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Abstract: Intelligent fault diagnosis can be related to applications of machine learning theories
to machine fault diagnosis. Although there is a large number of successful examples, there is a
gap in the optimization of the hyper-parameters of the machine learning model, which ultimately
has a major impact on the performance of the model. Machine learning experts are required to
configure a set of hyper-parameter values manually. This work presents a convolutional neural
network based data-driven intelligent fault diagnosis technique for rotary machinery which uses
model with optimized hyper-parameters and network structure. The proposed technique input raw
three axes accelerometer signal as high definition 1-D data into deep learning layers with optimized
hyper-parameters. Input is consisted of wide 12,800 × 1 × 3 vibration signal matrix. Model learning
phase includes Bayesian optimization that optimizes hyper-parameters of the convolutional neural
network. Finally, by using a Convolutional Neural Network (CNN) model with optimized hyper-
parameters, classification in one of the 8 different machine states and 2 rotational speeds can be
performed. This study accomplished the effective classification of different rotary machinery states in
different rotational speeds using optimized convolutional artificial neural network for classification
of raw three axis accelerometer signal input. Overall classification accuracy of 99.94% on evaluation
set is obtained with the CNN model based on 19 layers. Additionally, more data are collected on
the same machine with altered bearings to test the model for overfitting. Result of classification
accuracy of 100% on second evaluation set has been achieved, proving the potential of using the
proposed technique.

Keywords: rotary machinery; fault diagnosis; convolutional neural network; classification;
hyper-parameters tuning; bayesian optimization

1. Introduction

Fault diagnosis plays an essential role in relating monitoring data with the health
states of the machinery [1], that is known to be a key issue in machine health monitoring
process. The relation between data and the machine state can be done using experience
engineer that can discover differences in machine monitoring data that can be related to
machine health. However, the development of sensor industry, communication protocols
and Industrial Internet of Things leads to a lower price and greater availability of sensors
and data acquisition and processing systems, consequently leading to the greater ability to
extract knowledge from these available data. With the increase in the amount of condition
data collected, it is possible to create data-driven models, that is, models that describe
the system in operation and can provide accurate diagnosis result based solely on the
previously collected data. They are becoming suitable even for the complex systems
and are receiving more and more attention from the researchers and engineers. For the
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particular matter of fault diagnosis, the procedure is expected to be intelligent enough to
automatically detect and recognize the health states of the machines [2,3].

Intelligent fault diagnosis (IFD) refers to applications of machine learning theories,
such as artificial neural networks (ANN), support vector machine (SVM), and deep neural
networks (DNN), to machine fault diagnosis [4]. In last few years, researchers are begin-
ning to exploit the potentials of deep learning and convolutional neural networks in fault
identification and diagnostics, with the aim of reducing or eliminating the shortcomings of
shallow ANN architectures [5], which is a step forward to intelligent fault diagnosis. Deep
learning stands for class of machine learning techniques specific by its many layers of infor-
mation processing stages in deep architectures that are exploited for pattern classification
and other tasks [6]. However, applying the deep learning models raises a new challenge in
the area of model hyper-parameter tuning [7].

Deep learning is considered to be a black box approach in which the researcher
does not have much scope for hand tuning the parameters as the layers are hidden and
there are many hyper-parameters related to network structure and training algorithms as
well [8]. Selection of appropriate hyper-parameters values is important since they directly
control the behavior of training algorithms and have significant impact on the model
performance [9]. Bayesian optimization is a very effective technique for solving this kind
of optimization problem [10] and outperforms other global optimization algorithms [11].
In this paper, we attempt to automatically optimize hyper-parameters and architecture of
multi-channels deep convolutional neural network by using Bayesian optimization [12].

The contributions of this paper are summarized as follows:

(1.) A modular Multi-Channels Deep Convolutional Neural Network (MC-DCNN) archi-
tecture for rotary machinery state classification is developed. It is used to learn fea-
tures of the raw accelerometer data thus eliminates necessity expert knowledge in vi-
bration signal preprocessing. Network architecture is modular and hyper-parameters
dependable, so it can be automatically and optimally adjusted to input data in the
learning process using hyper-parameters tuning procedure.

(2.) Convolutional neural network model generally operates as black-box and requires
hyper-parameters for machine learning process, hence relevant hyper-parameters for
optimization process as well as optimization procedure using Bayesian optimization
is proposed.

(3.) Hyper-parameters optimization using the developed procedure is conducted and
results are presented.

The main motivation of this study is to find optimal Convolutional Neural Network
(CNN) architecture and hyper-parameters values that can yield the best performance
in intelligent fault diagnosis of rotary machinery without manually adjusting network
structure any hyper-parameters.

This paper is organized as follows—in the next subchapter, related work regarding the
application of CNN in fault diagnosis of rotary machinery and hyper-parameters optimiza-
tion is presented. Sections 2 and 3 reveals CNN architecture and Bayesian optimization,
respectively. In Section 4, experimental setup and collected data are explained. Section 5
explains the results of the research. Finally, conclusions are drawn in Section 6.

Related Work

Convolutional neural networks (CNN) are biologically inspired deep feed-forward
artificial neural network (ANN) that present a simple model for the mammalian visual
cortex. CNNs are proposed by LeCun et al. [13] and now widely used and virtually
have become the standard in many object recognition systems in an image or video.
As supervised deep learning technique, CNN accomplished superior results in image
identification, speech recognition and target tracking [14]. In general, convolutional neural
networks consist of convolutional layers, pooling layers and full-connected layers [15] and
the way it works is explained in detail in [16].
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Currently, many papers can be found in the field of predictive maintenance that are
dealing with the application of convolutional neural networks for the intelligent fault
diagnosis. In the terms of the architectures of CNN, they can be classified into the 1-
dimensional (1D) fault diagnosis models and 2-dimensional (2D) fault diagnosis models.
CNNs were originally developed for image and video classification, thus 2D CNN inputs
are images in two dimensions. For intelligent fault diagnosis, researchers adopted CNN
so it can handle machine monitoring data that is most commonly collected as 1D signal.
Researchers using 2D architecture additionally explored either signal processing meth-
ods [17–20], manually constructed signal matrix [21,22] to enable CNN or used health state
image like infrared thermal image [23] or grey scale image [24]. The use of such techniques
has enabled the applicability of the CNN model in intelligent fault diagnosis, as is the case
in image classification. Compared to 2D CNN models, 1D fault diagnosis models work
with raw sensor data that are described as 1D time series and can avoid preprocessing
with the aforementioned techniques. 1D CNN techniques for induction motors [25,26],
pumps [27] and rolling element bearings [28,29] are developed. Further on, the authors
of [30] presented multi-channels 1D CNN (MC-DCNN) for human activity classification
that is modified by [31] for 3 axis vibration data input with input size of 6400 × 1 × 3.
This type of CNN is visualized in Figure 1. Input layer consist of three channels input and
the length of each input is 6400. Convolutional layers compute the output of the neurons,
while pooling pass over sections of vibrational signal and pool them into the highest
value in the section. Full-connected layer classify data in one of the previously defined
classes. Defining the model architecture can be difficult since there are multiple architecture
options available and researcher does not know optimal structure or hyper-parameters
values. In this research, authors perform additional modifications in input size as well as
in MC-DCNN architecture previously presented in [31] to enable intelligent fault diagnosis
and optimization of both network structure and hyper-parameters.

Figure 1. Generic structure of multi-channels 1D Convolutional Neural Network (CNN).

Machine learning algorithm transforms a problem that needs to be solved into an
optimization problem that uses different optimization methods. Optimization function
is a compound of multiple hyper-parameters that are set before the learning process and
influences how to algorithm fits the model to the data. Unlike internal model parameters,
such as weights in neural networks, hyper-parameters cannot be learned from the data
during training process. The influence of hyper-parameters on training accuracy and speed
suggest that they must be configured before the training process begins. The process that
yields the hyper-parameters for specific training data is called hyper-parameter optimiza-
tion and it can be defined as an optimization problem where the objective function is
an unknown or black-box function. Until now, there has been no standard method for
optimal hyper-parameter selection, because there is no clear relationship between model
performance and hyper-parameters [7,32]. To overcome this drawback, it is possible to train
multiple models with different hyper-parameters values and find the best combination of
it by comparison. Having in mind that hyper-parameters values have a significant impact
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on classification accuracy of the model, a way to optimize hyper-parameters becomes a hot
issue in a machine learning process. Some research has been done on optimizing hyper-
parameters [33–35], mostly by using standard CIFAR-10 dataset. Hyper-parameter tuning
can be done manually or automatically. While manual search requires and depends on
expert knowledge and practical experience, automatic hyper-parameter search completely
remove human from machine learning process. Automation of the hyper-parameters selec-
tion reveals its clear advantages in cases of a larger number of hyper-parameters, where
even experts are not capable of handling high dimensional data and relationship between
them. The state-of-the-art algorithms for hyper-parameters optimization can be classified
into two categories—search algorithms and trial schedulers. Mainly, search algorithms
are applied for sampling while trial schedulers deal with the early stopping methods for
model evaluation [36].

Grid search algorithm trains a model with each combination of possible values of
hyper-parameters and outputs the hyper-parameters values that achieve the best perfor-
mance during training. Although this method works automatically and in theory can
find the global optima of objective function, it is not effective. Random search as another
type of search algorithm tries to reduce deficiencies of grid search in term of expensive
cost. It reduces search to a subset of hyper-parameters which have the most influence
on results. Albeit it is more efficient with greater number of hyper-parameters, some
research [33] shows that it can be unreliable for training complex models. Additionally,
grid and random search are completely unaware of previous evaluations. In contrast
to Bayesian grid and random search, Bayesian optimization stores and includes past re-
sults in evaluation of the hyper-parameters values. Authors in [8,9] investigate automatic
tuning of hyper-parameters on different machine learning architectures including CNN
and define Bayesian optimization as usable method for hyper-parameters tuning. This
research altogether suggests that the challenge of automatic hyper-parameters tuning is still
present in machine learning. In this paper, the authors present the results of research into
hyper-parameters tuning of the CNN architecture for fault diagnosis of rotary machines
using Bayesian optimization.

2. CNN Hyper-Parameters

Hyper-parameters can be defined as a group of parameters that are used in the
machine learning process. As noted in the introduction, hyper-parameters differ from the
parameters of the internal machine learning algorithm in that they cannot be learned from
data during the learning process. Hyper-parameters of the convolutional neural network
can be divided into two types:

1. Network structure definition hyper-parameters such as:

• Kernel size—size of the filter
• Number of kernels—number of filters
• Stride—the rate at the filter jumps over the input image
• Padding—adding borders of zeros to input images
• Number of hidden layers—layers between input and output
• Activation functions— function that allows model to learn nonlinear boundaries

2. Network training process hyper-parameters such as:

• Learning rate—regulates the update of the weights after each batch
• Momentum—regulates the influence of previous weights update on the cur-

rent update
• Number of epochs —number of iterations of learning
• Batch size—the number of samples shown to the network before weights update

Hyper-parameters values can have a major impact on the model. To the authors’
knowledge, there is no set of best hyper-parameters that fits for all models, yet the set
of hyper-parameters should be in the right combination of values having minimum loss
function or maximizing the performance or accuracy of the model. Thus, hyper-parameters
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optimization can be formulated as an optimization problem and solved using optimization
algorithms. In this work, the authors considered the learning rate, momentum, kernel size
and the number of kernels from the list of the standard hyper-parameters of the CNN to be
optimized. Architecture of the CNN can be modified using additional hyper-parameters,
as is explained in Section 5.1.

3. Bayesian Optimization

In general, there are two classes of hyper-parameter optimization methods, that is,
manual and automatic search methods. Manual hyper-parameters optimization is a hard
procedure to reproduce since it is based-on many attempts of trial and error. Grid search
is not scalable for higher dimensions. Random search acts like the greedy approach,
settling for local optima and thus not reaching to global optima. Other evolutionary
optimization methods require a greater number of training cycles and can be noisy. As
stated earlier, Bayesian optimization can overcome all these constraints by efficiently
finding the global optima of the black box function of the neural network and it is derived
from Bayes theorem. Bayesian optimization is a method for solving functions which are
computationally expensive to find the extrema [37].

The key elements in the optimization process are:

• A Gaussian process model of f (x).
• A Bayesian update procedure for modifying the Gaussian process model at each new

evaluation of f (x).
• An acquisition function a(x) based on the Gaussian process model of f which is

maximized to determine the next point x for evaluation.

By using such a mechanism it can be concluded where the function obtains the optimal
value thus reducing loss and maximizing the model’s accuracy. As stated, in this paper
the optimization goal is to find the minimum value of the loss at the sampling point for an
unknown function f :

xopt = arg min
x∈D

f (x), (1)

where D denotes the search space of x.
The underlying probabilistic model for objective function f is a Gaussian process

prior with added Gaussian noise in the observations that is explained in detail in [34].
Gaussian process is a generalization of Gaussian probability distribution, where any finite
sub-collection of random variables has a multivariate Gaussian distribution [38]. Gaussian
process works in a way that expects outputs similar to inputs, and thus assumes a statistical
model of the function.

P(M|E)∞P(E|M)P(M). (2)

Equation (2) reflects the idea of Bayesian optimization. Looking into sample data E,
posterior probability P(M|E)of a model M is proportional to the probability P(E|M)of ob-
serving E given model M multiplied by the prior probability of P(M). It can be concluded
that Bayes optimization optimizes unknown function by combining the prior distribution
based on Gaussian process of the function f (x) with the current sample information to
obtain the posterior of the function. In the next step, the posterior information is used
to find where the function f (x) is minimized through criterion value. The criterion is
represented by a utility or acquisition function a. The function a is used to define the
next sample point in order to maximize the expected utility. There are few commonly
used acquisition functions. In this paper, expected improvement (EI) function is used,
as it evaluates the expected amount of improvement in the objective function, ignoring
values that cause an increase in the objective. Function EI calculates the expectation of the
degree of improvement that a point can achieve when exploring the vicinity of the current
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optimum value [39]. If xbest is the location of the lowest posterior mean and µQ(xbest)is the
lowest value of the posterior mean than the expected improvement is

EI(x, Q) = EQ [max(0, µQ (xbest )− f (x))] (3)

In other words, if the improvement of the function value is less than the expected
value after the algorithm is executed, then the current optimal value point may be the local
optimal solution, and the algorithm will find the optimum value point in other positions of
the domain. Searching the sampling area includes both exploration (sampling from the
areas of high uncertainty) and exploitation (sampling from that with high values) [40],
which help in reducing the number of samplings. Finally, the performance will be improved
even when the function has multiple local maxima. In addition to the sample information,
Bayesian optimization depends on the prior distribution of the function f , which is a
required part in the statistical inference of the posterior distribution of the function f .

The main steps in the optimization are as follows:

1. For current iteration t
2. Evaluate yi = f (xi) for defined number of points xi taken at random within the

variable bounds.
3. Update the Gaussian process model of f (x) to obtain a posterior distribution over

functions Q( f |xi, yi f or i = 1, ..., t).
4. Find the new point x that maximizes acquisition function a(x).

The algorithm stops after either reaching time or number of iterations limit.
In this paper, tuning the hyper-parameters and CNN architecture is achieved using

Bayesian optimization (Bayes Opt) algorithm presented in [12].

4. Experimental Setup and Analysis

The experimental setup used for machine condition simulation and data acquisition
consist of rotary machinery fault simulator and data acquisition system. A SpectraQuest
variable speed Machinery Fault Simulator (MFS) was used as experimental setup data
generator for both normal operation and faulty condition data. The system (illustrated in
Figure 2) consist of a 0.75 kW variable speed motor driving a shaft-rotor component via
coupling supported with two sets of ER12K ball bearings. The basic configuration consisted
of main rotor positioned centrally on main shaft. As different modules representing
different rotary machinery states can be mounted on a device, it can be used for emulating
different real world rotary machinery fault scenarios. The experimental configuration of
MFS is outfitted with three-axis accelerometer and a tachometer, that are connected to a
National Instruments DAQ System. In addition to the above-mentioned failure simulator
modules, an inertial disk weighing 5 kg was additionally used with the aim of increasing
the basic load of the entire system.

Although there are several other types of sensors that can serve as data sources for
condition monitoring, accelerometers monitoring vibrations have been selected and used
in this study. They have been chosen for the fact that vibration monitoring is considered the
most powerful predictive maintenance technique [41]. Three-axis PCB Piezotronics 356B21
IEPE type accelerometer is mounted on the bearing housing on the shaft side opposite
of the motor position. The sampling frequency is set to 51.2 kHz, while revolving speed
during the experiment is set to 1000 r/min and 1500 r/min, respectively. Vibration signals
in three directions are acquired when the system operates under 16 different conditions.
Each particular condition is combination of rotational speed and state of the machine.
Non-normal states of the machine are simulated by coupling additional modules or faulty
parts to the machine. Each acquired sample of 12,800 data points is stored and labeled
as data set representing particular condition, that is, combination of rotational speed and
machine state. Simulated fault conditions with descriptions and labels are listed in Table 1.
As it can be seen in the table, situations with both normal behavior of the machine and
faulty conditions are observed. Condition labels are used in machine learning process
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as class indicators. For the purpose of the experiment, main shaft is loaded with main
rotor and additional load, as it can be seen in Figure 2. If the system operates in normal
behavior, that is, there are no faults, our model should predict normal machine state. For the
purpose of simulating rotor faults, additional faulty rotors are mounted. Debalanced rotor
is simulated by adding extra weight of 20 g in main rotor in previously defined position.
Different bearing fault are simulated using bearings with inner or outer race faults, as well
as bearing running with ball bearing fault. Additionally, bearing with faults on both inner
and outer races combined with ball bearing fault is used. Machine bearings were provided
by MFS manufacturer and seeded with faults using electro-discharge machining (EDM).
1500 samples of each condition is collected. In total, 24,000 data sets have been collected to
train, optimize hyper-parameters and test the convolutional neural network data-driven
model for failure classification.

Figure 2. Fault simulator (1. Frequency drive Lenze SMVector; 2. Tachometer display, 3. Motor, 4.
Clutch, 5. Front-end bearing, 6. Main shaft, 7. Load, 8. Main rotor, 9. Back-end bearing, 10. Three-axis
IEPE accelerometer, 11. Horizontal axis alignment screw, 12. Vertical axis alignment screw, 13. Base,
14. BNC connectors).

Table 1. Simulated fault conditions and labels.

No Machine State Description RPM Condition Label

1 Normal state Machine is running without simulated fault. 1000 1000 NS
2 1500 1500 NS

3 Debalanced rotor Machine is running with simulated fault of imbalance on
main shaft. Weight of 40 g is added to the main rotor. 1000 1000 IMRF

4 1500 1500 IMRF

5 Eccentric rotor Fault is simulated by replacing the main rotor with rotor
that have asymmetrically located central hole. 1000 1000 ERF

6 1500 1500 ERF

7 Cocked rotor Fault is simulated by replacing the main rotor with
cocked rotor (0.5 degree off-axis). 1000 1000 CRF

8 1500 1500 CRF
9 Outer race bearing fault Machine is running with bearing outer race fault. 1000 1000 ORBF
10 1500 1500 ORBF
11 Inner race bearing fault Machine is running with bearing inner race fault. 1000 1000 IRBF
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Table 1. Cont.

No Machine State Description RPM Condition Label

12 1500 1500 IRBF
13 Ball bearing fault Machine is running with bearing ball fault. 1000 1000 BBF
14 1500 1500 BBF

15 Combined bearing fault Machine is running with both bearing races faults
combined with ball fault. 1000 1000 CBF

16 1500 1500 CBF

Signals are collected and divided for optimization and evaluation data sets separately
for each condition by using stratified sampling before being used in optimization and
evaluation procedure. Samples for the final evaluation of the model were not used in the
hyper-parameter optimization process.

The whole optimization and evaluation process is outlined in Figure 3 .

Figure 3. Optimization and evaluation process outline.

From all the samples, 70% of the data are used in the optimization process (training,
validation and testing during optimization) while rest of 30% is used for final testing of
the model and 30% of the training data are used for model testing during optimization
procedure, while 10 % of the training data are used for validation during training procedure.

Hyper-Parameters Optimization

In this chapter, the optimization process for fault diagnosis model is explained in
detail. As stated in introduction, the main goal of this study is to define algorithm or
module that can automatically create optimal CNN architecture and hyper-parameters
values, that is, CNN based model that can yield the best performance in intelligent fault
diagnosis of rotary machinery without manually adjusting network structure and hyper-
parameters. As a result of literature research, Bayesian optimization (Bayes Opt) [12] has
been chosen as the optimization technique.

Figure 4 presents a proposed model of Bayesian hyper-parameters optimization of
CNN for fault diagnosis. The objective of the proposed model is to find the optimal
structure and hyper-parameters of CNN for intelligent fault diagnosis. The convolutional
neural network used in this research is modified multi-channels 1D CNN, explained in the
authors’ earlier work [31]. For the purpose of this research, the network is modified in a
way it can simultaneously input raw vibration signal with size of 12,800 in each of three
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input channels. CNN architecture is set up with three convolutional blocks and chang-
ing the architecture layout by adding additional KB2 level of blocks by hyper-parameter
Number o f blocks value is possible. By altering Number o f blocks hyper-parameter value
in defined range, optimization algorithm can change network architecture by adding or sub-
tracting KB2 type blocks. Additionally, network structure hyper-parameters Kernel sizeand
Number o f kernels can be tuned for all convolutional blocks. Finally, network train-
ing hyper-parameters Learning rate, momentum and scale rate can also be tuned within
set boundaries.

Figure 4. Model outline for hyper-parameters optimization of fault diagnosis CNN model using
Bayesian optimization.

To achieve above mentioned objective, algorithm workflow presented in Algorithm 1
is used. Algorithm inputs are CNN base architecture pointed out in Figure 4, CNN
hyper-parameters search space, data needed for optimization pointed out in Figure 3 as
well as the algorithm hyper-parameters Number of iterations, Time limit and Acquisition
function, respectively.

Algorithm 1 Algorithm workflow for automatic hyper-parameters and network structure optimization.
Inputs: CNN base architecture, Hyper-parameters search space, Training Data, Testing during Optimization Data,
Validation Data, Number of iterations, Time limit, Acquisition function
Outputs: Hyper-parameters values
1 : procedure Optimization
2 : Assume Gaussian Process prior on the objective function f
3 : Find and evaluate the objective f at xi number of points
4 : while j ∈ i + 1 ..., N do → search space exploration
5 : Update the posterior distribution on f using the prior
6 : Choose the next sample xj that maximizes the acquistion function value
7 : Evaluate yj= f (xj)
8 : return xj → return a point with best hyper-parameters values
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As previously stated, Bayesian optimization procedure expects search space definition,
that is, boundaries for hyper-parameters tuning. Based on this, optimization variables and
their ranges are created, which are visible in Table 2. Subset of hyper-parameters included
in this research, as well as the initial boundaries were selected based on expert experience
and evaluation. As can be seen, if only integer hyper-parameters and their values are taken
into account, the total number of possible combinations is 18,000, while with the inclusion
of momentum and learning rate as continuous variables there are practically countless
number of hyper-parameters combinations.

Table 2. Ranges of optimization variables for Bayesian optimization.

Optimization Variable Range Data Type

vLearnRate (vLR) 0.001–0.01 Decimal, logaritmic
vMomentum (vM) 0.80–0.95 Decimal, logaritmic
vKernelSize (vKS) 4–64 Integer
vNumberOfKernels (vNK) 4–24 Integer
vDepth (vD) 0–5 Integer
vScaleRate (vSR) 1–3 Integer

The optimization variables used as hyper-parameter values when performing Bayesian
optimization are shown in Table 3. The use of variables to adjust the number of kernels
and the size of the kernels at the convolutional blocks levels in combination with the
variable of the scaling factor ultimately reduces the total number of optimization variables,
that is, reduces the calculation time of the Bayesian optimization. A series of preliminary
experiments confirmed the concept initially presented in [42], according to which a better
model response is possible in the case of a smaller number of larger cores within the first
of the convolution blocks. Therefore, in addition to the standard hyper-parameters of the
convolutional neural network model itself, a scaling factor variable was added within the
optimization variables of the Bayesian optimization. This optimization variable allowed
to scale the hyper-parameters of convolutional blocks and create relationships in sizes
between core sizes and the number of cores in individual layers.

Table 3. Hyper-parameter calculation using optimization variables.

Hyper-Parameter Level Hyper-Parameter Optimization Variable or
Calculation

Network training Learning rate vLR
Network training Momentum vM

KB1 structure Kernel size vKS · vSR
Number of kernels vNK

KB2 structure
Kernel size vKS/vSR
Number of kernels vNK · vSR
Number of blocks vD

KB3 structure Number of kernels vNK

Additionally, Bayesian optimization requires a definition of the input hyper-parameters
of the optimization algorithm, which are selected as stated in Table 4.
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Table 4. Bayesian optimization hyper-parameters.

Hyper-Parameter Value

Acquisition function Expected improvement
Exploration ratio 0.5
Number of seed points 10
Maximum number of evaluations 50
Time limit in hours 100

5. Results

To demonstrate the proposed technique, this section provides results of the conduced
research, optimal values of the hyper-parameters of the model and the classification perfor-
mance obtained using tuned CNN model. The optimal optimization variable values and
hyper-parameters obtained using Bayesian optimization are given in Tables 5 and 6. The
optimization procedure last in total 14 h and 52 min using GeForce RTX 2070 GPU hardware.

Table 5. Optimal optimization variable values and accuracy.

vLR vM vKS vNK vD vSR Classification
Accuracy [%]

0.003245109 0.827834971 45 4 2 3 99.94

Table 6. Optimal hyper-parameters values of CNN.

Hyper-Parameter Level Hyper-Parameter Optimal Value

Network training Learning rate 0.003245109
Network training Momentum 0.827834971

KB1 structure Kernel size 135
Number of kernels 4

KB2 structure
Kernel size 15
Number of kernels 12
Number of blocks 2

KB3 structure Number of kernels 4

It can be seen that both learning rate and momentum of learning process are closer to
the lower boundary of search space, as well as the vDepth variable. Moreover,
vNumberO f Kernels has been tuned to the lower bound. In addition, variable vScaleRate
that is used for KB1 and KB2 structure definition is tuned to upper boundary. Variable vKS
is closer to the upper search space boundary with value of 45.

Training of convolutional neural network is computationally expensive and time-
consuming and using of GPU hardware is highly advisable. Using Bayesian optimization,
acquisition function enables narrowing down the search space thus expensive function
is performed in a narrowed region of values. The function evaluation that can explain
achievement of minimum objective is illustrated in Figure 5. In every iteration of Bayesian
optimization sample points generated by acquisition function are evaluated by objective
function (Gaussian process model). As the observations accumulate, the posterior distribu-
tion is updated continuously on the basis of the new posterior, that is, the point where the
acquisition function is maximized is found and added to the training data set.

Further on, the objective function trend throughout evaluations can be seen in Figure 6.
Both Figures 5 and 6 shows that hyper-parameters that are optimized throughout the
layers and on a network structure level ends in global optimization, thereby improving the
performance of the models. It could be seen that some of the hyper-parameters combination
yield in only 6.25% of model accuracy. Furthermore, it can be observed that the results
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vary significantly up to 21st iterations, after which the Bayesian optimization manages to
determine the hyper-parameters that ensure the classification accuracy greater than 90%.

Figure 5. Min. objective through function evaluations.

In Figure 7, confusion matrix for classification of 7200 test samples raw accelerometer
data by using optimized model is illustrated. It can be seen that optimized model incorrectly
classified only 4 samples of ball bearing fault, while all other samples were classified
according to true classes. In comparison with the study [31], it should be noted that the
network structure declared as CNN_24-48 that yield the best results in previous study
with limited number of classes but on the same experimental setup was also trained on
this set of data and without any further optimization showed a classification accuracy of
81.6%. This explains the importance of using hyper-parameters and structure optimization
of CNN model in case of intelligent fault diagnosis.

Figure 6. Objective function trend.
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Figure 7. The confusion matrix for 16 predicted classes across the true class with 7200 evaluation
samples.

The optimal structure of the CNN model as a result of hyper-parameters and network
structure optimization is presented in Table 7. All convolutional layers use stride equals
1 and padding is calculated so that the output has the same size as the input. In total,
there are 2,461,084 learnable parameters of the model. Finally, a test data set is used
with an optimized model to declare confusion matrix and calculate classification accuracy.
The optimal model achieved an equal classification accuracy of 99.94% on the evaluation
data set.

5.1. Additional Evaluation Set Results

High classification accuracy on the evaluation data can be achieved due to fact that
the deep learning model can overfit the training data. As for the first evaluation data set all
data were collected on the same platform, authors collected another set of evaluation data
with 200 samples for each class. Experimental setup on MFS is altered in a way that another
set of both faulty and non-faulty bearings were used during the data acquisition process.
The results of the classification of the additional evaluation set can be seen in Figure 8.
Optimized model is evaluated on the second evaluation set and an overall classification
accuracy of 100% is achieved. The second evaluation of the optimized model can confirm
that the model performs well on the new data, that is, data collected from the altered
platform. However, it must be said that both training and evaluation data set acquisition
has been done on laboratory stand in laboratory conditions and additional testing in both
laboratory conditions using simulated noise and real industrial conditions are preferable.



Sensors 2021, 21, 2411 14 of 16

Table 7. CNN structure of optimal model for intelligent fault diagnosis.

Layer Number Layer Type Activation Size Number of Learning Parameters

1 Input 12,800 × 1 × 3 0
2 Convolutional 12,800 × 1 × 3 Weigths 135 × 1 × 3 × 4

Bias 1 × 1 × 4

3 Batch normalization 12,800 × 1 × 3 Offset 1 × 1 × 4
Scale 1 × 1 × 4

4 ReLU 12,800 × 1 × 3 0
5 Max. pooling 12,797 × 1 × 4 0
6 Convolutional 12,797 × 1 × 12 Weigths 15 × 1 × 4 × 12

Bias 1 × 1 × 12
7 Batch normalization 12,797 × 1 × 12 Offset 1 × 1 × 12

Scale 1 × 1 × 12
8 ReLU 12,797 × 1 × 12 0
9 Convolutional 12,797 × 1 × 12 Weigths 15 × 1 × 12 × 12

Bias 1 × 1 × 12
10 Batch normalization 12,797 × 1 × 12 Offset 1 × 1 × 12

Scale 1 × 1 × 12
11 ReLU 12,797 × 1 × 12 0
12 Max. pooling 12,794 × 1 × 12 0
13 Convolutional 12,794 × 1 × 12 Weigths 4 × 1 × 12 × 12

Bias 1 × 1 × 12
14 Batch normalization 12,794 × 1 × 12 Offset 1 × 1 × 12

Scale 1 × 1 × 12
15 ReLU 12,794 × 1 × 12 0
16 Max. pooling 12,791 × 1 × 12 0
17 Full-connected 1 × 1 × 16 Weigths 16 × 153,492

Bias 16 × 1
18 Softmax 1 × 1 × 16 0
19 Output - 0

Figure 8. The confusion matrix for 16 predicted classes across the true class with second evaluation set.

6. Conclusions and Future Work

In this paper, we propose a technique for intelligent fault diagnosis of rotary ma-
chinery that uses Bayesian optimization in the optimization of hyper-parameters and the
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structure of a convolutional neural network. For this purpose, we presented where and
how other researchers used convolutional neural networks for machinery intelligent fault
diagnostics. Further on, hyper-parameters optimization possibilities are described and
strengths and weaknesses of Bayesian optimization are outlined. The process for the
optimization of hyper-parameters and structure of convolutional neural network model
for fault diagnosis is presented. Bayesian optimization combined a prior distribution of a
function with sample information (evidence) to obtain posterior of the function. Later on,
the posterior information was used to find where the function was maximized according to
a criterion. The results show that there is great potential in using the Bayesian optimization
technique for both CNN hyper-parameters and structure optimization since it can generate
optimized hyper-parameters efficiently in times when the objective function is time and
computationally expensive, as is the case with convolutional neural networks. Optimal
hyper-parameters values and the structure of CNN model for intelligent fault diagnosis of
rotary machinery ensured 99.94% accuracy on the evaluation data set. In addition, second
evaluation data set with 3200 samples is prepared using another set of both undamaged
and faulty bearings on the same machine. Using tuned CNN model, classification accuracy
of 100 % is achieved, proving that a model trained with the proposed technique performs
well on the new data set. Future work will be based on experimenting with industrial
(noisy) data, data fusion from multiple sensors and genetic algorithms as optimization
technique. Hence, running on multiple GPU can also be taken into consideration. In the
foreseeable future, with the running of multiple Bayesian optimizations and comparison of
results, it will be possible to determine the influence of hyper-parameters on the results,
that is, to define the set of the most important hyper-parameters.
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