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Abstract: Magnetic nanoparticles (MNPs) can work as temperature sensors to realize temperature
measurement due to the excellent temperature sensitivity of their magnetization. This paper mainly
reports on a performance optimization method of MNPs DC thermometry model. Firstly, by exploring
the influencing factors of MNPs magnetization temperature sensitivity, it is found that the optimal
excitation of the magnetic field to make the temperature sensitivity of MNPs reach their optimal
value is, approximately, inversely proportional to the particle size of MNPs. Then, the temperature
sensitivity of MNP magnetization is modulated by adding appropriate DC bias magnetic field in the
original triangular wave excitation field, to optimize the original DC thermometry model based on
MNP magnetization. The simulation results show that the temperature measurement performance
of small-size MNPs can be significantly improved. In short, this paper optimizes the temperature
measurement performance of the original DC thermometry model based on MNP magnetization and
provides a new application idea for temperature measurement of small-size MNPs.

Keywords: magnetic nanoparticles; thermometry; magnetics-based thermometry; magnetizations

1. Introduction

In nature, both physical and chemical process are closely related to temperature. For
example, the temperature of cells in different positions and states is not the same, with
some cells showing a highest temperature rise of 5–8 ◦C relative to 37 ◦C [1]. In hyperther-
mia [2], the accurate monitoring and control of the temperature and heat dose of the target
area is directly related to the effectiveness of the treatment. Therefore, it is very important
to measure the temperature accurately in vivo. Due to the resistance, opacity, safety and
comfort of organisms, the traditional electrical, optical and acoustic temperature mea-
surement methods encounter great difficulties in characterizing the in vivo temperatures.
Magnetics-based thermometry technologies [3–7], such as magnetization-based magnetic
nanoparticle (MNP) thermometry and magnetic resonance (MR) thermometry, can directly
measure the internal temperature of the measured object through the surface. In addition,
even if it contains ferritin, the organism can still be considered as magnetically transparent
without additional magnetic interference. Therefore, magnetics-based thermometry is one
of the most promising in vivo temperature measurement methods, which has important
research significance and application value in the biomedical field.

MNPs composed of magnetic cores and biocompatible coatings have been widely
used in biological and medical fields [8–10]. In addition, MNPs are one of the most efficient
temperature-to-magnetic conversion media known to date, which can achieve excellent
temperature measurement [11–14]. Magnetic sensors, such as differential coils, can be
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generally selected to measure the magnetization response signal of MNPs excited by a
direct current (DC), or low-frequency alternating current (AC) magnetic field. Then, the
relationship between MNP magnetization response and temperature is established to re-
alize the temperature measurement or temperature model establishment. However, the
performance of the magnetization-based MNP thermometry is worthy of further optimiza-
tion. For example, the influence of the temperature sensitivity of MNP magnetization on
the measurement performance of MNP thermometry is not considered in detail. In our
previous work [15], we found that the temperature sensitivity of MNP magnetization is
affected by its working conditions, such as the excitation magnetic field and the size of
MNPs. Therefore, adjusting the working conditions of MNPs to optimize their temper-
ature sensitivity may be the key to improving the performance of magnetization-based
MNP thermometry.

Therefore, this paper mainly focuses on the optimization of magnetization-based
MNP thermometry by means of simulation. Firstly, the influencing factors of MNP’s
magnetization temperature sensitivity are further explored, including excitation magnetic
field, MNPs’ size, etc. This gives the regulation law of the temperature sensitivity of MNPs,
that is, the optimal excitation magnetic field makes the temperature sensitivity of MNPs
reach their optimal value, which is approximately inversely proportional to the particle size
of MNPs. Then, based on the regulation of the external magnetic field and the MNPs’ size
on the temperature sensitivity of MNPs, the temperature measurement model of MNPs
in the low-frequency triangular wave excitation magnetic field was optimized. Through
simulations, it is found that by superimposing an appropriate DC bias magnetic field in
the low-frequency triangular wave excitation magnetic field, the standard deviation of the
temperature measurement error of MNPs with small particle size can be effectively reduced,
and temperature measurement performance can be effectively improved. This paper not
only further verifies and emphasizes influence factors and laws of temperature sensitivity
in MNP magnetization, but also provides ideas for the optimization of magnetization-based
MNP thermometry.

2. Model and Method
2.1. Langevin Model and DC Thermometry Model of MNPs

According to the classical Langevin equation [16,17], the magnetization response of
MNPs in magnetic fields is directly related to temperature; in the same magnetic field, the
magnetization response of MNPs shows a downward trend with an increasing tempera-
ture. Therefore, the temperature information can be extracted from the magnetization M
versus the applied magnetic field H curve (M–H magnetization curve) of MNPs. However,
commonly used measuring instruments, such as vibrating sample magnetometer (VSM), or
superconducting quantum interferometer (SQUID), are not only poor in real-time, but also
costly. Therefore, Zhong et al. [11,18] built a fast, convenient and low-cost MNPs magneti-
zation measurement system to realize fast measurement of temperature information. The
measurement system uses a Helmholtz coil or solenoid to provide a DC or low-frequency
AC excitation magnetic field, and measures the corresponding magnetization signal of
MNPs using differential coils. In the low-frequency excitation AC magnetic field, the effect
of relaxation mechanism on the magnetization response of MNPs can be ignored, so the
magnetization response of MNPs still follows the Langevin equation. Therefore, a set of
(Hi, Mi) data can be obtained by exciting the MNPs sample, using a low-frequency trian-
gular wave magnetic field, and measuring the corresponding magnetization response in
real-time. Then, the temperature information can be obtained through the DC thermometry
model of MNPs shown in the following, Equation (1) [11].
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M1 = x(cothyH1 − 1/(yH1))
...

Mi = x(cothyHi − 1/(yHi))
...

Mn = x(cothyHn − 1/(yHn))

, (1)

where x = fv Ms, y = MsV
kBT . fv is the effective volume fraction of MNPs in the suspension.

Ms and V are the saturation magnetization and volume of the MNP, respectively. kB is the
Boltzmann constant. T is absolute temperature in Kelvin. Hi is the discretization of the
excited magnetic field H, and Mi is the corresponding magnetization of the MNPs sample.
In addition, as shown in Figure 1, due to the symmetry of triangular wave, the M–H
magnetization curve of MNPs, excited by a low-frequency triangular wave magnetic field,
can be operated symmetrically to improve the performance of this DC thermometry model.
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Figure 1. Acquisition, symmetry and discretization of M–H magnetization curve of Magnetic
nanoparticles (MNPs) in a low-frequency triangular wave excitation magnetic field. (a) The
low-frequency triangular wave magnetic field (H) and the magnetization (M) of MNPs versus
time (t), respectively. (b) The corresponding M-H magnetization curve after quarter period
symmetry processing.

2.2. Temperature Sensitivity of the MNP Magnetization

MNPs can be used for temperature measurement due to the excellent temperature
sensitivity of their magnetization response. The temperature sensitivity of the MNPs,
which has already been analyzed in our recent work [15], is critical to the signal to noise
ratio (SNR) and the resolution of magnetization-based MNP thermometry

η =

∣∣∣∣∂M
∂T

∣∣∣∣ = fv Ms

∣∣∣∣∣∣∣∣
β

((
coth β

T

)2
− 1
)

T2 − 1
β

∣∣∣∣∣∣∣∣, (2)

where β =
Ms

πD3
6 H

kB
characterizes the effect of particle size D, saturation magnetization Ms,

and static magnetic field H. As pointed out in [15], the temperature sensitivity of magneti-
zation response of MNPs is not only related to particle size and saturation magnetization,
but also controlled by the exciting static magnetic field. As shown in Figure 2a, the opti-
mal static magnetic field Hopt, which makes the temperature sensitivity of magnetization
response of MNPs reach the maximum value, is not a near-zero magnetic field, and the
smaller the particle size D of MNPs is, the larger the optimal static magnetic field Hopt
is. More intuitively, the optimal static magnetic field Hopt is inversely proportional to the
cube of the particle size D, as shown in Figure 2b. For example, for MNPs with size of
5 nm, the optimal magnetic field Hopt is about 9792 Oe, while for 10 nm, Hopt is only about
602 Oe. Therefore, if the working magnetic field range of MNPs is far away from its optimal
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magnetic field Hopt, the temperature sensitivity of their magnetization response will be
significantly reduced, and the temperature measurement performance of the corresponding
magnetization-based MNP thermometry will also be significantly weakened. For example,
when the magnetic field increases to about 10,000 Oe, the temperature sensitivity of MNPs
with a size of 10 nm almost attenuates to 0; while the MNPs with size of 5 nm are not
suitable for temperature measurement applications in magnetic fields less than 1000 Oe.
In other words, large-size MNPs are more suitable for temperature measurement in low
magnetic fields, and vice versa. Therefore, it is beneficial to improve the temperature
measurement performance of magnetization-based MNP thermometry by obtaining the
optimal magnetic field value and setting the working magnetic field nearby.
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Figure 2. (a) The relationship between the temperature sensitivity (η) and static magnetic field (H)
for different MNP size (D). (b) Influence of particle size (D) of MNPs on their optimal static magnetic
field (Hopt).

2.3. Optimization of DC Thermometry Model of MNPs

Based on the above analysis, it is natural to wonder whether it is possible to adjust
the working magnetic field point (range) of MNPs by superimposing an appropriate
DC bias magnetic field (Hdc) in the original DC thermometry model of MNPs (which is a
common method to improve detection in magnetic devices based on magnetization [19,20]),
so as to optimize the temperature measurement performance. Then, the corresponding
thermometry model can be modified as follows:

M1 = x(cothy(Hdc + H1)− 1/(y(Hdc + H1)))
...

Mi = x(cothy(Hdc + Hi)− 1/(y(Hdc + Hi)))
...

Mn = x(cothy(Hdc + Hn)− 1/(y(Hdc + Hn)))

, (3)

When the triangular wave magnetic field without DC bias is used, the M–H curve is
in the linear region near the zero magnetic field. At this time, the corresponding induced
magnetization M presents the form of non-distorted triangular wave changing with time,
as in the waveform marked A, shown in Figure 3a. When the DC bias magnetic field is
superimposed, the M-H curve enters the nonlinear region and the corresponding induced
magnetization M presents a slightly distorted triangular waveform with time, as seen in the
waveform marked B. As shown in Figure 2a, the DC excitation magnetic field which makes
the temperature sensitivity of MNPs reach the optimal value, is not a near-zero magnetic
field. Therefore, even if the slope of M–H curve in B range is smaller than that of A range, if
the superimposed DC bias magnetic field is appropriate, such as MNPs working in B range,
the magnetization response of MNPs should show better temperature sensitivity than that
of A range. In addition, the distortion of the M–H curve can be controlled by adjusting
the value of DC bias magnetic field and the amplitude of triangular wave magnetic field.
Therefore, by superimposing an appropriate DC bias magnetic field, MNPs can work
in the B range with better temperature sensitivity, something which may be helpful to
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improve the temperature measurement performance of the magnetization-based MNP
thermometry. Although MNPs can work in the B region with better temperature sensitivity
by superimposing a DC bias magnetic field, the corresponding induced magnetization M
will be reduced even if the amplitude H0 of a triangular wave excitation magnetic field
remains the same due to the nonlinearity of B region. Therefore, it is necessary to simulate
and analyze the influence of DC bias magnetic field Hdc, amplitude H0 of a triangular wave
excitation magnetic field, and particle size D on the temperature measurement performance
of this modified model, to verify the effectiveness of the method.
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3. Results and Discussion
3.1. Simulations of DC Thermometry without Hdc

From the above analysis, it can be seen that the magnetic field has a decisive influence
on the temperature sensitivity of MNP magnetization. Therefore, in temperature measure-
ment applications, MNPs of different particle sizes are suitable for different magnetic field
conditions. As shown in Figure 2, the larger the particle size D of MNPs is, the smaller the
optimal static magnetic field Hopt is. Therefore, large-size MNPs seem to be more suitable
for DC thermometry without Hdc. Then, the temperature measurement performance of
several MNPs with different particle sizes are simulated according to DC thermometry
model without Hdc, as shown in Equation (1). In order to reduce the influence of the
relaxation mechanism, the frequency of the triangular wave excitation magnetic field is
set at a low-frequency of 25 Hz, and a temperature range of 290 K~320 K (near physio-
logical temperature) is simulated and analyzed. In this paper, the Levenberg–Marquardt
algorithm [21], a least square estimation method of regression parameters in nonlinear
regression, is used to solve the temperature information.

When the amplitude H0 of triangular wave excitation magnetic field is 600 Oe, the
estimated temperature Test and estimated temperature error ∆T at each temperature point
are shown in Figures 4 and 5a,b. As we can see, for MNP with size of 5 nm, the estimated
temperature Test fluctuates significantly across the whole measured temperature range,
which makes the corresponding estimated temperature error ∆T not only very large, but
also vary significantly with the change in measured temperature point. Therefore, the
temperature measurement performance of MNP with size of 5 nm cannot meet the needs
of temperature measurement. On the contrary, MNPs with a large particle size of 10 nm,
15 nm and 20 nm show better temperature measurement performance, and there is no
significant dependence on the measured temperature point. Except for some temperature
points, the estimated measurement errors of the three large-size MNPs can be maintained
between −0.1 K and 0.1 K in the whole measured temperature range. In addition, when
H0 increases to 700 Oe, 800 Oe and 900 Oe, respectively, the temperature measurement
performance of MNPs shows a similar change rule as that of H0 = 600 Oe, as shown in
Figure 5c–h.
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To be more intuitive, the standard deviation of the estimated measurement error
of each temperature point in the whole measured temperature range is calculated to
comprehensively characterize the temperature measurement performance for MNPs with
different particle sizes, as shown in Figure 6. The results show that the standard deviation
of 5 nm MNPs is 8 K–10 K, which is not suitable for temperature measurement because
of its poor temperature measurement performance. However, with the increase in the
particle size of MNPs, the temperature measurement performance is greatly improved.
When MNPs with a size of 10 nm, 15 nm and 20 nm are used, the standard deviation is
maintained within 0.06 K, which is very excellent. Therefore, high-precision temperature
measurement can be realized using large-size MNPs.
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Figure 6. The standard deviation of the estimated measurement error of each temperature point in
the whole measured temperature range using MNPs with particle size of 5 nm, 10 nm, 15 nm and
20 nm when H0 = 600 Oe, 700 Oe, 800 Oe and 900 Oe, respectively.

Furthermore, the relationship between the standard deviation and the amplitude H0
of the triangular wave magnetic field is given, as shown in Figure 7. The temperature
measurement performance of 5 nm MNPs is the worst. The standard deviation is not
only very large (several K, or even greater), but also varies irregularly with the increase
in amplitude H0. Therefore, 5 nm MNPs are not suitable for the DC thermometry model.
On the contrary, when MNPs of 10 nm, 15 nm and 20 nm are used, the standard deviation
obtained basically shows a trend of becoming better with the increasing amplitude H0. In
addition, the larger the particle size of MNPs is, the smaller the requirement of amplitude
H0 is, and an excellent temperature measurement performance can be obtained in the
triangular wave excitation magnetic field with smaller amplitude. For example, for 10 nm
MNPs, when the amplitude H0 is less than 200 Oe, the standard deviation is greater than
2 K, and the temperature measurement performance is not good. While when the amplitude
H0 is greater than 200 Oe, the standard deviation will be reduced to less than 1 K; when
the amplitude H0 is greater than 450 Oe, the standard deviation will be further reduced
to less than 0.1 K. For 15 nm MNPs, the standard deviation is always less than 1 K; when
the amplitude H0 is greater than 150 Oe, the standard deviation will be further reduced
to less than 0.1 K. For larger MNPs of 20 nm, the standard deviation is always within
0.1 K, and the dependence on amplitude H0 is not obvious, and excellent temperature
measurement performance can be obtained in the range of the studied excitation magnetic
field amplitude.
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Figure 7. The standard deviation of estimated measurement error of MNPs with different particle
sizes with the changing of the amplitude H0.

3.2. Simulations of DC Thermometry with Hdc

As shown in Figure 7, when there is no bias magnetic field, the larger the amplitude
H0 is; the smaller the standard deviation is, then, the better the temperature measurement
performance is. Therefore, we have further focused on the influence of DC bias magnetic
fields on the temperature measurement performance of DC thermometry models when the
amplitude H0 is large.

As shown in Figure 8, except for a few abrupt abnormal points (in the dotted line box),
MNPs with large-size (10 nm, 15 nm and 20 nm) show good temperature measurement
performance when the DC bias magnetic field Hdc is small, while small-size (5 nm) MNPs
show good temperature measurement performance when Hdc is large. Moreover, when
there is no DC bias magnetic field, the temperature measurement performance of 5 nm
MNPs is very poor (the corresponding standard deviation can reach to several K, even more
than 10 K), as shown in Figure 7 above. Therefore, we can conclude that adding appropriate
DC bias magnetic field Hdc in the low-frequency triangular wave excitation magnetic field
can significantly improve the temperature measurement performance of DC thermometry
model, with a small particle size MNPs of 5nm. For large-size MNPs (10 nm, 15 nm and
20 nm), we can obtain an excellent temperature measurement performance by utilizing a
low DC bias magnetic field Hdc. However, if we increase the DC bias magnetic field Hdc,
corresponding temperature measurement performance will degrade due to suppression
of the temperature sensitivity of MNPs. Thus, the superposition of DC bias magnetic
field makes large-size MNPs work in a region far away from the optimal range of their
temperature sensitivity, which worsens their temperature measurement performance.

Furthermore, we can define the conversion magnetic field; when the DC bias mag-
netic field Hdc reaches this value, the temperature measurement performance of the DC
thermometry model of MNPs changes significantly, as shown in the dotted box in Figure 8.
Therefore, in order to obtain an excellent temperature measurement performance using
small-size MNPs, the applied DC bias magnetic field Hdc should be larger than the corre-
sponding conversion magnetic field. On the contrary, when using large size MNPs, the
applied DC bias magnetic field Hdc should be smaller than the corresponding conversion
magnetic field.

We see, therefore, that abnormal values near the conversion magnetic field are hidden,
and the standard deviation of large-size MNPs (when Hdc is smaller than the conversion
magnetic field, as well as the standard deviation of small-size MNPs when Hdc is larger
than the conversion magnetic field) are mainly focused on, as shown in Figure 9. As we can
see, even when Hdc is smaller than the conversion magnetic field, the superposition of the
DC bias magnetic field in the low-frequency triangular wave excitation magnetic field will
worsen the temperature measurement performance of large-size MNPs. Conversely, the
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temperature measurement performance of small-size MNPs will be significantly improved
by superposing a DC bias magnetic field larger than the conversion magnetic field.
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smaller than the conversion magnetic field and the standard deviation of the small-size MNPs (5 nm)
when Hdc is larger than the conversion magnetic field.

The standard deviation of small-size MNPs (5 nm) when Hdc is large is given in
Figure 10. It can be seen that the temperature measurement performance of 5 nm MNPs has
been significantly improved when compared with that without Hdc. Except for a few points,
the standard deviation of 5 nm MNPs is overall better than 0.5 K, and the optimal value
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is between 0.10 K and 0.15 K. Therefore, we can improve the temperature measurement
performance of small-size MNPs (5 nm) significantly by superposing appropriate DC bias
magnetic field into the original low-frequency triangular wave magnetic field.
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3.3. Discussion

In this paper, we optimize the temperature measurement performance of the MNP DC
thermometry model by means of simulation, using the modulation law of external magnetic
field and particle size on the temperature sensitivity of the induced magnetization of MNPs,
but there are still some shortcomings and problems to be solved. In our simulations, we
assume that the MNPs are of uniform size. However, the actual MNPs reagent will present
a particle size distribution in the form of lognormal function [22], which will certainly
affect the corresponding simulation law of the temperature sensitivity of MNPs and the
optimization results of the MNP DC thermometry model. We preliminarily discussed
the effect of particle size distribution on the temperature sensitivity of MNPs, and found
that the increase in particle size distribution will cause the optimal temperature sensitivity
value and the corresponding optimal static magnetic field to show a decreasing trend. The
corresponding content is not presented in this article, due to the need for further research.
Moreover, saturation magnetization Ms of MNP is also related to temperature, which
can be described by the Bloch’ law [23], and the change in saturation magnetization with
temperature will also affect the simulation results presented in this manuscript. Therefore,
this also needs further research. In addition, the causes of the abnormal points in Figure 8
and the so-called conversion magnetic field also need to be further studied.

4. Conclusions

This paper further analyzed the temperature sensitivity of the induced magnetiza-
tion of MNPs, and points out that the temperature sensitivity of the MNP magnetization
is the key to the temperature measurement performance of magnetization-based MNP
thermometry. Through simulation, it was found that the optimal excitation of magnetic
fields to make the temperature sensitivity of MNPs reach their optimal value, is approxi-
mately inversely proportional to the particle size of MNPs. Therefore, MNPs with a small
particle size, concentrated particle size distribution, and high saturation magnetization
are more suitable for temperature measurement applications in a high magnetic field, and
vice versa. Then, the DC thermometry model of magnetization-based MNP thermometry
was optimized and regulated by adding an appropriate DC bias magnetic field in the
triangular wave excitation magnetic field. The simulation results showed that the standard
deviation of estimated temperature error in small-size MNPs can be decreased from several
K or even more than 20 K to approximately 0.15 K by adding an appropriate DC bias
magnetic field, which provides a new idea for the application of temperature measurement
of small-size MNPs.
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