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Abstract: Multiple-camera systems can expand coverage and mitigate occlusion problems. However,
temporal synchronization remains a problem for budget cameras and capture devices. We propose
an out-of-the-box framework to temporally synchronize multiple cameras using semantic human
pose estimation from the videos. Human pose predictions are obtained with an out-of-the-shelf
pose estimator for each camera. Our method firstly calibrates each pair of cameras by minimizing
an energy function related to epipolar distances. We also propose a simple yet effective multiple-
person association algorithm across cameras and a score-regularized energy function for improved
performance. Secondly, we integrate the synchronized camera pairs into a graph and derive the
optimal temporal displacement configuration for the multiple-camera system. We evaluate our
method on four public benchmark datasets and demonstrate robust sub-frame synchronization
accuracy on all of them.

Keywords: multiple-camera system; temporal synchronization; epipolar geometry; human pose

estimation

1. Introduction

Human-centred computer vision tasks and applications, e.g., pedestrian detection [1-3],
3D human pose estimation [4-9] and body reconstruction [10], benefit from multiple-
camera systems. Multiple cameras provide different views from a set of angles of the
same moment, which expands coverage and mitigates the occlusion problem in single-
camera systems. In tightly controlled laboratory setups, it is possible to use industry-level
cameras with high-end image capture devices and have them be temporally synchronized.
However, such cameras and capture devices are typically costly and are not affordable for
commercial-level applications at scale, for example, smart stores [11] with tens of, or even
more, cameras.

To temporally synchronize multiple cameras, previous works often need additional
external signals as references. For example, Joo et al. [12] uses hardware clocks to simulta-
neously trigger cameras with expensive equipment. Besides special hardware, moving a
pattern board [13] or an LED in the scene are often used as the isolated synchronization
stage. Blank frames caused by flash [14] can also be used as temporal reference cues.
However, there is no semantic feature to differentiate between blank frames, which will fail
for large temporal displacement. To free multiple-camera systems from external signals,
Sinha et al. [15] and Takahashi et al. [16] explore the use of human body features from the
videos to temporally calibrate multiple cameras for human-centered tasks. Additionally,
compared to non-semantic signals such as blank frames, human-related features are se-
mantically differentiable along the temporal dimension, which supports even long-range
temporal displacement.

In this work, we address the problem of temporally calibrating multiple-camera sys-
tems for human-centred tasks using only human pose predictions from an off-the-shelf
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pose estimator. Our approach needs no training stage and can be directly applied to any
multiple-camera system with no additional fine-tuning step. It achieves sub-frame accu-
racy for wide-range scenarios, including indoor and outdoor, single person and multiple
persons, and even when heavy occlusion occurs. Besides this, our approach can be used
both as a calibrating stage beforehand or as a sentry to monitor the system synchronization
status during its run. In our approach, camera projective parameters are assumed to be
known, which is often the case in real-world applications. In common applications, for
example, motion capture and smart stores, cameras are typically fixedly installed on rigs
or ceilings, and their projective parameters are also fixed. In practice, we observed that
the temporal unalignment of multiple cameras is usually caused by inaccurate camera
internal time information. To temporally synchronize them, we need to find the temporal
displacements between each pair of cameras.

Figure 1 gives an overview of our approach. Firstly, the frames of all camera views
are fed into an off-the-shelf pose estimator, such as HigherHRNet [17], to obtain pose
predictions. The pose estimation network parameters are trained on COCO [18], which
is a widely used human pose benchmark dataset. The parameters are not fine-tuned on
any of our test datasets; therefore, the predicted poses may have many noises. Later
in our method, we mitigate the effect of noise by leveraging a statistical algorithm on
multiple frames. Then, we propose the measurement of pose distances from different
views with epipolar distance (Section 3.2) and find the temporal displacement for each
pair of views by minimizing an energy function related to epipolar distance. We propose a
simple but effective multiple-person association algorithm to find the corresponding poses
of a person in other views for epipolar distance computation. To make the most of the
predicted poses, we devise a confidence score regularized energy function. The score is the
maximum response value of the heatmap output by the pose estimator. We experimentally
find that the improved energy function works robustly even for poor pose-prediction
qualities. Finally, we construct a graph for the multiple-camera system. Each node of
the graph represents one camera view. The edges linking nodes are the energy functions’
minimum values for each pair of camera views, as each node may connect multiple other
nodes and lead to inconsistency in temporal displacement. The optimal displacement
configuration for the whole multiple-camera system is then derived by the minimum
spanning tree algorithm.

Videos Poses Two-View Sync Multi-View Sync

Minimum
Spanning Tree

Graph

@ : Each node represents one camera view

=
N

Figure 1. Overview of our method. V is number of camera views (V = 5 in this illustration). It first
takes video frames from multiple views as input and outputs 2D human poses using an out-of-the-
shelf HigherHRNet [17]. Then, we find the optimal offset and the corresponding minimal energy
between each pair of views by the two-view synchronization method (Section 4). Finally, we form a
fully connected graph whose nodes are camera views and derive the optimal offsets’ configuration
for the multiple-camera system by minimum spanning tree algorithm (Section 5). Human faces are
obfuscated to protect subjects’ privacy.

We evaluate our approach on four public multiview datasets including Human3.6M [19],
Shelf [20], Campus [20] and Store [11]. These datasets provide temporally aligned multiview
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videos. We manually offset the videos and test our approach. Robust and sub-frame temporal
synchronization accuracy are demonstrated on all of them.

Our contributions can be summarized as: (1) We provide a new framework to syn-
chronize multiple cameras by exploiting semantic human features, i.e., human poses. It
needs no training and is easy to use; (2) We propose a score-regularized method to make
effective use of pose predictions to achieve stable and accurate results; (3) We demonstrate
the effectiveness of our method on four representative benchmark datasets covering a
wide-range of scenarios.

The rest of the paper is organized as follows. In Section 2, we discuss the related
work. Section 3 introduces the basics for epipolar distance. Then, we describe how we
synchronize a pair of cameras via minimizing the energy function related to epipolar
distance in Section 4. In Section 5, we integrate all camera pairs into a graph and derive an
optimal configuration for the multiple-camera system. In Sections 6 and 7, we introduce
the experimental datasets, evaluation metrics and results. Finally, we discuss the results in
Section 8 and conclude this work in Section 9.

2. Related Work
2.1. Multiple-Camera System Synchronization

We briefly classify a temporal synchronization method for multiple-camera systems
into two classes. The first class is based on external reference signals. The global hardware
clock signal is the most widely used reference to trigger cameras at the same time [12]. Such
systems require advanced cameras and capture devices, which are often very expensive.
Other than hardware signals, additional visual signals can also be used. Moving a pattern
board [13] or an LED in the scene are often used as an isolated synchronization stage before
video capturing. Prarthana et al. [14] present a synchronization method based on blank
frames caused by flash. The blank frames are detected and compared in the recordings
to determine the temporal displacements between cameras. However, the flash could be
annoying when recording, and it will fail if the temporal displacement is larger than the
flash interval because there are no semantic features to differentiate between blank frames.
Audio pattern [21,22] is another type of reference source. However, it first needs to align
the video and audio, and then carefully compensate for the sound time-of-flight delay.

The second class analyzes internal video attributes, for example, human poses [16] or
balls [23]. It eliminates the need for additional signals of isolated synchronization steps.
Tamaki et al. [23] detect the table tennis ball in videos and utilize them to establish temporal
correspondences between cameras. Takahashi et al. [16] detect human poses in videos
for temporal synchronization. They optimize parameters for all cameras at the same time.
However, they discuss situations when only single person is present. When multiple
persons are present, occlusion often happens, which may cause person identification to fail
and lead to larger synchronization errors. Although our work also uses 2D human poses
as corresponding points between cameras, it differentiates from Takahashi et al. [16], as
(1) our method is applicable for both single person and multiple persons; (2) we validate
our method on several real-world datasets covering a wide range of scenarios and we
analyse factors that affect synchronization accuracy by ablation study; (3) we synchronize
the multiple-camera system in two stages, i.e., two-view and multi-view synchronization,
which significantly reduces the computational complexity compared to optimizing all
cameras at the same time.

2.2. 2D Human Pose Estimation

With the development of convolutional neural networks and a large dataset like
COCO [18], MPII [24] and AIC [25], 2D human pose estimation obtains significant im-
provements. 2D human pose estimators are generally classified into two types: top-down
and bottom-up methods. Top-down methods [26-28] firstly use a detector to localize the
human in the image. Then, the image patches for each person are fed into a pose-estimation
backbone network to obtain the intermediate pose representation, i.e., heatmaps. Finally,
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human poses are derived from the heatmaps by finding the maximum or coordinate in-
tegration [29]. Bottom-up methods [17,30,31] directly detect human joints on the whole
image. Then, the same person’s joints are linked by PAF [30] or associative embeddings
[17,31] to construct poses for each person. Besides the human poses, the maximum re-
sponses of the heatmaps are typically used as a threshold to determine if one pose is valid.
The typical value for the threshold is 0.2. However, we observed that it conveys more
information and can reflect the prediction quality to some extent. Thus, we explore its use
as a score to regularize the energy function in this work.

3. The Basics for Multiview Geometry

We first introduce the basics of epipolar geometry to lay the groundwork. In particular,
we discuss how the distance metric between two points can be computed from different
viewpoints. Obtaining the distance between two points which are on the same view
is straightforward. L2 norm, also known as Euclidean distance, are often used as the
distance metric. However, if the two points are on different views, there is no direct way
to calculate the Euclidean distance. With the help of camera parameters, we propose the
use of epipolar distance as the distance metric for points across views. We first introduce
epipolar geometry in Section 3.1 to illustrate the point-line correspondence between views.
Then, in Section 3.2, we describe how to extend Euclidean distance for points across views.

3.1. Epipolar Geometry

Let us denote a point in 3D space as X € R**1, as shown in Figure 2. This could be
the location of a 3D body joint in the context of pose estimation. Note that homogeneous
coordinate and column vectors are used to represent a point. The 3D point X; is imaged
in two camera views, at x; = PXj in the first, and x;’ = P’X; in the second, where x; and
x1’ € R3¥*! represent 2D points in images, P and P’ € R3** are the projection matrix for
each camera. In practice, we have the 2D measurement x; for the 3D point Xj, but the
depth is unknown. If we assume that X; could be at any depth, the corresponding point
x1’ for x1 could move freely on the line 1;’ on the second view. The line 1’ on the second
view is the corresponding epipolar line for x1 of the first view. On the contrary, given x;’
of the second view, we can also find an epipolar line 1; on the first view. In particular, the
epipolar line 1 and 1;" are computed as

11/ = FX1

11 = FTxl/,

@

where F € R3*3 is the fundamental matrix, which can be derived from P and P’. Readers
can refer to [32] for a detailed derivation.

G

Figure 2. Illustration for epipolar geometry.

3.2. Distance Metric

Given 2D measurements x; and X2’ on the first and second view, respectively, although
we cannot compute the direct Euclidean distance between this two points, an indirect
distance metric could be obtained by utilizing the point-line correspondence described in
the previous section. As shown in Figure 2, the distance from x,’ to x1 can be represented
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by the point-to-line distance d}, ., on the second view, because the mapping between 1;’
and xq is one-to-one. Conversely, the indirect distance from x; to x,’ can be represented by
d;_,, on the first view. Mathematically, d}_,, and d;_,, are

’ |X2/TFX1|
dy 1 = > >
(FXl)l + (FXl)z (2)
TET ya/
F
d1~>2 — |X1 X2 |

VETx): 4 (FTx!)?

where F is the fundamental matrix, the subscript 1 or 2 denotes the first or second element
of a vector. We know (x2'"Fxq) " = x1 ' Fx,’; therefore, it is clear d} ., is not equal to
d;_,>. To make the distance metric symmetrical, we propose merging the denominators of
the two formulas as

Ix2' T Fxq|

dien = = >
\/(Fxl)% —+ (FX1)% + (FTXZI)l =+ (FTXZ,)Z

®)

We call the distance in Equation (3) the epipolar distance in this paper. The epipolar
distance is symmetrical. In addition, we can directly calculate the distance between a pair
of 2D locations without knowing their corresponding 3D points.

In the context of this paper, the 2D points x; and x,’ are detections of human body
keypoints of same type, but may be of different time instants from two views. Ideally, if the
measurement is noise-free, and the videos are temporally aligned, the epipolar distance
should be 0. Otherwise, if the human moves in a constant direction, the epipolar distance
grows with temporal unalignment.

4. On Two-View Synchronization

We first describe how to solve the two-view synchronization problem by minimizing
an energy function related to Epipolar distance. Then, we incorporate 2D pose confidence
into this framework to obtain improved accuracy and robustness. Finally, we describe the
implementation details.

4.1. Problem Formulation

We represent one 2D human pose by a set of K joints, as P = {](1), ]<2), ceey ](K) }; Kis
the number of total joints. Each | represents the state of a joint, such as its 2D location on
the image, as | (k) = (x(k), y(k)), k € [1,K]. Besides this, we denote view index, frame index
and person index in right-subscript. For example, P, ; ;) represent the i-th human pose of
the v-th camera view’s t-th frame.

Ideally, if the videos captured by the two camera views are temporally synchronized
and the 2D pose estimation results are accurate, the Epipolar distance between one person’s
poses in the two views of the same frame index should be zero. Therefore, we propose an
energy function E related to the epipolar distances between the two videos, and minimize
the energy function to find the best temporal offset for two-view synchronization. The

energy function is
T Ny K

1
B0 = 5 1 X 3 6400 i Jimssana) @
t=1i=1k=1
where Z is partition function related to total number of joint pairs; T represents number of
overlapped frames after offsetting the second video At frames; N; represents the number
of humans in the -th frame; d(-, -) is the epipolar distance of a pair of joints from two
views; 0 is the filter function which outputs 0 or 1 to indicate if a pair of joints is valid.
Following common practice in 2D human pose estimation works, we regard those joints
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whose confidence score of less than 0.2 as invalid. We then find the best temporal offset
At* by
At* = argmin E(At). )
At

4.2. Multiple Person Association across Cameras

One limitation is that we could hardly know the personal correspondence among
different views. Human pose estimators are usually trained on the MPII [24], COCO [18]
or AIC [25] dataset, neither of which is provided with personal identity information for
multiview association. To our knowledge, none of the out-of-the-shelf 2D human pose
estimation networks atr equipped with a person identification module. This imposes
challenges when computing energy function in Equation (4). Fortunately, due to the
sparsity and diversity of human poses, the epipolar distances between non-corresponding
poses are statistically much larger than the corresponding pose pairs. To bypass the
complex person identification problem, we simply regard the one whose pose has the least
average epipolar distance between other views as the corresponding pose, as in

K

Corresponding ID = arg min Z (5’1(]((1]2,@1‘)' ]((zl:z,t+At,i))' (6)
i k=1

We illustrate this approach in Figure 3. Although this approach is very simple, the
experimental results validate that it works pretty well.

View #1 View

Peie,2) Pt,2)

no displacement

View View

Pet2) | Pt

N\

small displacement large displacement

Figure 3. Illustration of multiple person association typical cases. The two frames are from two
different camera views of the same or different time instant. To find the corresponding pose of the
same person in the view #2 for pose Py 4, 1) of view #1, we compute the distances between all poses
in view #2 and Py 4, 1)- Then, the pose of least distance to Py ;, 1) is selected as the correspondence.
Note that P, ;, 1) of the dashed line is a proxy for P(y ;, 1), which is only for illustration. When the
two frames are of the same time instant (upper-right), it finds the correct corresponding pose and
the distance is very small. When there are small temporal displacements (lower-left), it is likely that
the correct correspondence will be found, but the distance will be a little larger. When the temporal
displacement is large (lower-right), the wrong correspondence could be assigned and the distance is
generally much larger.

4.3. Score Regularization

Together with the 2D pose coordinates, the human pose estimator also outputs a
confidence score for each joint to reflect its detection quality. Previous works often calculate
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the average score of all joints for a human proposal, to determine if it is a false positive
threshold. We find that it, in fact, conveys more information, which has not been effectively
utilized. Due to the different levels of occlusion, background clutter and light variance, 2D
human pose results have different noise levels. We observe that the confidence score can
indicate the noise to a certain extent. However, in Equation (4), all poses are regarded as
being of the same precision. In this section, we propose regularizing the energy function
with the confidence score as

R NN ®
E(at) = = t21 Zl 1<Z1 in (A s Ay i) 98U oy iy o i) ) @)
=1i=1k=
where Aglz i) and AEIZ b+t AT the related confidence scores of joints | ((:2 i) and | ((2 ALY

4.4. Implementation Details

We use HigherHRNet [17] as the off-the-shelf, bottom-up 2D pose estimation backbone
network. The parameters of the backbone network are provided by the HigherHRNet
authors, who are trained on the COCO [18] dataset and not fine-tuned on any of our test
datasets. The short side of input image is resized to 512 pixels and the aspect ratio stays
the same.

5. On Multi-View Synchronization

In this section, we present the details of our method to derive the optimal temporal
displacement configuration to construct separate cameras into a synchronized multiple-
camera system.

5.1. Graph Based Global Minimization

Recall that we have already obtained the temporal displacement for every pair of
camera views. The displacement for one view could be determined from multiple reference
views. However, the displacements between reference views might conflict. Take three
views as an example: the displacements for view pairs (1,2), (1,3) and (2,3) are 0, 2 and
4 frames. It would be hard to determine a consistent displacement configuration. In this
case, we propose the use of a graph-based minimum spanning tree algorithm to find the
global optimal displacement configuration of the least sum of epipolar distances.

We construct an undirected graph G = (V, E) on the multiple-camera system. See
the right half of Figure 1. Each node in the vertex set V = {v;} represents a camera view.
Each edge ¢ in the edge set represents attributes between two camera views, e.g., temporal
displacement, epipolar distance energy value E and total number of valid joints in the two
videos. Finally, the minimum weight spanning tree is used to obtain the optimal temporal
displacement configuration.

5.2. Implementation Details

Since the overlap space of some camera pairs is small, the number of valid joint pairs
might be small and the corresponding temporal displacement for the camera pairs will
also not be very accurate. We filter out the camera pairs of a small number of valid joint
pairs by a threshold predefined or adaptively assigned as Q1 quantile of all pairs. Energy
function value E is used as the edge weight in a minimum weight spanning tree. Kruskal
algorithm [33] is used to obtain the minimum weight spanning tree.

6. Dataset and Metric

We evaluate our method on four representative public datasets (see Figure 4) which
covers diverse scenarios and situations. All these datasets provide intrinsic and extrinsic
camera parameters.
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Figure 4. Sample images and human pose predictions from (a) Human3.6M , (b) Shelf, (c) Campus
and (d) Store datasets. The poses could be noisy for challenging cases. Better viewed in color and
zoomed-in. Human faces are obfuscated to protect subjects’ privacy.

6.1. The Human3.6M Dataset

This dataset[19] provides videos captured by four cameras. The videos are triggered
by an external clock signal to ensure perfect synchronization. The frame rate is 50 fps. In
each video, there is a single subject performing one of sixteen daily actions. There are seven
subjects (1, 5, 6,7, 8,9, 11) in total. Each video contains about 1000 to 3000 frames.

6.2. The Campus Dataset

This dataset[20] captures three people walking and interacting with each other in an
open outdoor square by three cameras. Each video contains 2000 frames. The scale of
people in the image is much smaller than other datasets.

6.3. The Shelf Dataset

This dataset[20] captures four people interacting with each other and disassembling
a shelf in a small indoor environment by five cameras. Each video contains 3200 frames.
People are often occluded by other people or the shelf in the scene.

6.4. The Store Dataset

This dataset[11] evenly arranges twelve cameras on the ceiling of a store with shelves.
Each camera captures a small part of the store from a height. The frame rate is 10 fps. Each
video contains about 790 frames. There are, in total, five people in the scene.

6.5. The Temporal Displacement Metric

We introduce the synchronization error (SynErr) to measure temporal displacement
between predicted offset and true offset over all video pairs for multiple camera systems.
The SynErr in number of frames is as

) v Vv
SynErr = vV —1) Z Z IRij — Tisjl, ®)

i=1j=i+1
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where V is number of views in the multiple-camera system, R; ,; and T;_,; are, respectively,
the predicted and true offset for a video pair of view i and view j. For synchronized video
pairs, the true offset T is 0. The smaller the value of SynErr, the better the performance.

7. Experimental Results

Table 1 shows SynErr results on the four public datasets. We denote the baseline
method proposed in Section 4.1 and the improved score regularized version in Section 4.3
as Simple and Score, respectively.

Table 1. SynErr results on Human3.6M, Campus, Shelf and Store datasets.

Dataset Simple Score
Human3.6M 0.1 0.0
Campus 0.7 0.7
Shelf 8.8 0.0
Store 3.1 0.6

On Human3.6M and Campus datasets, the Simple method achieves sub-frame tem-
poral displacement accuracy, while on Shelf and Store datasets, the errors become much
larger. We attribute this to the 2D human pose qualities estimated by the out-of-the-shelf
pose estimator and the length of videos. In Human3.6M, there is only a single subject
in a laboratory capture room and the video lengths are generally longer. Therefore, Hu-
man3.6M obtains the least SynErr among all datasets. In Shelf and Store datasets, there
is more occlusion, caused by both the subjects themselves and the objects in the scene,
such as shelves. Consequently, the estimated human poses in these dataset suffer missing
detection and lower precision, leading to larger errors.

With the help of human pose confidence scores as regularization terms in the energy
function of Equation (7), the SynErr consistently decrease for the Score column of Table 1.
The improvements are significant for Shelf and Store datasets. They reduce from 8.8 and 3.1
to 0 and 0.6, respectively. This indicates that the improved Score method works robustly,
even when the human pose qualities are poor, by effectively utilizing the pose scores. The
improvements are small for Human3.6M and Campus datasets, because they already work
well with the Simple method.

7.1. Ablation Study on Number of Frames

Figure 5 shows ablation results on Human3.6M and Shelf datasets when a different
number of frames is used for temporal displacement calibration. We choose the “Walk”
action from Human3.6M, since it is the most common action in real-world applications.
On Human3.6M (left figure), the SynErr difference between Simple and Score methods is
negligible. This happens because the estimated pose accuracy is high, leaving little room
for improvement. When 600 or more frames are used, the SynErr reaches its lower bound.

On Shelf (right figure), the estimated human poses contain more noises and errors.
The SynErr hardly decreases, even when more frames are used for the Simple method. The
Score method consistently reduce SynErr by effectively utilizing more frames. At about
1400 frames, the Score method reaches its lower bound error.

7.2. Ablation Study on Action Types

Figure 6 shows SynkErr results of Score method for each action type of Human3.6M
dataset. We randomly crop 600 frames from original videos and repeat the experiment for
50 times to obtain the average SynErr in the graph. “Purchase” and “Sit” actions have the
largest SynErr among all actions. In these action videos, the subject does not often walk
around in the room but stays still for most of the time. Such cases need more frames to
reduce the SynErr. On the other hand, actions like “Walk”, “Smoke”, etc. achieves very
low SynErr. In these action videos, the subjects often walk around and are in regular poses
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which are easy for the pose estimator. We conjecture that actions similar to “Walk” where
subjects have stable global movements best fit our method.

12 8.0
] -<-Simple -==-Simple

10 \ 7.0 < impl

. \ Score e PN ——Score

\ 60 | vve~al_ .- ~ et

\ —~

\ 5.0
4.0

3.0

SynErr

N 2.0
1.0

00— 00

0 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400
Number of Frames Number of Frames

(a) “Walk” of Human3.6M (b) Shelf dataset

Figure 5. Results for Human3.6M “Walk” action (a) and Shelf (b) dataset when different numbers
of frames are used. For each SynErr datapoint in the graph, we randomly crop the number of
corresponding x-axis value frames from original videos and repeat the experiment 50 times to obtain
the average SynErr.

Action Types

Figure 6. Results for different action types of Human3.6M dataset. The Score method is used. We
randomly crop 600 frames from original videos and repeat the experiment for 50 times to obtain the
average SynErr.

8. Discussion
8.1. How Scores Work Effectively?

The results for Score method are superior to Simple method. It is not only more accurate
but also more robust for various scenarios. This should be attributed to the effective usage
of scores in Equation (7). The scores are the corresponding maximum response values of
heatmaps. They are typically used for threshold to determine if a joint detection is valid.
However, we observed that the scores actually convey more information about detection
quality, and were not effectively used in previous works. We borrow the data fusion idea
from Kalman filter [34]. We regard human poses as 2D location measurements and we
assume the measurement noise is Gaussian noise. Then, the confidence score can be seen
as an approximation of the reciprocal of noise variance. Ideally, one pair of joints could
determine the energy function. However, the signal to noise ratio (SNR) will be very low
because of imperfect human pose estimation. By merging all the joint pairs into the energy
function with appropriate weights, similar to the Kalman filter, the noise level of final
energy function is lower than any of the separate joint pairs. Therefore, our Score method is
accurate and robust.

8.2. What Kind of Actions Are Suitable?

As shown in the experimental results of Human3.6M in Figure 6 and benchmark
datasets in Table 1, our method works well for all kind of action. Nevertheless, we find
that, for some actions, fewer video frames are used to reach a similar accuracy to other
actions. Actions similar to “Walk” are more suitable for our method. We attribute this
to the characteristic energy function in Equations (4) and (7). When the subjects move
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stably, the energy also grows smoothly as a temporal offset. Such actions contain abundant
information for synchronization. On the contrary, in actions like “Sit”, the movement is
mainly local motion. They contain little information and more frames are needed to obtain
feasible performance. In practice, subjects may perform a series of action types in series.
For example, a shopper walks to a shelf (global motion) and picks up a commodity (local
motion). To ensure our method makes use of all kind of actions, we could detect subjects’
actions and classify them, to assign adaptive weights to the clips for better synchronization.
Since this is beyond this paper, we leave this for our future work.

9. Conclusions

This paper presents a novel framework to semantically synchronize multiple-camera
systems with human pose estimation. It features out-of-the-box usage and robust and
accurate sub-frame performance. It firstly synchronizes every pair of cameras in the system
by minimizing an energy function. Then, the optimal temporal displacement configuration
is derived by the graph algorithm. We evaluate the approach on four widely used bench-
mark datasets and show consistent sub-frame accuracy. We discuss how relevant factors
such as number of frames and action type possibly affect the performance by ablation
study. We also explain our insight into using the scores for regularization. As the subjects
naturally perform a series of different actions and some actions are more informative
for synchronization, our future work will focus on how to detect those segments from
long videos.
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