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Abstract: Radar detection and track building performance is an essential part of a radar system.
A high realized coherent integration gain often contributes to an improved performance. This is
essential to the successful detection and tracking of weak moving targets. However, the actual
movement within the coherent processing interval can introduce range walk effects. The processing
will then result in range and Doppler frequency resolutions that become finer than a single moving
point scatterer’s spread over range and—often not considered—over Doppler frequency. In particular
for a wide instantaneous bandwidth, the impact on the achievable integration gain can become severe
already for a constant effective velocity. Therefore, high desired integration gains as required in
passive radar are not easily achieved against relatively fast moving targets. The main intent of this
article is to present the movement effects on a classical range-Doppler analysis to give an insight
on the achievable performance and to quantify otherwise appearing degradations. Interestingly, a
classical analysis of experimental datasets evaluated from a DVB-T based passive radar measurement
campaign even resolved the fluctuation of a target response within the instantaneously processed
bandwidth. The findings strengthen the need for advanced processing methods that can at least
partly address individual implications of fast moving targets in real-time applications properly.

Keywords: range walk; Doppler processing; Doppler spread; range compression; integration gain

1. Introduction

The capability of a radar to track a target depends strongly on its ability to detect
moving targets with good signal level margins. More energy retrieved from an object
usually comes along with a better detection performance. The range-Doppler analysis
enables hereby the simultaneous determination of range and target velocity that is ef-
fectively measurable from the radar node. This information is then used to localise the
target and to estimate further movements to establish a track. Despite most objects to be
detected are actually moving, most radar processing schemes assume inherently a constant
effective velocity and that the target movement can be fully addressed by a single Doppler
frequency displacement. As long as this is a valid model, this principle will enhance
the radar detection and tracking performance against moving objects. This assumption
is obviously limited by range migration and a closer analysis turns out that in fact the
time-bandwidth product is crucial to define its boundary [1]. The deviation from this
‘narrowband’ model becomes more relevant the faster an object moves in relation to the
propagation speed c and the higher the desired coherent integration gain becomes. One
implication is that the achieved resolutions will be increased against stationary objects in
case of a high time-bandwidth product. If this is not properly considered, it will however
become more uncertain against fast moving objects and the occurring range and Doppler
frequency spread will affect the overall detection performance. This will already be the
case for a purely linear movement. A resolved Doppler frequency difference within a wide
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instantaneously processed signal bandwidth may then cause a quite severe bandwidth-
dependent impact that it is no longer an extension over some range cells. The principle
challenge of Doppler dispersion—which describes the bandwidth-dependent Doppler
influence and addresses thereby the range migration—has been studied extensively in the
sonar domain in the 1950s and 1960s. It gave the motivation due to a comparably low
sound propagation speed cs ≪ cem for integration gains as early as 30 dB, see e.g., [2,3].
Even though the electromagnetic wave propagation speed c = cem is much higher, the same
challenge will arise similarly in the case of much faster velocities or in the case of higher
time-bandwidth products even for comparable speeds. The task of proper compensation
has first been addressed in radar in the SAR domain for ground moving target indication.
This application was focused to compensate for cross-range blurring in the Doppler domain
with a bandwidth-dependent interpolation approach. Thereby, the Keystone transforma-
tion has been introduced to compensate a batched/symbol-wise processing of slow ground
moving targets with e.g., up to 14 m/s using a processed sample count around 215 = 45 dB.
This has been published in 1997 [4] or, respectively, in 1999 [5]. By the same authors, the
application to coherent integration has been published [6] in 2007 that is one method for
compensation approaches. High coherent integration gain detection is nowadays a particu-
lar challenge of passive radar applications. The inherently bistatic configuration typically
suffers from low effectively radiated powers towards the upper hemisphere in which com-
mon aerial targets are located, comparatively low receive antenna gains and strong direct
path interference (DPI) levels directly received from the transmitter(s). This is worse in the
case of continuous broadcast emissions with a high instantaneous signal bandwidth Beff.
Even with shielding towards the transmitter, the dynamic signal level range can easily
exceed 80 dB above the averaged reflected target levels. Some exemplary narrowband
performance estimations for passive bistatic radar systems are given in [7] et al. Common
emitter waveforms are digital broadcasting channels like DAB, DVB-T or DVB-T2 based on
orthogonal frequency-division multiplexing (OFDM) with an instantaneous bandwidth up
to 7.77 MHz at UHF frequencies. More advanced illumination sources include also radar
emissions and originally non-classical radar waveforms [8]. The high DPI and stationary
clutter levels 20 to 25 dB over the noise level are typically addressed by either the signal
orthogonality of OFDM [9,10], particular orthogonal MIMO waveforms [11] or e.g., ECA
cancellation [12]. Since the actual detection process requires some threshold margin to
eliminate false alarms, the common batched range-Doppler implementation [8] has to
provide the remaining 60 to 70 dB for target detection by coherent pulse compression in its
range-Doppler processing.

This publication is focused on the effects that arise particularly for relatively fast
moving targets starting with the particular case of a constant effective velocity. It thereby
includes a fundamental analysis of a high integration based detection capability that aims
to highlight the influence of large instantaneously processed bandwidths. This leads to a
better understanding of mostly degradations and their causes in particular if high instan-
taneous bandwidth waveforms are considered. After an overview about the stationary
principle of batched range-Doppler processing in bistatic radars and the relation of the
coherent integration gain to the time-bandwidth product are given (Section 2), the limits
for not anymore stationary considerations are introduced (Section 2.5). This is followed
by examples of the processing with an exceeded limit and a modelling of the Doppler
effect in its original scaling relations (Section 3). After this, the implication of mainly a
constant effective velocity in a common batched pulse compression implementation is
shown (Section 4) and the linear movement impacts are quantified (Section 5). The article
proceeds with a discussion of time-scale analysis compensation approaches under practical
considerations of target motion and in relation to the results shown (Section 6). Although
this analysis tries to be as generic as possible, most effects are given in the context of cyclic
prefix OFDM waveforms and findings from DVB-T based passive radar measurement sets.
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2. Challenges of Pulse Compression with High Time-Bandwidth Products
2.1. Stationary Pulse Compression Principle

Modern radars are typically very agile and can often make use of bandwidths which
enable resolutions smaller or equal to the target dimensions. By adapting pulse and radia-
tion parameters, different radar scenarios can be addressed individually [13]. In order to
quantify the impact of the time-bandwidth product, a definition of these two operands is
necessary. This enables a clear differentiation between the covered and effective timespan,
respective bandwidths and sampling frequency relations. In this section, the stationary
aspects of a range-Doppler analysis shall be recapitulated shortly before the target move-
ment induced effects are introduced. A classical batched range-Doppler processing scheme
performs thereby an inherent pulse compression by correlation similar to pulse-Doppler
radars [14]. This principle is used to reduce the peak power of short pulses while a similar
range resolution capability and covered range can be achieved [13].

During the pulse compression, the received PEP power Prx(t) gets integrated within
the coherent processing interval (CPI). The actual integration timespan Tint will depend on
the waveform and it can be smaller or equal to the CPI duration Tcov as it is shown for a
pulsed waveform in Figure 1. This gives a relation of

Tint ≤ Tcov. (1)

t

fft

fu

fc

fl

0 Tu (Tu + ∆) Tcov

fif

fs

0 3 Tu

Beff

Tint

Figure 1. Spectrogram of an emitted pulsed waveform with its T-B characteristics, RF carrier fc,
lower fl, upper fu, baseband intermediate fif and quadrature sampling frequency fs.

The received energy E =
∫ Tint

0 Prx(t)dt will hereby be collected over the timespan Tint.
In the case of additive white noise with a frequency independent noise power per unit
bandwidth N0, the maximal target return signal-to-noise ratio (SNR) [13,15] will only be
worsen by the receiver noise factor F to

SNR ≤ E
N0 F

. (2)

In the case of AWGN and low ambiguities, the inequation in (2) becomes maximal.
It can however be preprocessed by pre-whitening for coloured noise [15]. Due to the
inherent integration stage, actual energy levels are considered (Ws = Joule). A better SNR
will obviously lead to an improved detection capability in the presence of noise. If the
averaged collected energy is approximated by E ≈ Prx,avg Tint and (2) is formulated with
noise energy N ≈ N0 Bnoise / Beff, it will result in the fundamental relation

SNR ≤
Prx,avg

N0 F Bnoise
Tint Beff︸ ︷︷ ︸

= Gint,desired

. (3)

The involved bandwidth definitions of the waveform may however differ. The occu-
pied bandwidth Bocc will describe the maximum range resolution in a stationary channel.
The effective instantaneous bandwidth Beff contributes to the integration gain against noise
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and it sets the dynamic range extent below the averaged noise level. The example of a
chirped waveform has been illustrated in Figure 2. It has a comparatively low Beff but
it measures a large bandwidth Bocc = fu − fl over the pulse duration Tu. This relation
yields Beff ≤ Bocc. Further, the bandwidth dependency in (3) will vanish if Bnoise ≈ Beff but
only in the case that a stationary channel and target response can be considered. This be-
comes particularly important in a non-stationary channel with moving targets (Section 2.5).

t

fft

fu

fl

fc

0 Tu (Tu + ∆) Tcov

Beff
Bocc

0 3 Tu

Bocc Beff

Tint

Figure 2. Occupied bandwidth Bocc ≈ fu − fl vs. effective instantaneous bandwidth Beff of an
exemplary LFM waveform that is measurable before chirping or after dechirp-on-receive operation.

2.2. Batched Processing Scheme Implementation for Range-Doppler Analysis

The common implementation of the range-Doppler analysis inherits the pulse com-
pression principle. This fundamental batched processing approach has been illustrated
in Figure 3 for a cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) wave-
form. It uses short blocks with a duration Tb that are cut from the received stream (i.e., pulses).
Theses blocks are then piecewise correlated with a reference pulse over the fast-time (ft)
domain to obtain the measured range rbi. This step is followed by a Fourier transform
over n processed blocks ci in the slow-time (st) domain. The Doppler frequency fd is
thereby evaluated over the timespan Tcov at each individual range bin. Because the pulse
compression is performed over the fast-time pulse duration that represents the range, it is
also called range compression. This approach will in the case of a CP-OFDM waveform
further profit from signal orthogonality but the block duration has to match the symbol
duration Tb = Tu [9,10]. Instead of a direct cross-ambiguity function evaluation [13],
this approach performs a short-term correlation over the short blocks plus an additional
Doppler frequency analysis. Common software-defined radars will further work on digital
represented and discretely sampled bins of the actual received signal. The quadrature
sampling rate fs has then to be

fs ≥ Beff. (4)

Obviously, a waveform with a high instantaneous effective bandwidth Beff will then
require a higher quadrature sampling rate fs as expressed in Equation (4). This gives
a bandwidth implication that is mainly determined by the implementation architecture
and will be important later. This batched approach provides a convenient way for fast
time (ft) slow-time (st) domain range-Doppler analysis. The scheme can thereby make
use of efficiently implementable fast Fourier transform (FFT) algorithms to achieve a cost
function of O(n log n) for arbitrary n [16]. Hereby, also the range compression can be
performed in the frequency domain [8] as it has been illustrated in Figure 3. The scheme
benefits from a significant increase in processing speed [14,17] and it is similarly used
for FMCW pulse compression radar [13] with chirped waveforms—like the one shown
in Figure 2—but the evaluated timespan Tcov will be in this case slightly decreased by the
ramp duration Tu. The typical dechirp-on-receive approach also turns out to be a closely
approximated matched filter processing [18]. It inherently assumes a piecewise stationary
fixed target range and a constant effective velocity over the timespan Tcov. The target
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movement is partly addressed in this processing scheme. An approximation is hereby
a constant phase over the block duration Tb that is introduced by the analysed Doppler
frequency fd [9] and, respectively, a stationary channel within Bocc e.g., during a chirp. If
all the approximations are valid to consider, the inherent matched filter design will follow
the stationary energy relation of Equation (3). This will be evaluated in the discretised
and ambiguously processed range rbi and Doppler frequency fd domain. Its particular
implementation specific movement implications will be discussed in Section 4.

Tcov

Tb

Figure 3. Batched range-Doppler processing principle to build a fast-time (ft) and slow-time (st) do-
main and to speed-up the radar processing of a CP-OFDM waveform with a block duration Tb = Tu.

2.3. Evolution of Radar Waveforms and Reasons for High Instantaneous Time-Bandwidth Products

In order to cope with different radar measurement tasks, the processed time-bandwidth
parameters of the waveform and the modulation design can be pushed. Since it is strongly
coupled to waveform design, this part shall not be addressed in detail. In general, large
time-bandwidth products come along with high resolution parameters and large possible
coherent integration gains. Both can be desired for several reasons. A high range resolution
and accuracy can be achieved with a high bandwidth (Bocc +) and it is beneficial for an
improved positioning and localisation capability, especially in multistatic configurations.
The maximal achievable range resolution in a stationary channel with propagation speed c
and without parametric super-resolution can in general be approximated by

δrres ≥
c

2 Bocc
=

c
2 ( fu − fl)

. (5)

In order to support velocity based tracking and particular aspects of object related
classification, a better velocity or micro-Doppler resolution (Tcov +) can be desired. The
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smallest resolution in the analysed Doppler frequency δ fd can be estimated [13] directly
from the processed CPI duration as

δ fd ≥
1

Tcov
. (6)

The third ambition can be a large instant dynamic range from the highest to the
lowest signal level whereby the waveforms may have a thumbtack or pin head shaped
auto-correlation property with a plateau depending on the signal structure [10,13]. The
desired coherent integration gain from relation (3) is usually defined as the integration
time-effective bandwidth product to

Gint,desired = Tint Beff. (7)

This will enable a processing approximately down to Tint Beff below the noise level. A
high instantaneous effective bandwidth can thereby pose particular challenges in the radar
signal processing chain with respect to linearity, beamforming, hardware stability and delay
realisation. With respect to relatively high desired integration gains, the target movement
becomes an increasingly considerable factor (Section 2.5). The processing might then need
to consider the Doppler influence in more detail (Section 3) and treat it in its actual scaling
relation (Section 6.3). In particular for high instantaneous bandwidth waveforms like
OFDM the movement impact can be quite strong and it is often underestimated. This is
important in for example a passive radar view of coherent multi-channel systems that
include ‘neighbour channels’ in the scenery in their processing. If the increase is high and
the Doppler effect is not treated appropriately, an uncompensated coherent range-Doppler
processing will lead to the bandwidth paradox (Section 5.4). Despite more spectrally
distributed power was available for an increased Beff, an integration would worsen the
result if the stationary assumption (Section 2.5) is violated. Similar effects can be observed
for increased covered timespans Tcov. These particular aspects of pulse compression radar
and a closer look on the target returns shall be addressed in the following sections.

2.4. Bistatic Geometry Relations on the Effectively Measurable Velocity

An important movement consideration is that the target speed |~vtrg|will only be partly
effective against a single sensor. This has to be considered in for example a typical passive
radar (PR) scenario that is at least bistatic because it is based on the illumination by a
third party transmitter in the radar scenery. Although most PR systems are multistatic,
the fundamental issues can often be broken down to their bistatic relation. This has been
illustrated in Figure 4.

The general situation present in a bistatic passive radar is that it inherits a weak
illumination of the target, a strong direct path interference (DPI) at the receiver node and
challenging waveforms. A large instant dynamic range and high coherent integration gain
are therefore required for target detection. The bistatic range towards the target can be
defined as Rbi = (R1 + R2 − L) whereby the baseline L in each transmitter and receiver
pair can easily exceed 30 km. The effective velocity veff that is directly measurable at the
receiver node will be smaller or equal to the target speed |~vtrg|. This relates in a bistatic
geometry to the bistatic angle β and velocity angle δ relative to β bisector as [19]

veff = vtrg cos δ cos
β

2
. (8)

A time-dependent bistatic velocity v(t) = veff(t) can hereby include an acceleration
of the effective velocity that is geometry-induced by the relative target position along its
trajectory or due to an actual target acceleration. Common processing approaches assume
a constant effective velocity. This case will be treated in more detail in the following and it
will later be related to practical considerations.
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TX RX
L = 50 km

vtrg = 800 km/h

R1

R2
β

δ

Figure 4. Bistatic setup with a baseline of L = 50 km between a transmitter (TX) and receiver (RX) pair
with bistatic angle β and a target moving in direction δ at a speed of |~vtrg| = 800 km/h over ground.

2.5. Limits Introduced by the Bistatic Velocity and the Time-Bandwidth Product

As it has been pointed out previously, the shown fundamental axioms are based on the
assumption of a piecewise stationary channel. This view is obviously limited for moving
target detection. Most classical range-Doppler processing schemes are however still based
on the piecewise assumption of a single Doppler frequency displacement, a constant
effective velocity and a fixed bistatic range. The movement is thereby implicitly treated by
just its Gross Doppler frequency displacement fD of the RF carrier fc and at a single time
delay. This is equally valid for the common batched implementation scheme of a range-
Doppler analysis that has been described in Section 2.2. The pulse compressed energy
retrieved by matched filtering will hereby be independent of the processed bandwidth
according to Equation (3) as long as the channel with the target return can be considered
stationary (Section 2.1). The common and often called ‘narrowband’ boundary for classical
range-Doppler processing is generically defined to confine a point scatterer movement to
one range cell with propagation speed c as [1]

2 veff
c
� 1

Tcov B
. (9)

The bandwidth B in Equation (9) has thereby not been clearly defined yet. It can be
either the occupied bandwidth Bocc or the quadrature sampling rate fs ≥ Beff (4) at which
the sampled data is represented. More precisely expressed, the constant velocity leads to
the two following constrains. First, the analysed frequency resolution δ fd ≈ T−1

cov shall be
larger than 2 veff

c ( fu − fl) to confine the Doppler extent. Second, the bistatic range change
of veff Tcov shall be smaller c / (2 fs) to limit the extent to the range cell spacing δrbi (∝ f−1

s ).
If both conditions are combined, this will give an upper boundary on Gint. The stationary
boundary for a linear movement that is valid for fs ≥ Bocc then yields

Gint ≤ Tint Beff ≤ Tcov Bocc
!
≤ c

2 veff
≤ TBmax ≈ Tcov fs. (10)

The boundary shown in Equation (10) could be slightly relaxed if the sampling rate
is within the range Beff ≤ fs ≤ Bocc from Equation (4) for low Beff since the instantaneous
Doppler spread is ∝ Beff and will tend to ∆ fD acc. to Equation (15) on every extended range
bin if Beff → Bocc.

For the next considerations, the wide instantaneous bandwidth of a broadcast OFDM
waveform will be considered so that the approximation Bocc ≈ ( fu − fl) ≈ Beff ≈ fs
is fulfilled. The explicit key parameters computed for a fixed time-bandwidth prod-
uct with the speed of light in vacuum c = cem and a constant effective velocity of
veff = 700 km/h = 194 m/s are shown in Table 1. It contains various sets of timespans
and bandwidths with their maximal achievable range resolutions and analysed frequency
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accuracies for pulse compression. Hereby, all sets have a maximum integration gain from
Equation (7)

Gint ≤ Tint Beff ≤ TBmax = 58.8 dB. (11)

Related to the values expressed in Table 1, the integration time will roughly be limited
to 50 ms before range walk occurs if a maximal range resolution down to 10 m is achieved.
However, the pairs cannot be treated and compared independently of the channel and
target response. In particular, if the resolution gets smaller than the target dimension, it will
likely introduce bandwidth-dependent and RCS modelling related effects so that each set
might perform differently. This effect can even be present within the 8 MHz bandwidth of a
single DVB-T channel as it will be shown in Section 5.5 for actual target return measurement
examples. The coherent processing of a ‘high resolution mode’ has been further discussed
in e.g., [11,20]. The consideration of a fixed (resolution based) integration limit from
Equation (10) seems at first plausible but it might be required to exceed this limit set on
the maximum time-bandwidth product. This can be desired either because not all objects
are moving with maximum speed, a finer ground resolution is desired or simply a higher
coherent integration gain is needed for the detection of small radar cross sections or to
achieve an increased coverage. Thereby it is important that a difference of solely 6 dB
relates to a factor of

√
2 in covered monostatic range. This difference can even be a factor

of up to 2 in one-sided bistatic range because the inequation R2
1 R2

2 ≤ (R1 + R2)
4 is valid in

the oval of Cassini power relation [19]. This raises the question of improving this limitation
and which effects, loss expectations and further considerations need to be kept in mind for
finer resolutions or faster moving objects. If more than 59 dB as related to Table 1 shall be
achieved in the case of veff = 700 km/h, then a loss will have to be considered without a
properly compensated processing. This will happen equally if the bandwidth or time is
increased or e.g., a processing fixed to 60 dB is used.

Table 1. Different sets before range walk, veff = 700 km/h, c = cem, fs ≈ Bocc and TBmax = 58.8 dB.

Time Bandwidth Max. Resolution Frequency TBmax
Tcov/s Bocc/MHz δrbi/m δ fd/Hz dB

1 0.77 194.8 1 58.8
0.5 1.50 100.0 2 58.8
0.1 7.70 19.5 10 58.8

0.05 15.40 9.7 20 58.8
0.02 37.93 4.0 50 58.8
0.01 75.86 2.0 100 58.8

7.59 × 10−4 1000 0.15 1318 58.8

In particular bistatic passive radar applications often require an even higher coherent
integration gain to enable a reliable target detection at bistatic ranges of multiple tenfold
kilometres. Since most targets are moving, this boundary becomes highly relevant for effec-
tive velocities larger than 200 to 300 km/h and desired integration gains that exceed 65 dB.
If the target changes its bistatic range within the duration of the CPI significantly and
this violates Equation (9), the range walk effect will occur but it will then not only cover
some range cells for common effective bandwidths Beff of broadcast emissions (Section 3)
although it is primarily considered as range migration in standard radar definitions [21].
An actual extended target can further introduce a distribution over several range cells [11]
for a high resolution waveform if the target dimension is larger than the resolved bistatic
range cell area (∝ f−1

s ). The main implication is that a point scatterer return will not be
fixed to one range cell and further a Doppler spread may occur even for a constant effective
velocity so that a target track might be lost. This is shown in the next Section 3 and its
impact will be quantified in Sections 4 and 5.



Sensors 2021, 21, 2492 9 of 27

3. Doppler Effect Modelled in Its Scaling Relation
3.1. Exemplary Processed Targets from Measurement Campaign Datasets

In the following, target responses from actual passive radar (PR) datasets are shown.
The examples were intentionally processed with a ‘too high’ time-bandwidth product that
exceeds the boundary defined in Equation (9) to highlight the involved effects. Thereby,
an orthogonal frequency-division multiplexing (OFDM) waveform obtained from a single
channel DVB-T in the UHF frequency range was used. This digital broadcast emission
inherits both aspects of a high desired integration gain with an integration time-effective
bandwidth product according to Equation (7). It provides a continuous illumination
and it has a high instantaneous effective bandwidth of Beff ≈ Bocc = 7.61 MHz. The
waveform also features good auto-correlation properties so that the 8k mode symbol
duration Tu = 896µs has been used as block duration Tb of the batched processing scheme.
The illustrated bistatic sampling is at 33 m per cell. All intensity levels in the bistatic
range-Doppler diagrams are plot on a logarithmic scale.

The target return shown in Figure 5 had been accelerated and then moved with
an approximately constant bistatic velocity of about 270 km/h in the processed interval.
It has intentionally been processed with a covered timespan Tcov times effective band-
width Beff equivalent to 68 dB. Thereby, the return becomes extended by ∆ fD = 4.5 Hz in
Doppler (4 cells) and by 200 m in bistatic range (6 cells). The effective velocity corresponds
to a bistatic range walk of 134.40 m (4 cells) within the covered timespan Tcov = 896 ms. The
two additional range cells could fit to a resolved target extension with an assumed length
of 30 m (≤2 cells) but the extension over ∆ fD is contradicting to its linear movement. The
energy becomes spread over 20 cells (13 dB), which is much more than just 6 (= 4 + 2) bins
if a pure extension in range was considered. This ‘rectangular spread’ can be explained by
the Doppler frequency difference ∆ fD that is resolved within the signal bandwidth. This
particular effect of a linear movement will be analysed in the next Section 3.2. Another
implication of the extended and fluctuating target return is well visible in the lower right
of Figure 5, another track head detached from the actual target at 19.6 km that was likely
caused by the sudden motion change and the spread influence.

Figure 5. Target tracked with an approximately constant effective bistatic velocity v ≈ 270 km/h and Tcov = 896 ms
with Tint = 717 ms, spread fluctuations led to a detached track visible on the right side.
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(a) (b)

Figure 6. Strong departing target return with a segment of constant effective bistatic velocity and slight acceleration
processed with increased Tint = 1.79 s and Tcov = 2.24 s with 1/4 as guard interval fraction. (a) Constant bistatic
veff ≈ −220 km/h. (b) Slightly accelerated at veff ≈ −225 km/h.

An additional example of a strong return response from a close-by target is shown
in Figure 6a. It has departed with a constant bistatic velocity within an even more extended
duration of Tcov = 2.24 s. Contrary, in Figure 6b a small acceleration is visible at the start
of the integration. The target return remained hereby in both cases almost uniform in
intensity over the covered Tcov and occupied Bocc at its close bistatic range since it did not
fluctuate and it was quite strong not to be overlapped by noise.

3.2. Effect of a Constant Effective Velocity on an Instantaneous Broadband Waveform Processing

Matched filter based processing concepts are independent of the signal bandwidth
only for stationary considerations as shown in (3) before. Thereby it can be regarded an
optimal filter in the presence of preferable white noise [15]. This consideration is limited
for moving objects due to the fact that these do not always result in temporary stationary
signals. In order to explain the counterintuitive finding of an additional extent over the
Doppler frequency and the surface spread, the Doppler effect has to be analysed more
in-depth. In a non-stationary situation, it becomes necessary to model the Doppler effect in
its original scaling [22,23] relations. This is an actual dilation or compression of a scattered
signal [1,3]. It has hereby to be taken into account that the Doppler effect occurs for radar a
second time at the scattering point in contrast to an emission from a moving object. Since
the classical processing in range-Doppler follows the Fourier relations in the frequency
domain, the laws of Fourier transform may be used. This consideration follows the time
scaling property of the Fourier transform (FT) so that it is equal to frequency compression
or dilation of the received signal x(t),

x(st) c s 1
|s| X

(
f
s

)
(12)

with a time scale factor s expressed for a target velocity v = const [1,23] as

s =

(√
c− v
c + v

)2

=
c− v
c + v

. (13)
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The scaling relation in Equation (13) is then the non-relativistic case for electromagnetic
waves with an effective velocity v equal to an object observed from its heading that moves
with v (i.e., cos ϕ = 0 [23]) as long as the actual |v| � c so that just longitudinal Doppler
scaling is treated. The scale factor s is in the order of 1± 10−8 to 1± 1.5× 10−6 in case
of effective velocities between 5 km/h and 800 km/h for electromagnetic waves with a
propagation speed c in vacuum (c = cem = c0) or, respectively, air. Due to these small scale
factors, the change in peak intensity caused by motion [22], which is considered as 1/|s| in
Equation (12), can usually be neglected. The Doppler frequency displacement fD of only
a single RF carrier scaled at fc will relate to the narrowband approximation of a single
Doppler frequency shift by

fD(v, fc) = (1− s) fc ≈
2 v
c

fc. (14)

For all sub-carriers fc ∈ [ fl, fu] within Bocc, this leads to a Doppler frequency spread

∆ fD = |s− 1| ( fu − fl) ≈
2 |v(t)|

c
( fu − fl)︸ ︷︷ ︸

Bocc

. (15)

The bandwidth-dependent scaling relation shown in Equation (15) becomes resolved
for a fine analysed frequency resolution δ fd and a tiny range cell spacing δrbi of the range-
Doppler processing. An object that moves linearly from r1 to r2 will then result in a type
of uniform rectangular spread. Particularly, if a broadband waveform—similar to Figure 1—
is considered that occupies a wide bandwidth Beff ≈ Bocc instantaneously, the Doppler
frequency spread ∆ fD will appear at every passed range cell. This can simply be explained by
the fact that the Doppler frequency difference between the lower fl and the upper frequency
carrier fu (Figure 1) becomes resolved. Figure 7 contains an illustration of this effect for a
point scatterer return that extends in a uniform spread for a high time-bandwidth product.

The covered timespan Tcov will thereby determine the extent in range and the occupied
bandwidth the amount of ∆ fD. It is noteworthy that this counter-intuitive spread over
Doppler frequency is not another effect. According to Equation (12), it is rather an identical
consideration of a moving target that changes its bistatic range linearly over the coherent
processing interval. Its particular impact (Section 5) on classical range-Doppler processing
can become quite severe and is often underestimated. Sometimes this spread is wrongly
associated to an assumed change of the effective velocity. The particular impact of this
bandwidth-dependent effect on a classical processing scheme will be addressed in Section 5.

fd

rbi

r1

r2

fD( fl) fD( fu)

Tcov

Bocc

∆ fD

Figure 7. Constantly moving point scatterer extended uniformly in range-Doppler (Beff ≈ Bocc).

3.3. Doppler as an Instantaneous Relation

It is important to mention that the Doppler scaling is actually based on the instanta-
neous effective velocity veff(t0) = 0.5 d Rbi/dt |t=t0 that is a differential relation [1] and may
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not be static. This can be derived from signal phase [13] caused by the bistatic range Rbi
change due to a constant velocity to

fD(veff, fc, Rbi, t0) =
1

2π
∂ Φ( fc, t)

∂ t

∣∣∣∣
t=t0

= − 1
λ( fc)

d Rbi(t)
dt

∣∣∣∣
t=t0

=
2 veff(t0)

c
fc. (16)

It can be seen that the wavelength λ( f ) already depends on the frequency f . Inter-
estingly, both relations (14) and (16) show this particular frequency dependency over a
bandwidth from fl to fu even in the case of a constant effective velocity that is here defined
as positive for an approaching target.

4. Implication of a Linear Target Movement in Batched Range-Doppler Processing

In the following analysis, the implications on a batched range-Doppler processed
target response are illustrated in more detail. It is thereby important to consider the
involved influences individually to create a good basis for potential improvements. The
first important aspect is that the interpretation of the Doppler effect can be separated for
an RF carrier frequency fc � Bocc. This helps to split the instantaneous Gross Doppler
implications mainly related to the processing scheme from to the ones of the bandwidth-
dependent part by the movement during the processed interval.

fD( f ) = fD( fc)︸ ︷︷ ︸
Gross Doppler

+ fD( f − fc)︸ ︷︷ ︸
Bandwidth dependent

(17)

By Equation (17), the implication of the Doppler effect can be differentiated between
physically caused movement impacts and these that are related to the processing scheme.

A batched implementation as shown in Section 2.2 may

(a) introduce a frequency sensitivity [14,24] due to the Gross Doppler displacement
fD( fc) ∝ v. This is caused by its intra-pulse phase approximation [9] over the block
duration Tb = Tu. If a cyclic prefix waveform with guard duration α is considered,
this will lead to a sensitivity degradation

Loss PC
(
Tb, fD( fc), τ, α

)
=

 1(
1− u

Tb

)
sinc(π fD (Tb − u))

2

. (18)

The relation (18) is thereby only range (τ) dependent with u = max(0, τ − α) outside
of the guard duration α [25]. Its derivation is given in Appendix A.
In addition, only ambiguously measurable parameters are determined by a batched
processing. This will impact subsequent processing stages like the tracking. In
particular multi-carrier waveforms with long symbol durations Tu and a low Doppler
tolerance might result in a limited unambiguous Doppler processing from the radar
perspective [26]. The unambiguity window in the analysed frequency domain fd
is fD,u = ± 0.5/(Tu + α) as illustrated in Figure 8. This gives an unambiguously
measurable velocity span of vD,u = ± c/(4 (Tu + α) fc). If the resulting fold-over
effect was not considered, it would have a severe impact on tracking because the wrong
radial direction and speed would be determined. For chirped signals the ambiguity
impact is often worsen by a strong range-Doppler coupling of the waveform [13]. The
directly unambiguously measurable range is Runam ≤ c (Tu + α)/2. This influence can
be resolved by pulse staggering or similar modifications to the transmit waveform.
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fd

rbi

fD,u

actual measured

Figure 8. Illustration of the fold-over effect in unambiguous Doppler limited processing.

The target displacement in the discretised digital analysis domain of a software defined
radar implementation will further cause

(b) a temporary impact on a moving scatterer’s maximum SNR that is inherent from the
DSP architecture. This leads to an DFT scalloping [27] and range straddling [13] loss
whenever a point scatterer is time-dependently displaced over multiple discretised
range (ft) or Doppler (st) cells.
A single point can be split over up to four processed range-Doppler cells as illustrated
in Figure 9. This gets in particular worse for quadrature sampled signals, confined and
point scatterer like target returns and rectangular high effective instantaneous band-
width waveforms. The range straddling impact will increase for high ratios f−1

s Bocc
up to 3.9 dB. The DFT scalloping depends on the relation of signal displacement fD
to the frequency bins and the number of processed samples. The scalloping loss
can reach another 3.9 dB for quadrature sampling. Despite this effect is in principle
widely known in digital signal processing, it is rarely considered in radar processing
schemes [28,29]. This is unrelated to the previously described bandwidth extension
spread but the involved challenge might occur for re-focused point scatterer returns
as it had been indicated in Figure 7 as well. Particular stationary DSP effects further
introduced by sampling, the analogue to digital conversion and deviations from these
relations will be addressed in separate publications.

Figure 9. Range-Doppler gate straddling loss of a confined point scatterer return.

The Doppler moving impact on the bandwidth-dependent fD( f − fc), f ∈ [ fl, fu] will

(c) be determined by the in total occupied bandwidth Bocc and the target motion within
the covered timespan Tcov. The Doppler’s bandwidth dependent influence relates
directly to the target movement but it is at first independent of for example a batched
range-Doppler implementation. A high instantaneous bandwidth Beff will hereby
lead to the spread previously illustrated in Figure 7. Due to many distinct impacts,
their influence will be addressed in the following section in more detail.

5. Influence of Linear Movement within the Signal Bandwidth due to Doppler

This section deals with the particular implication (c) of the Doppler’s bandwidth-
dependent contribution as split in Equation (17) in the range-Doppler domain. If a violation
of the ‘narrowband’ stationary boundary (Section 2.5) cannot be avoided, certain coherent
processing degradations will be a direct consequence of relatively fast and range migrating
targets. The arising spread will cause a strong decorrelation and it restrains the maximal
achievable integration gain Gint by pulse compression for a range-Doppler analysis. Further,
the impact of linear motion on the achievable resolutions (Section 5.2), the decrease of the
coherent integration gain (Section 5.3) and arising limitations to multi-frequency channel
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processing (Section 5.4) will be quantified. Interestingly, the appearing effect can even
resolve the response coherency of moving target returns if it is wrongly processed by
a classical range-Doppler analysis (Section 5.5). The principal implication of non-linear
motion will also be shown (Section 5.6). All identified impacts have to be considered for
the development of appropriate compensation and adaptive processing approaches that
will be discussed in Section 6.

5.1. Spread over Multiple Range-Doppler Cells

Every point scatterer that moves with an effective velocity veff will extend in a range-
Doppler analysis in range and frequency. This will become visible if the motion is strong
compared to tiny achieved processing resolution as it had been described in Section 3.2. If
it is considered that the actual range cell spacing depends on the sampling rate fs and the
totally covered timespan Tcov ≥ Tint, the following amount of cells will be resolved with
the resolutions earlier expressed in Equations (5) and (6).

∆ rangecells = #r =

⌈
veff Tcov

c / (2 fs)

⌉
(19)

∆ dopplercells = #d =

⌈
2 veff Beff Tcov

c

⌉
(20)

The total number of affected range-Doppler cells is then the product of (19) and (20)
so that it results in a significant surface spread in the case of a large effective instantaneous
bandwidth Beff. This yields

Loss rw = d#r #de ≈ 4 v2
eff T2

cov fs Beff/c2. (21)

5.2. Analysis of Decreased Range-Frequency Accuracy

The stationary boundary (Section 2.5) can equally be related to Loss rw. It becomes > 1
in consequence of an exceedance so that a point scatterer spreads over multiple cells in the
range-Doppler domain. The range resolution previously expressed in Equation (5) will be
worsen by Equation (19) after uncompensated processing to

δrres(Bocc, . . . ) ≈ c
2 Bocc︸ ︷︷ ︸

Bandwidth given

d#r(veff, fs, Tcov, . . . )︸ ︷︷ ︸
Point widening

e. (22)

Thereby, the resolution of two adjacent scatterers will be decreased due to the spread.
Similarly, the achievable Doppler frequency resolution from Equation (6) δ fd can be ex-
pressed for a constant veff by Equation (20) as

δ fd(Tcov, . . . ) ≥ 1
Tcov︸︷︷︸

Time given

d#d(veff, Beff, Tcov, . . . )︸ ︷︷ ︸
Point widening

e. (23)

The widening due to the movement will pose a challenge even for often not strongly
extended targets if these are still detectable above the noise threshold. This affects amongst
others the positioning capability that multistatic systems often perform by the intersection
of multiple bistatic ellipsoids. A measured example—as given in Figure 6—indicates
the problem. It becomes more difficult to determine the accurate velocity and range at
a common reference time within Tcov from the range-Doppler plot. Even if guessing a
‘rectangular response’ was possible, a blurred return might be difficult to fit to a particular
range and velocity. The worse case of a target return that fluctuates strongly within the
CPI and over bandwidth will be shown in Section 5.5. Thereby, the measurable accuracy
of range and velocity becomes severely affected so that a centre of gravity analysis will
not resolve the accurate values a posteriori. Moreover, an uncompensated widening
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will be challenging for CA-CFAR detection based algorithms because these would need
to incorporate the broadening for increased velocity spans. Otherwise, the actual target
detection may be missed if the extension around an assumed confined target was mistreated
as an increased clutter level. A modification of the CA-CFAR would therefore be required
to avoid the spread return in high effective velocity ranges being dropped.

5.3. Impact of a Constant Speed on the Achievable Coherent Integration Gain Gint

Another direct consequence of the spread over multiple range-Doppler cells is that the
energy of single confined and point-like scattering points becomes equally distributed over
a surface. The target return will start to decorrelate. A kind of integration loss is therefore
already given by Equation (21)

Loss rw = d#r #de ≈ 4 v2
eff T2

cov fs Beff/c2.

Because this range walk related spread depends only on the effective bandwidth Beff,
the sampling rate fs, the effectively measurable velocity veff and the covered timespan Tcov,
this impact will solely relate to the bandwidth-dependent part of Equation (17) indepen-
dently of the actual RF carrier frequency fc. The stationary and linearly uncorrelated noise
components are still suppressed by the matched filter gain but the decorrelation leads to
a decreased target level—in presence of the stationary clutter and remaining noise levels.
In the special case of a high instantaneous effective bandwidth Beff and a long covered
timespan Tcov, this extension as it had already been illustrated in Figure 7 can severely
degrade the effective coherent integration gain even in the case of a constant effective
velocity veff.

Whenever Loss rw becomes larger 1, high time-bandwidth products Tcov Beff cause
large integration losses according to Equation (21) in classical range-Doppler processing.
This is illustrated for exemplary but typical passive radar parameters in Figure 10a,b.
Considering the previous example of veff = 700 km/h in Section 2.5, a desired gain
of Tcov Beff = 65 dB is far too high for classical range-Doppler processing. An introduced
loss of 12 dB would give a detectable ‘narrowband’ RCS that is by ∆6 dB worse than if 59 dB
had been used and the maximal effective Gint would reduce to 53 dB. This is expressed un-
der the consideration that Tint ≤ Tcov and an approximated fs ≈ Beff. Equally, the minimal
detectable RCS would increase from e.g., 0 dBm2 to over +12 dBm2 or, respectively, the
maximum covered range would decrease in this effective velocity span. Even in the case
of veff = 300 km/h a loss of already 5 dB would be present. Multiple objects could therefore
be missed if just this effect is not considered. It is important that this consideration does
not yet include any performance degradation like the Gross Doppler frequency sensitivity
of a batched implemented scheme (Section 4).

5.4. Bandwidth Paradox in Multi-Channel Processing with a High Instantaneous Bandwidth

A similar but an additionally to be highlighted aspect is that the loss is worsen
quadratically by every further increase of the integration time or bandwidth. If a constant
effective velocity is considered, the loss added will be magnified by 6 dB for every doubling
of the time-bandwidth product as illustrated in double log scale in Figure 10b. This will lead
to the bandwidth paradox that shall be described in the following. Imagine two coherent
transmit channels with the same bandwidth and equal spectral power density being
located next to each other. Both channels shall be processed coherently (Beff +). Despite
the matched filter gain is typically assumed to be independent of bandwidth (Section 2.1)
and thereby the combination contains more spectrally distributed energy, it will show a
negative dependence in this multi-channel configuration for a violated stationary boundary.
If the coherently covered bandwidth is simply extended to process both channels so
that Beff and fs are at least doubled, a loss of 6 dB will occur. The effective gain will then
be −3 dB instead of a gain increased by 3 dB. Thus, Gint will not be doubled but halved or,
respectively, the detectable RCS will not be doubled but halved if no further compensation
is performed. It should hereby be mentioned that for twice the bandwidth, the loss will at
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least double because fs ≥ Beff as given in Equation (4). Solely if the same fs was used, the
desired gain increase would vanish but the resolution would still be lower (Section 5.2).
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Figure 10. Extension loss in range-Doppler for multiple time-bandwidth products and linear velocities. (a) Expressed
with fs ≈ Beff for multiple Tcov Beff sets. (b) Expressed for constant effective velocities.

5.5. Target Response Coherency over Tcov and Bocc from Measurement Datasets

An actual extended target return might also differ [11] from a pure uniform return of
one dominant confined scatterer as it was the case in the previous examples in Figure 6a,b.
While distributed multipath delayed trails behind the target have been observed [30], an
extended return can vary as well within the occupied bandwidth over the CPI duration.
In the case of range walk and a high instantaneous bandwidth, the target returns become
resolved in the range-Doppler plot. This enables a detailed analysis within the covered
timespan Tcov and over the whole instantaneously occupied bandwidth.

In order to illustrate these target response fluctuations, a strong target return has
been processed with fine resolution parameters of Tcov Beff = 72 dB. It was evaluated
at fc = 690 MHz within Bocc ≈ Beff = 7.61 MHz. The target approached with an almost
constant effective velocity during the processed intervals. The result is shown in Figure 11
and the overlapped response 896µs later is shown in Figure 12. It thereby clearly deviates
from the uniform spreads of target returns that were shown earlier.

∆ fD

Figure 11. Fluctuating approaching target return moving with a constant v ≈ 225 km/h and inte-
grated in Beff = 7.61 MHz over Tint = 1.79 s during a coherent processing interval of Tcov = 2.24 s.
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∆ fD

Figure 12. Fluctuating return of the previously shown approaching target with v ≈ 225 km/h, shortly
after Figure 11 with a deviated target return in Beff = 7.61 MHz over Tint = 1.79 s and Tcov = 2.24 s.

By using Equations (14) and (17), the Doppler frequency difference ∆ fD = fD( fu)−
fD( fl) can shown to be

fD( fu = fc + Bocc/2) = fD( fc) + fD(Bocc/2) (24)

fD( fl = fc − Bocc/2) = fD( fc)︸ ︷︷ ︸
Gross fD

− fD(Bocc/2)︸ ︷︷ ︸
independent of fc

. (25)

The bar marked with ∆ fD in Figures 11 and 12 shows the return resolved within
the CPI duration Tcov from the lower to the upper bandwidth in Doppler frequency over
slow-time in steps of

δ fstep = c / (2 veff Tcov) = 1.1 MHz. (26)

Thus, in the case Beff ≈ Bocc, this resolves the target return instantaneously at fc within
the full spectrum of the occupied bandwidth Bocc over fast-time in a time spacing of

δtstep = c / (2 veff fs ) = 263 ms. (27)

It can hereby be seen that the target response during its approach with a constant
effective velocity might vary strongly over time and even within 8 MHz over the bandwidth.
If the described aspect is ignored, this will lead to a severe impact on classical schemes.
Due to missing parts compared to a purely uniform rectangular response (Figure 6a),
this would lead to a specific uncertainty for the posteriori determination of position and
speed in an uncompensated range-Doppler processing scheme (Section 5.2). The resolved
target fluctuations—likely caused by multipath and aspect angle changes [11,20] or an
altered effective antenna gain towards the target—highlight that it is not always optimal
to re-focus the whole response within an assumed rectangular spread. The fluctuations
could be interpreted similar to ‘narrowband’ Swerling cases [13] if the whole frequency
dependent return was simply summed up. However, their original statistical modelling
usually follows a slightly different approach.

5.6. Higher-Order Motion Aspects

The actual target motion might further not be strictly linear so that the bistatic ve-
locity changes within the covered timespan Tcov (Section 2.4). In this case, the influence
of higher-order motion aspects has to be considered additionally [31]. Hereby, effective
acceleration (a(t) = d veff / d t) and jerk influences could be caused by a complex motion
or by the relative position change with respect to the geometry (Section 6.4). In the case
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of involved motion, a trace as shown in Figure 13 is likely—this is a strong deviation
from a rectangular shape. It further extends over the analysed Doppler frequency fd by
a deceleration of its effective velocity within the covered timespan. In this example, a
simple linear velocity based compensation is certainly counter-productive since it would be
based on the rectangular shape in the range-Doppler domain (Section 3). A worse example
obtained from quite a weak, spread and decelerated return is shown in Figure 14. Probably
due to fluctuations and noise overlap, four track heads were generated by an uncompen-
sated processing so that the track was frequently lost. The contributions of acceleration
might be important and considerable beside the velocity-induced implications. Every
non-predictable contribution will however open another search dimension in addition
to bistatic range and effective velocity for search processing. This will certainly restrain
practical implementations to previously covered or presumed target tracks.

Figure 13. Moderate deceleration in addition to the Doppler frequency spread of a bistatic velocity
of veff ≈ 270 km/h with track history indicating the change using Tint = 717 ms and Tcov = 896 ms.

Figure 14. Target previously shown in Figure 5 tracked with a bistatic velocity veff ≈ 270 km/h over
Tcov = 896 ms with Tint = 717 ms, decelerated and noise overlapped that gave multiple track heads.
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6. Discussion of Findings and Consideration for Processing Approaches
6.1. Preface

The preceding analysis of a common batched range-Doppler processing indicates that
the target movement can severely affect its capability to detect and to track relatively fast
moving targets. The velocity spans in which linear movement effects need to be specially re-
garded are these in which the limits of classical ‘narrowband processing’ like the stationary
assumption (Section 2.5/Section 5.2) or the first unambiguous Doppler span determined by
the processing scheme (Section 4) would be exceeded. Thereby, a common range-Doppler
processing scheme is limited to a certain fixed time-bandwidth product for a maximal
measured effective velocity (Section 2.5) or, respectively, it is constrained to an acceptable
implication at a certain speed (Section 4). This is particularly problematic if a wide velocity
span has to be covered. If the introduced implications are not considered, a large coherent
integration gain will not be maintained by range-Doppler processing against relatively fast
moving target returns. The further analysis indicated that in particular the instantaneous
bandwidth-dependent impact (Section 5) and each key parameter related to the movement
like the effective velocity gives a strong and quadratic implication for any further increase
in case of an already exceeded boundary (Section 5.1). Even counterintuitive relations
can then be present so that more loss might be generated compared to the case of no
increase (Section 5.4). This is especially important if large desired integration gains were
the motivation for a high time-bandwidth product in the first place. In the case that the
spread target return was wrongly treated as a confined point scatterer, this could lead in
consequence to probably even two close-by targets detected (Figure 12) or several detached
track heads as it was visible in Figures 5 and 14. Another necessary condition for coherent
processing are actual hardware demands that were not further discussed in this article but
are important to be considered as well. Long covered timespans and high instantaneous
bandwidths lead to increased demands regarding stability, linearity and intermodulation
requirements that have to be properly addressed. Furthermore, the synchronisation to the
received signal stream [32] will influence the accuracy and capability of target ranging.

6.2. Constant Effective Velocity Detection in a Time-Scale Analysis Approach

A first step to address the linear movement for high time-bandwidth products is
to treat the Doppler effect in its original scaling relations even in the case of a constant
effective velocity (Section 3). This can be broken down to the question how to properly
treat the fine resolutions compared to the Doppler scaling relations for moving target
detection. The task becomes ‘how to find the correct scale to treat and to determine the
velocity correctly’. The optimal processing technique would thereby address the whole
movement effects with a proper method, in short processing time to reduce the added
latency and embody a sufficiently low computational complexity and implementation
effort. One straight forward approach is a time (range)-scale analysis [1] that results in a
modified version of the cross-ambiguity function χ(τ, fd) [13]. The modified function with
scaling relations then yields

χmod(τ0, s) =
∫ t0+Tcov

t0

yrx(t)
1
|xref|

x∗ref

(
t− τ0

s

)
d t for {s = const | t0 ≤ t < t0 + Tcov}. (28)

The time-scale approach as described in Equation (28) addresses primarily the de-
creased accuracy due to the involved spread (Section 5.1). Hereby, t0 marks the beginning
of the CPI with duration Tcov and the time offset τ0 = Rbi(t0)/c relates to the bistatic target
range at a fixed reference point t0 in time. The analysed scale factor s gives then according
to (13) the estimated effective target velocity by vest ≈ c (1− s)/(1 + s). In addition to a
regained resolution for linearly moving targets, this also improves the capability for an
accurate multistatic localisation because the bistatic range Rbi(t0) at a common reference
time t0 will no longer be worsen by the linear movement extension. This approach is in
line with the case described in Section 3.2 and the inherent processing model is therefore a
continuation of the classical assumption (Section 2.2) of a constant effective velocity veff
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and confined scatterers. It can thereby achieve an increase in the realised coherent integra-
tion gain as long as the otherwise extended target return stays similar to a uniform and
rectangular spread without deviation (Section 6.4).

6.3. Common Time-Scale Analysis Implementation Techniques for Batched Schemes

The main implication of the time-scale approach expressed in Equation (28) is that its
implementation requires a modification of the common time-frequency batched processing
scheme (Section 2.2). Thereby, the idea is to keep the principle of a batched processing
scheme but to compensate the range migration induced spread. The principle implementa-
tion methods can be split into two classes depending on their view on the Doppler relation.
This is similar to the identical consideration of the scaling in range or in the Doppler extent
over the occupied bandwidth Bocc (Section 3.2). The one class tries thereby to address the
Doppler scaling relation with a time-domain based compensation by re-scaling, shifting or
resampling. The other class performs a normalisation in the frequency domain to compen-
sate the relative Doppler frequency deviation ∆ fD in relation to a reference carrier fc. After
this compensation has been performed, the radar processing chain can further process the
received signal with classical steps.

The first implementation class with a scaling relation in the time-domain can be
understood as time re-scaling of the whole received signal. The common effective aircraft
velocities between 5 km/h and 800 km/h cause scale factors of 1± 10−8 to 1± 1.5× 10−6

in radar (Section 3.2). Several methods are possible whereby the most straight forward
approach is rational L/M resampling [1]. Hereby, it turns out that in particular the small
factors briefly deviating from 1 are most challenging because these may require large L
and M. Other scaling techniques can be based on different kinds of linear or e.g., polyphase
interpolation signal scaling [33] or multi-rate signal processing. Another method is to use
a precomputed filter based on a pre-known reference signal [34]. The fractional delays
form hereby another set of time-based methods that introduce small time delays before
individual compressed pulses to address a particular target motion [35], the actual shift is
however implementable in the frequency domain as well. These time-domain re-scaling
methods have to be performed either target specific whereby a particular target motion
could be addressed or alternatively for multiple velocity spans. Hereby, a limited set of
spans is needed because a small deviation |∆ veff| < 100 km/h leads to a difference of only
a fraction of one to two dB according to Figure 10b. However, this condition tightens for
higher time-bandwidth products so that smaller spans had to be used.

Alternatively, a bandwidth-dependent view as expressed in Equation (15) forms the
second class. The idea is to perform a normalisation of the Doppler frequency deviation ∆ fD
within the occupied bandwidth by relating the fast-time carriers—that are subject to slightly
different Doppler shifts—to that of a fixed reference carrier fc. A common technique
for high instantaneously processed bandwidths is the Keystone transform (KT) [36,37].
It is based on the ft/st domain of a batched processing scheme (Section 2.2). The KT
compensation works as originally described to rescale the slow-time axis tst of every
active fast-time frequency sub-carrier fft ∈ [ fl, fu] within Bocc in the slow-time domain by
transforming [5,6]

tst( fft) =

(
fc

fft + fc

)
tks. (29)

The advantage of the Keystone transform is that the whole unambiguous range-
Doppler window is compensated for its linear velocity migration [38,39]. It is hereby
almost too accurate because it addresses all resolved velocities in the unambiguous Doppler
window. The implementation has to consider that this technique requires an interpolation
of every fast-time sub-carrier so that the effort increases proportional to this count. A
DVB-T2 waveform can for example incorporate up to 27,841 active sub-carriers in one
32k OFDM symbol duration of Tu = 3.5 ms in 8 MHz channels [25,40]. Depending on the
interpolation method, this can lead to a significant amount of added latency. In order to
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speed up the computation, several publications focused on the implementation of efficient
interpolation methods to reduce the added complexity and the introduced latency [41–43].
The processing effort could also be decreased by skipping e.g. every second fast-time
sub-carriers to reduce the total number of carriers. Hereby their energy would be lost
and the unambiguous range—which is in this case typically not a problem—is halved
but the constant velocity spread effect is still properly addressed. Since this transform is
commonly applied after pulse compression on the ft/st pulse compressed matrix [41,42],
an unambiguous Doppler limited processing has to identify the relevant unambiguous
range-Doppler window separately. This is typically required if the block duration Tb is
determined by a given waveform (Section 2.2) that leads to the fold-over effect in Doppler as
it has been illustrated in Figure 8. One method to address the next unambiguous window
after Equation (29) is to multiply the term exp(−j 2π foldover ( fc/( fft + fc)m) to the st-
domain [36,44]. For this, the foldover or ambiguity number [6,36] 6= 0 needs a heuristic
approach for likely values or a proper identification method like [26]. This is in general
necessary to obtain the correct velocity estimate from a detection and to establish a target
track. Further, the Gross Doppler sensitivity loss of a batched implementation (Section 4)
will not be addressed by this multiplication if the pulses had already been compressed.

Another despite similar method of this normalisation class is to compensate the KT
based frequency relation of Equation (29) in the time domain as a dispersive time-domain
correction. This tries to address the problem over all the sub-carriers in a dispersive relation
over the ft-bandwidth Bocc that makes it possible to implement this compensation in the
time-domain as a dispersive FIR filter. It can then be moved to arbitrary positions in the
processing chain and therefore also before the pulse compression. This method has been
described in 2019 as time-domain keystone transform in [45]. Since different kinds of
dispersive implementations are possible for speed-up, this way is promising to address the
bandwidth-dependent Doppler implication (Section 5) by this time-scale approach.

Solely in the case of a narrowband waveform, it is a valid technique to multiply
an extra single phasor by a complex exponential function to correct a narrowband chirp
related to the Stolt interpolation [46]. This can address the bandwidth influence over the
occupied bandwidth Bocc as it is used in SAR processing to address the relative platform
motion and it is easier but it will only work for an instantaneous narrowband chirped
waveform with a low effective bandwidth Beff – as shown in Figure 2—because it may
address the bandwidth-dependent Doppler during the chirp duration Tu sequentially. The
extra phasor can be related by its range profile [18]. It works similar to a single carrier
signal xsc(t) = e−j2π fc(t) t scaled by Equation (12) to xsc(s t) = 1/|s|

[
xsc(t)

]
e−j 2π fD( fc) t

so that it is displaced by the Fourier shift theorem due to its piecewise Doppler frequency

fD( fc)| fc= fc(t) ≈ (1− s) fc(t) (30)

which is approximately fD(t) ≈ fc(t) (2 veff)/c from Equation (14). This method can
however not be applied to compensate range migration of processed high instantaneous
time-bandwidth product waveforms.

6.4. Constrains of Actual Non-Uniform and Non-Rectangular Target Returns

A time-scale analysis approach with an inherent constant scale factor s (Section 6.2)
considers a pure uniform rectangular return spread, regardless of the chosen implemen-
tation technique (Section 6.3). This is the continuation of an assumed constant effective
velocity within the whole processing interval and thereby it considers a purely linearly
moving single point scatterer as illustrated in Figure 7 (Section 3.2). In the case of a
confined dominant point scatterer and an idealised propagation channel with a transfer
function |Htrg( f )| = const, this might be a plausible model (Figure 6). The downside is
that any deviation from this assumed pure uniform rectangular shape relates to a lower
achievable coherent integration gain. Any deviation from a uniform spread will then lead
to a suboptimal refocusing that includes parts with less energy and more integrated noise –
a kind of ‘collapsing loss’ [13] may occur.
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As it has been shown by examples of an actual target response, a practical extended
target return might fluctuate even within an occupied bandwidth of just 8 MHz in excess
of 300 ms (Section 5.5). The observable in-band fluctuations raise the question how to prop-
erly process and define a kind of wideband or high time-bandwidth product related radar
cross section (RCS). The classical ‘reflected power’ to ‘incident power density’ model [13]
and the Swerling cases are typically used for confined ‘narrowband’ and mostly monostatic
target returns. The target model of extended targets [11] consists contrarily of one or more
scattering regions with individually associated complex amplitudes. If a high bandwidth
provides a range resolution that is smaller than the target dimension, these scattering
regions on a target will become resolved. This has to be addressed in further considerations
but the totally distinct time-bandwidth product sets as expressed in Table 1 (Section 2.5)
for the same fixed boundary cannot be treated equally. Furthermore, the bistatic geometry
might lead to another bistatic RCS definition because the radar return will change for
varying aspect angles [11,20]. A joint processing [29,47] applied to extended target returns
might however regain some of its lost visibility. It is a subtle but noteworthy difference
that very weak extended target responses close to the detection threshold might also look
similar to an in-band fluctuating return but this is simply caused by the overlap of present
noise. A detailed CEM object and propagation environment modelling might be useful
to give more insight to highly fluctuating returns because these are likely caused by a
combination of actual target extension, aspect angle changes and multipath propagation.

Last but not least, the effective acceleration of the target return will give an instan-
taneous Doppler relation (Section 3.3) so that the scale factor s(t) will not anymore be
constant within the CPI duration. A time-dependent instantaneous effective velocity yields
from Equation (13) with the bistatic range Rbi (Section 2.4)

vest(τ) =
1
2

∂ Rbi(t)
∂ t

∣∣∣∣
t=τ

≈ c
1− s(t)
1 + s(t)

∣∣∣∣
t=τ

. (31)

Even a slight acceleration would then not only cause less energy—due to parts cut
from the rectangular return—but also pure noise being integrated in regions that are no
longer inside the otherwise assumed rectangular shaped extension. This is illustrated in
Figure 15 for the example of an actual target return. An uncompensated processing will
obviously be much worse for stronger acceleration (Section 5.6). This motion influence
could however be addressed if the target return acceleration was partly predictable like the
change of the effectively measurable velocity in a bistatic radar geometry (Section 2.4). The
principle is based on the idea that a constant linear movement with a constant target speed
over ground |vtrg| is still a valid model within the considered CPI duration Tcov. Only the
effectively measurable velocity |veff| ≤

∣∣vtrg
∣∣ as expressed in Equation (8) might simply

deviate due to the position dependence of the bistatic angle pairs in a bi- or, respectively,
multistatic radar geometry. This leads to a geometry-induced acceleration even in the
case of a straight-line trajectory without target acceleration. Most compensation methods
that were shown in Section 6.3 can however not flexibly account for non-constant and
time-dependent scale factors that change within the processing interval.

6.5. Remaining Limitations of Velocity Spread Compensation on the Achievable Integration Gain

The evaluation for target detections beyond the time-bandwidth product bound-
ary (Section 2.5) and the maximum unambiguous effective velocity spans of classical
batched range-Doppler processing schemes give reasons for optimisations to address the
movement implications (Section 4). The batched implementation scheme (Section 2.2)
introduced impact is mainly its unambiguously measurable Doppler frequency window
that will affect the processing of fast moving targets. This is particularly important for
OFDM symbol durations given in the millisecond range in passive radar applications
based on digital audio or digital video broadcasting [40] and a block duration Tb = Tu.
The fold-over of target returns would hereby give wrong estimates in the Doppler do-
main as illustrated in Figure 8 (Section 4). A proper identification is then required to
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associate detections for compensation correctly (Section 6.3) and also to estimate the target
speed with its prospective movement for tracking. The remaining Gross Doppler induced
frequency sensitivity LossPC Equation (18) will need special attention in batched pulse
compression schemes because this loss can become severe for a long block duration Tb even
for small effective velocities [25]. Strong clutter or targets present in adjacent unambiguous
windows will defocus but these can still overlay the returns in the currently processed
window. Further, an unconsidered range-Doppler straddling loss caused by the temporary
displacement between discretised processing bins can impact by several dBs in the quadra-
ture sampled case. The actual amount depends on the return position and the processed
waveform (Section 4). This impact also remains if actual small confined target returns are
evaluated after the range migration induced spread has been compensated by for example
a time-scale analysis approach (Section 6.2). The re-confined returns might still be split
between up to four discretised range-Doppler cells if this impact was not considered.

∆ fD + acc.

Figure 15. Limit of a fixed time-scale analysis with the example from Figure 6b of slight acceleration,
the deviation from a rectangular extent would cause less returned energy and more noise integrated.

The main drawbacks with regard to any compensation approach are their added
computational complexity and the introduced latency. It is in general desired to add
just a small latency because any processing delay will enlarge the time delay to obtain
a measurement in real-time oriented implementations. If a particular minimal detection
range had to be achieved, this would then require even higher coherent integration gains
to cope with the added latency. This will in turn likely involve more effective target motion
implications. In order to evaluate these influences in greater detail, it is important that the
Doppler effect is in fact based on the instantaneous velocity of the target at a particular
point in time, i.e., veff(τ) = 0.5 ∂t Rbi(t)

∣∣
t=τ

according to Equation (31) so that it may not
be considered as constant over a long processed duration Tcov anymore (Section 6.4). An
advanced target motion modelling that is superior to a constant effective velocity would
have to include velocity changes (acceleration) and possibly even changes of accelera-
tion (‘jerk’) to avoid de-correlation [20]. It is however unlikely that the target motion can
be fully addressed according to a theoretical six degrees of freedom movement in radar
detection. Each aspect would open an additional search dimension which can likely not
be addressed conclusively in proper processing time. The effective acceleration induced
by the radar geometry is however at least partly predictable if the target location and true
ground speed have been determined before (Section 6.4). This motion influence could
then be addressed by narrowband methods [1,31] for an adaptive processing also after the
primary bandwidth-dependent Doppler impact of linear range walk has been compensated.
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Because in particular an instantaneous acceleration influence on the effective velocity likely
increases over time and concurrently with an increased processing duration the resolved
velocity cells become smaller, the acceleration poses mainly a limitation for the maximum
covered duration Tcov. Other target motion considerations include a limited target visibility
due to a simple wandering out of the antenna main beam for steered systems or shadowing
by terrain and target return fluctuations e.g., due to aspect angle changes in the scattered
return and spatial decorrelation [11] or not target related multipath propagation.

6.6. Summary

All of the compensation methods shown in Section 6.3 try to address primarily a pure
uniform rectangular extent that results from a constant effective velocity with varying com-
putational effort. This is practically limited and it will not compensate actual target return
fluctuations and possible deviations for example introduced by motion (Section 6.4). Even
if a slight improvement was possible, the summarised influences constrain the maximal
realized and achieved coherent integration gain Gint,achieved even below the theoretical
maximum of Gint,desired = Tint Beff (7) from Equations (10) and (4) to

Gint,achieved ≤ Gint,compensated ≤ Gint,desired ≤ Tcov Beff ≤ Tcov fs. (32)

The upper bounded consideration in Equation (32) is important for an in-depth
performance evaluation by that the products Beff Tint and Tcov fs are practically limited.
The question how much coherent integration gain can be realized and if a target hit also
leads to a better detection and established track depends on many of the described factors.
A remaining extension either caused by the resolved target dimension, multipaths or
due to straddling losses overlayed by target fluctuations within the bandwidths Beff/Bocc
(Section 5.5) and strong non-stationary clutter will still raise particular challenges. Any
concept will need a careful evaluation of the influences present. The possibility to cope with
hardware implications like drifts, oscillator stability and phase noise are equally important.
These aspects will determine the final detection and localisation capability. However, if the
target was ‘visible’ with less coherent gain close to the detection threshold in individual
channels, it could be processed non coherently with lower coherent integration gain. This
might avoid some of the implications shown.

7. Conclusions

The moving target detection becomes severely complicated for a high desired coherent
integration gain as it has been highlighted in this publication. The analysis revealed even
partly counter-intuitive relations for the processing of the involved high time-bandwidth
products and it gave a better definition of the Doppler effect modelling for these cases. A
violation of the the stationary boundary can thereby be easily reached even for common
processing values often required in coherent radar applications. It was thereby shown
that the target decorrelation strength could easily be underestimated if the instantaneously
effective bandwidth and batched processing implications are not considered. This can sig-
nificantly decrease the capability to acquire a target track. The findings were verified with
examples obtained from passive radar measurement campaigns and it has clearly shown
that the possibility to maintain a high coherent integration gain is worsen against relatively
fast moving targets. As it turned out, classical pulse or, respectively, range compression
based range-Doppler processing schemes can hardly realize a coherent integration gain of
65 dB against objects with an effective velocity of 200 to 300 km/h that is often required
in passive radar applications. The practical modelling of a linear target movement is then
distinct to a single Doppler frequency displacement and an assumed extent over some
range cells. Thereby, even counter-intuitive processing issues related to the bandwidth
were identified to be present in a desired coherent multi-channel processing. Further
constrains can arise from a batched implementation scheme that might be limited to the
long duration of individual OFDM symbols to maintain orthogonality between the tightly
spaced sub-carriers for stationary DPI and clutter suppression. Even if time-scale analysis
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approaches are in principle feasible, these are subject to practical target returns and pose
challenges related to their implementability, practicability, the introduced processing effort
and latency. Considering the full range of effective aircraft velocities of just 100 to 800 km/h,
this gives particular challenges to cope with the motion involved implications.
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Appendix A. Derivation of the Frequency Sensitivity from Equation (18)

The relation shown in (18) can be retrieved by the frequency response similar to an MTI
filter. The range dependence vanishes within the guard duration α of a cyclic prefix OFDM
signal according to the FT time shift theorem. The following approach considers a single
Doppler displacement fD( fc) by just the carrier frequency fc either after compensation of
the occupied bandwidth dependency over Bocc by e.g., the Keystone transform or because
the time-bandwidth is sufficiently small (Section 2.5).

Starting with a zero-padded look on the OFDM ambiguity function from [24] with Tb =
Tu yields

|χ(τ, fD)| =
∣∣∣∣∣ noc

∑
i=1

noc

∑
k=1

did∗k exp(j 2π fk τ)
∫ Tb

τ
exp(j 2π ( fi − fk + fD) ζ)dζ

∣∣∣∣∣ (A1)

If orthogonality is perfectly fulfilled, values will just result in case of i = k. Therefore,

|E[χ]| =
∣∣∣∣∣noc

∑
i=1

exp(j 2π fit)
∫ Tb

τ
exp(j 2π fD ζ)dζ

∣∣∣∣∣ (A2)

which is [24]

|E[χ]| = (Tb − |τ|)
∣∣∣∣∣noc

∑
i=1

exp(j 2π fit)

∣∣∣∣∣sinc(π fD(Tb − |τ|)). (A3)

The signal voltage loss as difference to the optimum has to be squared to get a power factor

1
Loss PC(τ, fD)

=
(
(Tb − |τ|) sinc

(
π fD(Tb − |τ|)

))2
. (A4)

If (A4) is expressed for an overlapped cyclic prefix OFDM symbol train, it is indepen-
dent of range within the guard duration α. Therefore, using u = max(0, τ − α) instead
of |τ| in (A4), the frequency sensitivity loss depends on the Gross Doppler displacement fD
as shown in (18)

Loss PC =

 1(
1− u

Tb

)
sinc(π fD (Tb − u))

2

.
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