responsible for dynamically
increasing and decreasing the offloading threshold for both the primary fog node and all
its neighbors, based on the workload and the availability of other neighbors: this is done
from the perspective of the primary fog node. On the one hand, it is assumed that fog
nodes are cooperative and accept tasks coming from their neighbor nodes, even if this
exceeds their threshold. On the other hand, each neighbor has its own threshold monitor,
and the primary fog node and all its neighbors may not have the same threshold value.
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In Table 2, we can see that primary fog node A set its threshold to 9 ms for itself and all
its neighbors. At the same time, primary fog node B in Table 3 set its threshold to 6 ms,
even for its neighbor fog node A; therefore, it can be seen that fog node A is congested and
will not be selected as the best neighbor for fog node B. Determining when to increase and
decrease the offloading threshold is described in Section 5.

Figure 3. Fog Node Architecture Model.

Table 2. Example of Offloading Threshold set for Fog Node A and its neighbors.

Fog Node
Type

Primary Fog
Node Neighboring Fog Nodes

Fog node A Fog node B Fog node C Fog node D Fog node E

Threshold 9 ms 9 ms 9 ms 9 ms 9 ms

Table 3. Example of Offloading Threshold set for Fog Node B and its neighbors.

Fog Node
Type

Primary Fog
Node Neighboring Fog Nodes

Fog node B Fog node A Fog node F Fog node G Fog node H

Threshold 6 ms 6 ms 6 ms 6 ms 6 ms

3.2. Types of Connections and Constraints

This section explains the relations between a vehicle and a fog node, between fog
nodes, and between fog nodes and cloud servers. Additionally, we also specify the restric-
tions that render these relations appropriate.

3.2.1. Connection between Vehicles and Fog Nodes

The interaction between a vehicle and a fog node is controlled by communication and
processing restrictions.

• Communication Constraints

Each vehicle connects to a fog node if it is located within the communications coverage
radius of that fog node, as specified in Constraint (1).

Dv, f ≤ max Coverage f ; ∀ v ∈ V, ∀ f ∈ FN (1)

where V represents all vehicles, v is a single vehicle, FN represents all fog nodes, and f is a
single fog node. Dv,f is the distance between a vehicle v and a fog node f, and calculated as:

Dv, f =

√(
Xv − X f

)2
+
(

Yv − Yf

)2
; ∀ v ∈ V, ∀ f ∈ FN (2)
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where (Xv, Yv) and (Xf, Yf) are the location of the coordinates of a vehicle v and a fog node
f, respectively. When a vehicle is within a range of several fog nodes, it will connect to the
nearest fog node. This is to decrease delay, as the propagation delay relies on the distance
between the two connected nodes, propagation delay (PD) is calculated as

PD =
Dv, f

PS
(3)

Signal propagation (PS) speed is assumed to be equivalent to the speed of light [35],
i.e., c = 3 × 108.

• Processing Constraints

To enable placement of application modules, fog nodes should have enough resources
to meet the demands of these application modules.

M

∑
i=0

RequiredCapacitymi ≤
FN

∑
j=0

AvailableCapacity f j; ∀ mi ∈ M, ∀ f j ∈ FN (4)

The required capacity of an application module and fog node is therefore captured
using CPU, RAM, and bandwidth. Constraint (4) indicates that the overall needed capabil-
ity of all application modules should not surpass the available capacity of the fog node on
which they are installed. In the iFogSim simulator, if there is no available capacity at fog
nodes, the application will be placed at cloud servers. The required CPU capacity to place
an application module is calculated as followed:

CPU = NV × (Rate× TaskCPU) (5)

where NV is the number of vehicles attached to the fog node, TaskCPU is the number of
instructions contained in each task, specified in Million Instructions Per Second (MIPS).
Rate is calculated as:

Rate =
1

Transmission Time in ms
(6)

In iFogSim, application module placement takes place at the design stage. Increasing
the number of connected vehicles at a fog node will increase the required CPU requirement,
to execute the required application modules. If the fog node does not have enough CPU
capacity, these applications will be placed in the cloud. In this case the number of connected
vehicles for each fog node is limited, as specified in Constraint (7).

V

∑
i=0

vi f j ≤ MAXvehicles; ∀ vi ∈ V, ∀ f j ∈ FN (7)

3.2.2. Connection between Fog Nodes

In this section, we describe the waiting queue for fog nodes, based on which an
offloading decision is determined.

• Fog Node Waiting Queue.

All fog nodes contain a queue for arriving tasks, served on a sequential First In First
Out (FIFO) basis. A queueing delay triggers the decision to begin offloading tasks from the
arrival queue to neighboring fog nodes [16]. To begin offloading tasks, the queue waiting
time should exceed the predetermined offloading threshold.

TQueue > O f f loadingthreshold. (8)

TQueue is calculated as

TQueue = ∑ Ti × Tprocess
i + ∑ Tz × Tprocess

z ; ∀ i, z ∈ T (9)
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where Ti and Tz are the total number of tasks of the type i and z, urgent or non-urgent,
respectively. T is all tasks and is the expected execution time of a specific task and calculated
as

Tprocess =
TaskCPU

F_MIPS× N o f PS
(10)

where F_MIPS is the total computational capacity (measured in MIPS) available at a fog
node, and ‘N of PS’ is the total number of processing units at that fog node.

• Coverage Method

Fog nodes can have overlap in their coverage area [35], as illustrated in Figure 4.

Figure 4. Overlapping Fog Nodes.

• Selecting the Best Neighboring Fog Node

Fog nodes form an ad hoc network between them to share and exchange data such
as their queueing delay. Following [16], the best neighboring fog node is selected based
on propagation delay plus queueing delay. The selection of the best neighboring fog node
begins if the offloading threshold of a fog node is reached, determined by the waiting
queue time. A fog node can communicate with neighbors in its coverage area, as specified
in Constraint (11)

dij ≤ Coverageradius; ∀ i, j ∈ FN (11)

where dij represents the distance between fog nodes i and j. In Figure 4, the neighboring
fog nodes for FOG 1 are FOG 2 and FOG 3. Additionally, the neighboring fog nodes for
FOG 3 are FOG 1, FOG 4, and FOG 5. The criterion for choosing the best neighboring fog
node is based upon the coverage radius of the primary fog node, and the sum of queueing
and propagation delay to the neighbor, where PD is calculated in (3) above.

Min ∑ TQueue + PD (12)

3.2.3. Between Fog Nodes and the Cloud

We primarily focused on sharing workload with other neighboring fog nodes in
preference to using cloud servers. This is attributed to the availability of other neighboring
fog nodes as they overlap and to get maximum utilization of the available resources in
the fog system. Task exchange between fog nodes and the cloud is only considered if the
primary fog node and all its neighbors are congested, e.g., all their offloading thresholds
reach the maximum threshold. We assume that cloud servers are much more efficient, and
their queueing latency is ignored—i.e., tasks are processed immediately upon arrival at a
cloud server [36–38]. The maximum offloading threshold is calculated as followed:

Maximum threshold = 2×
(

Transmissiondelay
cloud

)
(13)
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4. Problem Formulation

The multi-objective problem of minimizing delay, maximizing throughput, and mini-
mizing energy consumption is decomposed into two sub-problems [1]: (i) delay minimiza-
tion and throughput maximization, and (ii) energy saving.

4.1. Delay Minimization and Throughput Maximization

The response time is the time required for sending the workload from a vehicle to
the connected fog node and getting the results back. It consists of the transmission delay,
propagation delay, queuing delay, and processing delay. If task processing takes place at
the primary fog node, then the service latency is calculated as:

T = TsTv + 2 × (TTransmision
vT f + PDvT f ) + TQueue + Tprocss + TvTa (14)

where TsTv. and TvTa are the latency time between a vehicle and its sensor, and between
the vehicle and its actuator, respectively. TTransmision

vT f is transmission delay between the
vehicle and its primary fog node. It is based on the network length of the task (i.e., its data
size) and the available bandwidth, and is calculated as:

TTransmision =
Network Length o f Task

Bandwidth
(15)

If a neighboring fog node is used to carry out processing of the received task, then
latency is calculated as:

T = TsTv +2× TTransmsiion
vT f + PDvT f +2× TTransmission

f T f PD f T f ) + TQueue+TProcess TvTa (16)

If the cloud is incorporated in the processing of the task, then the latency is calculated
as:

T = TsTv +2× TTransmsiion
vT f + PDvT f +2× TTransmission

f Tc + TProcess TvTa (17)

Throughput is measured as the percentage of the processed tasks as the following.

Throughputs =
total number o f processed tasks in the system
total number o f genertaed tasks in the system

× 100 (18)

4.2. Energy Saving

Minimizing the power consumption of fog nodes brings many advantages, including
but not limited to decreasing the overall cost of electricity and reducing the environmental
impact. Two power modes are presented for each fog node: idle and busy. In the idle mode,
the fog node is not performing any processing, but the power is ON, and in the busy mode
the fog node is processing tasks and power is ON. The energy consumed is determined by
how much power the fog node consumes when processing workload and when the fog
node is idle. The total energy consumption in iFogSim is calculated [39] as:

E = PR + (TN − LUT)× LUP (19)

where PR is the previously calculated total energy consumed at this fog node, TN is the
time now, which is the time that the updateEnergyConsumption() is called when utilizing
this fog node, updateEnergyConsumption() is a method located at Fog Device class in
iFogSim, LUT is the last time this fog node has been utilized, and finally LUP is the last
used power status (for either idle or busy period). The problem of minimizing delay and
energy is formulated as followed:

Min ∑ T & ∑ E, s.t. (1), (7) and (4) hold

TQueue ≤ O f f loadingthreshold (20)
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PF + PN = 1, P F & P N = {0, 1} (21)

Equation (1) ensures the connection between a fog node and a vehicle that is located
within its coverage range. Equation (7) guarantees the number of vehicles connected to a
fog node does not exceed the threshold number. Constraint (4) ensures the placement of
the required application modules at fog nodes. Equation (20) ensures the stability of fog
node queues so that to process incoming tasks, the waiting queue time should not exceed
its threshold. In constraint (21), PF (Primary Fog), and PN (Primary Neighbor), i.e., PF = 1
and PN = 0 if the task is processed on the node where it is generated.

5. Proposed Algorithms

Two algorithms are proposed [1] called dynamic task allocation (DTA) and dynamic
resource saving (DRS)—which need to be combined. Previously, these algorithms were
applied to a static offloading threshold [1]. In the current work, we proposed a dynamic
offloading threshold, in which the offloading threshold is adapted based on the workload
and the availability of neighboring fog nodes, as described in Section 5.1.

5.1. Dynamic Offloading Threshold

The dynamic threshold is managed by the threshold monitor, which adjusts its value
periodically according to the received workload and the availability of other neighbors,
as described in Algorithm 1. The first part of the algorithm (Procedure 1) determines
whether to increase the offloading threshold of the primary node and its neighbors. This
runs each time a new task arrives at the primary fog node. It starts by checking if the
current threshold exceeds the maximum offloading threshold calculated in Equation (13),
if this occurs then the best decision for the arrival task is to be migrated to the cloud for
processing. Otherwise, it checks whether the queuing delay of the primary fog node has
reached its offloading threshold, i.e., to decide whether to process the task locally and add
it to its queue or select the best neighbor with the least queueing delay as per lines 4–16.
The current threshold is then updated using Equation (23) and Procedure 2 is called.

The second part of the algorithm (Procedure 2) determines whether the threshold
should be decreased. This runs each time a new task is received, and when the fog node
finishes the execution of a task. It starts by checking if the current threshold of the primary
fog node is larger than a threshold, as per line 25. If this occurs, then the average queueing
delay for all the neighbors is calculated as in (22) and the current threshold is updated,
as per lines 26–27. The computational complexity of the proposed algorithm is O(n).
Parameters used in this algorithm are fin Table 4.

VQ =
∑Ns

s=0 Qs
Ns

(22)

δn+1 =


δn − p, Q ≥ α, VQ < x
δn, Q ≥ α, VQ ≥ x
δn, Q < α
δn + p, Q ≥ δn, VQ ≥ δn

∀ x, α, p > 0 (23)
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Table 4. Description of Parameters used for Dynamic Threshold Algorithm.

Symbol Description

δn Refers to the initial offloading threshold and the current threshold.

VQ Average queueing delay of all the neighbors

δn+1 New offloading threshold.

x x = δn/2.

Ns All neighboring fog nodes

Qs Set of all queueing delay of all its neighbors

QNeighbours Set of all neighbors and their queueing delay

α
When the queuing delay reaches this threshold, the fog node might consider

decreasing its offloading threshold.

N The best neighbor fog node

T The arrival task

Q Queuing delay in the primary fog node

p A number bigger than zero that determines how much to modify the offloading
threshold based on the current offloading threshold

QN Queueing delay of one neighbor

Algorithm 1 Dynamic Offloading Threshold
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5.2. Dynamic Resource Saving

We used the algorithm from [1] to reduce energy consumption at fog nodes by dynam-
ically switching ON/OFF fog nodes.

6. Experimental Results

In this work, iFogSim was used to simulate the environment. It was a toolkit developed
by Gupta et al. [40], as an extension of the CloudSim simulator. It was a toolkit allowing
the modelling and simulation of IoT and fog environments and can monitor various
performance parameters, such as energy consumption, latency, response time, cost, etc.
Simulation settings values were used as in [1]. The simulation was run with one cloud
server, seven fog nodes, a fog controller, and a total of 50 vehicles. Each vehicle transmitted
two different tasks from two sensors every 3ms. In iFogSim, the workload was represented
as tuples, generated from vehicle nodes, and the following main classes were considered.
FogDevice class was used to define the main characteristics of fog nodes and cloud servers,
including RAM size, processor capacity in MIPS, uplink and downlink bandwidth, idle
and busy power. Sensor class in the FogDevice class represented the attributes of a vehicle
sensor, such as the vehicle node id to which the sensor is connected and the latency between
them. Tuple class was used to represent computational tasks. The metrices used to measure
the performance were:

• Service Latency is the average round trip time for all tasks processed in the fog
environment. Two control loops were used in the simulation: Control loop A: Sensor
-> Process Priority Tasks -> Actuator. This control loop represented the path of priority
requests. Control loop B: Sensor -> Road Monitor -> Global Road Monitor. This control
loop represented the path of non-priority requests.

• Throughput, which was measured as the percentage of processed tasks within a
time window.

• Total Energy Consumption in fog environment caused by powering on fog nodes
and processing tasks.

6.1. Performance Comparisons with Various Computation Offloading Schemes

To evaluate the effectiveness of our proposed algorithm, the comparisons with various
computation offloading schemes were provided, where the number of vehicles was set to 50
and total number of fog nodes was set to 7. Although we implemented uncertainty within
the system to mimic real world scenarios, we maintained the number of total generated
tasks, the capacity of fog nodes, and the size of the generated tasks to be identical for fair
comparison. In particular, the following four schemes were selected as benchmarks:

Benchmark 1: No Offloading Scheme (NO): in this scheme, each primary fog node
processes all the tasks without cooperation with other neighboring fog nodes.

Benchmark 2: Joint Task Offloading and Resource Allocation Scheme (JTORA) [20]: in
this scheme, if the primary fog node does not have enough computational resources that
meet the delay requirement of a task, then the task will be offloaded to a neighboring
fog node within the proximity of the primary fog node that has enough computational
resources. Any underutilized neighbor is a candidate of processing the overload, ignoring
the selection of the least utilized fog node. In this scheme, a static threshold is applied.

Benchmark 3: Workload Offloading Scheme (WO) [26]. In their work, end users offload
their computational tasks to a broker node that manages the system, the broker node will
send tasks to a fog node closest to end users (primary fog node). If the primary fog node
is congested (e.g., its queueing delay reaches 50 ms), then the broker node will offload
the task to any underutilized neighboring fog node. In this scheme, a static threshold is
determined.

Benchmark 4: Static Threshold 50ms Scheme (ST50) [1]: where offloading threshold is
set to 50 ms, upon which the primary fog node makes the decision on whether to process
the task locally or offload it to the best neighboring fog node. The four benchmarks are
compared to the proposed offloading policy called Dynamic Threshold (DT).
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6.2. Impact of the Proposed Scheme and Different Offloading Schemes on Delay and Throughputs

In Figure 5, the impact of various offloading schemes on average latency is addressed.
It can be seen in Figure 5 that delay was very high in the no offloading scheme; this was
due to a long queueing delay as tasks were not shared by the primary node with other
neighboring fog nodes, so they were waiting to be executed by the primary fog node.
The impact of allowing cooperation between fog nodes in terms of sharing workload is
shown, comparing other schemes to the no offloading scheme. Additionally, the impact of
selecting which neighbor to share the workload with was very clear when comparing the
WO, JTORA, ST50, and DT schemes. In the WO and JTORA schemes, when the primary fog
node was congested (e.g., reaching its offloading threshold), it selected any underutilized
neighbor to share the workload, rather than selecting the least utilized neighbor, as in ST50
and DT.

Figure 5. The Comparison of the Average Latency with Various Offloading Schemes.

In addition, the delay was higher in the WO scheme compared to JTORA; this was
due to a communication overhead caused by sending tasks to a broker node first, which in
turn decides whether to process these tasks at the primary fog node or any underutilized
neighbor. The least delay was achieved for both control loops when applying our proposed
algorithm, DT, compared other benchmarks.

The impact of various offloading schemes on throughput is shown in Figure 6. It can
be seen that the lowest percentage of processed task was when no offloading was applied;
this was obvious as most of the tasks were waiting in the queue to be executed by the
primary fog nodes. The impact of sharing workload with any underutilized neighbors was
very clear in WO and JTORA schemes, resulting in processing almost 90.88 and 91.06% of
tasks, respectively, compared to 94.56 and 95.67% in ST50 and DT schemes, respectively.

Figure 6. The Comparison of the Throughputs with Various Offloading Schemes.

6.3. Impact of Increasing Number of Vehicles on Delay and Throughputs with Different
Offloading Schemes

The impact of increasing the number of vehicles was to investigate how the delay was
maintained as we increased the workload in the online system. In this experiment, the
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total number of fog nodes was set to seven and the number of vehicles ranged from 4 to
48. In Figure 7, we can observe that when the number of vehicles was small, between 4
to 12 vehicles, the DT, ST50 and JTORA schemes exhibited an identical pattern. This was
because the generated workloads were small, resulting in the primary fog nodes processing
most of these workloads themselves. When the number of vehicles increased, all three
approaches, ST50, JTORA, and WO, showed a dramatic increase in delay compared to
DT, which displayed a stable pattern with a slight increase in delay that increased as the
number of vehicles increased.

Figure 7. Impact of Increasing Number of Vehicles on Average Delay with Different Offload-
ing Schemes.

The reason for the huge increase in delay for ST50, JTORA, and WO was that increasing
the workload made the primary fog nodes almost reach their offloading threshold (e.g.,
50 ms), but not always exceeding it, resulting in the primary nodes processing most of the
workload with little help from neighboring nodes. The impact of selecting the best neighbor
to share the workload becomes clear when the number of vehicles is high (i.e., 28 vehicles).
The overall results show the effectiveness of the DT scheme even when increasing the
number of vehicles.

The impact on throughput was also investigated while increasing the number of
vehicles. When there was a small number of vehicles, ranging from 4 to 12, all the offloading
schemes operated in a similar way; this was because the workload was minimal and can be
processed at the primary fog nodes without using capacity of neighbors. When the number
of vehicles was increased, DT achieved the highest throughput, with ~96% compared
to other schemes, which accomplished 94.5, 91, and 90% for ST50, JTORA, and WO,
respectively.

6.4. Impact of Increasing Number of Neighbors on Delay, Throughputs, and Energy with Various
Offloading Schemes

The impact of increasing the number of neighbors was carried out to investigate its
impact on overall system performance and to find the optimal number of neighbors that
are required. From Figure 8, we observe that as the number of neighbors was increased,
the delay decreased for both control loops. However, when a certain number of neighbors
was reached (e.g., five neighbors), the delay remained almost stable despite adding further
neighbors. This means that the optimal number that is required to achieve minimum delay
was reached, and no additional neighbors were needed to save energy consumption of the
fog paradigm. The reason for the stable pattern was attributed to the workload, as most of
the generated tasks were processed.
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Figure 8. Impact of Increasing Number of Neighbors on Average Delay in Control Loops with Various Offloading Schemes.

We note that DT accomplished the least delay for both control loops as the number of
neighbors was increased, compared to the other schemes: ST50, JTORA, and WO. With
three neighbors, DT decreased delay by 10.80, 13.38, and 15.29% compared to ST50, JTORA,
and WO, respectively. When the number of neighbors was five, the DT scheme reduced
delay by 55.94, 70.64, and 72.55% in comparison to ST50, JTORA, and WO, respectively.

Increasing the number of neighbors on throughput showed a similar pattern as increas-
ing the number of neighbors to decrease delay. As the number of neighbors increased, the
percentage of processed tasks increased, until a certain number of neighbors was achieved
(e.g., five neighbors), after which the pattern remained almost stable. The reason behind
the stable pattern was due to the workload, as most of the generated tasks were processed.
The reason why the percentage of processed tasks did not reach 100% was that this study
implemented an online dynamic system, therefore vehicles were still generating tasks until
the end of the simulation; 5% of the total generated tasks were not processed because they
were newly generated.

In terms of the comparison with other schemes, DT improved throughputs by 0.10%
when the number of neighbors was three, 1.16% when the number of neighbors was
four, and 1.11% when the number of neighbors was five, six, seven, eight, nine, and ten,
compared to ST50 scheme. When the optimal number of five neighboring fog nodes was
reached, the DT processed 95.66% of the total generated tasks, while ST50, JTORA, and
WO processed 4.55, 91.06, and 90.88%, respectively. The DT scheme improves throughput
compared to other stated schemes as the number of neighboring fog nodes was increased.

The impact of increasing the number of neighbors on energy consumption was investi-
gated with various offloading schemes, as shown in Figure 9. When increasing the number
of neighbors, the energy consumption in the system was increased because of operating
additional fog nodes. Addressing the impact of increasing the number of neighbors helped
to find the optimal number of neighboring fog nodes that was necessary to achieve opti-
mum results. When having five neighbors, the difference between the energy consumed
with and without DEC was very low; then as we increased the number of neighbors, the
difference started to increase. In the no offloading scheme, the impact of utilizing DEC can
be observed, i.e., reducing the wastage of energy by 55.72% when the number of neighbors
was three, and up to 80.74% when the number of neighbors was ten. This method can
also be applied to ST50 and DT, as DEC saved up to 38.58 and 32.16% of energy for each
scheme, respectively, when the number of neighbors was ten. When comparing ST50 to DT
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after applying DEC, more energy was consumed with DT. This was because of the nature
of this scheme, as more tasks were processed in DT than ST50, so the energy consumed by
processing these tasks caused an increase in overall energy consumption in the system.

Figure 9. Impact of Increasing Number of Neighbors on Energy Consumption with Various Offloading Schemes.

7. Conclusions

In this paper, we studied the problem of computational offloading and resource man-
agement in online fog computing systems and proposed a dynamic offloading threshold
that allows a fog node to adjust its threshold dynamically, with a combination of two
efficient and effective algorithms: dynamic task scheduling (DTS) and dynamic energy
control (DEC). Our proposed scheme exploited the available resources of nearby fog nodes
and the remote cloud, selecting the best candidate to handle the overloaded tasks. More-
over, our proposed approach made dynamic decisions as to when to increase/decrease the
offloading threshold, which in turn determined whether the incoming task was processed
locally at the primary fog node or offload to the best neighbor, based on the states of the fog
node’s resources, and its neighbors. Therefore, once the primary fog node was considered
congested (e.g., reaching its offloading threshold), it tended to migrate its workloads to the
best neighbor.

The performance of the proposed approach was evaluated in terms of average round
trip time, throughputs and total energy consumed at fog nodes. In addition to that perfor-
mance comparisons with more recent offloading schemes were presented to validate the
efficiency of the proposed solution. Furthermore, the effect of increasing the number of
vehicles was addressed, this was to analyze the performance of the proposed algorithm in
cases where traffic congestion occurred in a specific region. Along with that, the impact of
the increasing number of neighbors was investigated to examine how the system would
perform in situations where there were more available neighbors willing to help. Various
numerical results were included, and the performance evaluations were presented to illus-
trate the effectiveness of the proposed scheme and demonstrate the superior performance
over existing schemes.

For future work, one can consider the impact of latency and energy overhead caused
by switching on/off fog nodes. Moreover, considering task offloading in an environment
that takes user mobility into account. An interesting direction for future research is to
examine how latency, energy consumption, security could be optimized simultaneously.
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