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Abstract: In the field of Cyber-Physical Systems (CPS), there is a large number number of machine
learning methods, and their intrinsic hyper-parameters are hugely varied. Since no agreed-on
datasets for CPS exist, developers of new algorithms are forced to define their own benchmarks. This
leads to a large number of algorithms each claiming benefits over other approaches but lacking a fair
comparison. To tackle this problem, this paper defines a novel model for a generation process of data,
similar to that found in CPS. The model is based on well-understood system theory and allows many
datasets with different characteristics in terms of complexity to be generated. The data will pave the
way for a comparison of selected machine learning methods in the exemplary field of unsupervised
learning. Based on the synthetic CPS data, the data generation process is evaluated by analyzing the
performance of the methods of the Self-Organizing Map, First-Class Support Vector Machine and
Long Short-Term Memory Neural Net in anomaly detection.

Keywords: machine learning; artificial data; anomaly detection

1. Introduction

Data analysis and Machine Learning (ML) are major topics in Cyber-Physical Systems
(CPS) due to their great potential for monitoring and optimization by the exploitation of
acquired data. The development of ML methods that are suitable for CPS is an active
field of research as these methods can be used to analyze a CPS (self-diagnosis), to ease
system modifications (self-configuration) or to optimize the system’s performance (self-
optimization). Here, the main challenge is choosing the ML methods that suit the data as
well as the CPS characteristics. Since a wide variety of machine learning methods exists
and they are used in several domains (e.g., healthcare [1]), comparisons of algorithms for
the above-mentioned CPS use cases are essential. In domains such as image classification,
standard datasets (e.g., Fashion-MNIST [2]) provide a benchmark for comparing different
ML methods and their implementations across the scientific world [3].

For CPS, open access to real world data is very limited, and often the data are very
domain-specific. Furthermore, first-principle simulation models usually require a great deal
of effort and are domain-specific and often confidential; thus, they are hardly suitable for
generating data that can be generally accepted as benchmarks in the research community.
Thus, comparisons and assessments of machine learning algorithms in the context of CPS
are scarce and anecdotal. In a situation where the problem of machine learning is not the
lack of algorithms but their abundance, the lack of their comparability is a crucial problem
for the creation of a theory that maps ML methods to the CPS characteristics and data.
Such a theory would be a step towards greater industrial acceptance of ML methods.
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In this paper, a first step towards the development of a suitable theory for CPS machine
learning is taken by introducing the main idea of a system theory-based model of a CPS
data generation process. The following research questions are addressed:

Research Question 1 (RQ 1): Can we formalize a CPS data generation model?
Research Question 2 (RQ 2): Can we classify typical failures of CPS and insert them
into the CPS data generation model?
Research Question 3 (RQ 3): Can we use the CPS data generation model to generate
artificial datasets for acceptable and unacceptable scenarios?
Research Question 4 (RQ 4): Can we use the generated acceptable and unaccept-
able datasets to evaluate and compare typical CPS machine learning algorithms for
anomaly detection? Do the results follow our intuition regarding the complexity of
the generated data as well as the expected behavior of the algorithms?

The authors do not claim that the CPS data generation model introduced here will
replace real data. However, the solution developed here fulfills the basic requirements for
such models and allows for a first theoretic and empiric comparison of algorithms. Thus, it
may serve as a crystallization point for future research in machine learning for CPS. All
data generation programs and all data are published at https://www.hsu-hh.de/imb/en/
projects/ArtDataGen, accessed on 30 March 2021; thus, in the long-term, an accepted set of
datasets for this community can be established.

After a review of the state of the art in Section 2, the model of the CPS data generation
process is described in Section 3. Based on the model, corresponding data are generated,
allowing for an empirical comparison and evaluation of machine learning methods in
Section 4. The model for the data generation process is evaluated in Section 5. The
conclusions of this work are summarized in Section 6.

2. State of the Art

Generating datasets for the evaluation of ML methods in the context of CPS is a rather
new field. [4] has applied ML to some simple artificial datasets. For rather specific ML
questions, artificial data have been used in [5,6].

Machine learning for CPS comprises a set of very different methods; e.g., statistical
methods and neural networks [7–9]. Learning models for continuous processes can be
difficult; often, methods of differential equations [10] are combined with optimizing Kalman
filtering and stochastic processes such as the Hidden Markov Model or Gaussian [11]. An
example of a solution in which digital computing processes are analyzed in combination
with analog physical processes is given in [12]. There are different ways of analyzing
continuous signals, such as the continuous time Bayesian network (CTBN) [13,14] or
hierarchical clustering [15]. Continuous signals can also be evaluated by working with
time-dependent machines or neural networks [16]. The discretization of neural networks
for sequential data by extracting finite state machines from second-order recurrent neural
networks [17] is part of the work in [18]; this is used to extract knowledge in a symbolic form
from different continuous models. A new algorithm for extracting automata from recurrent
neural networks that works with long short-term memory networks is presented in [19].The
discretization of complex data based on deep learning, and on the other hand based on
multiple levels of feature extraction, is introduced in [20]; here, speech spectrograms are
discretized using a deep auto encoder network. A similar deep belief network, which
consists of multi-layered Restricted Boltzmann Machines, is used to extract binary codes
from text files in [21].

3. A Model of CPS Data Generation
3.1. Characteristics of CPS Data

First, characteristics of CPS are given, from which requirements for data generation
are derived. CPS usually comprise a large number of sensors, actuators, controllers and
electrical components whose signals are stored in databases. The data encode the temporal
evolution of a number of physical processes that take place within the system, can be
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correlated and can have boundary conditions and constraints. Often, several parameters
within the data describe different aspects of the same process; e.g., during gas heating, the
temperature and the pressure are monitored. Thus, the high-dimensional signal observation
space emerges from a small-dimensional manifold in a latent space that is governed by
physical laws.

Requirement 1: The data generation must differentiate between a non-observable latent
space and a high-dimensional observation space.
Requirement 2: The data must be first sampled from a sub-space in latent space. The
sub-space must capture data dependencies—dependencies which are due to the
physical laws governing the CPS behavior.
CPS are time-dependent and mode-dependent systems which comprise discrete
signals as well as time and value-continuous signals. Often, discrete signals such as
opening a valve or turning off a robot trigger mode-changes [22]; i.e., they abruptly
change the system behavior. Continuous signals comprise, e.g., energy consumptions,
gas flows, temperature changes, etc.
Requirement 3: The solution must create time-series in which consecutive samples are
closely related to each other.
Requirement 4: The data must be hybrid; i.e., they must comprise both discrete (control)
signals and continuous values. Some discrete control signals must trigger mode
changes; i.e., they must cause a change in the system behavior.
A machine learning algorithm should be able to learn the low-dimensional behavior
of the data in a high-dimensional space and it should be robust against the mentioned
mode-changes. Furthermore, a common use case for the learned models is the detec-
tion of abnormal process behavior. Thus, machine learning for CPS is an individual
research field requiring individual solutions and justifying the development of its
own benchmark datasets.
Requirement 5: The data generation process must be able to insert typical faults into
the data.

3.2. Concept of the CPS Data Generation Model

Figure 1 sketches the main idea of the data generation process. The core idea is to have
a non-observable behavior in an m-dimensional latent space that models the underlying
physical behavior of the CPS (e.g., a thermodynamic process, where the (not directly
measurable) dimensions m are {energy, entropy, ingredient composition}). The latent space
is mapped into an observable (directly measurable) n-dimensional observation space (e.g.,
sensors measuring {temperature, pressure, mass, volume, f low}) where normally m � n
holds true.

In a latent space, the system behavior is modeled as a hybrid automaton [23]. Hybrid
automata comprise M modes and M× E→ M transitions; E = {e0, . . .} is a set of events.
Normally, modes correspond to general system modes such as a “start-up phase”, while
events correspond to control signals such as a “turn-on valve”. An automaton models the
dynamical behavior in m latent dimensions by non-observable, state variables x(t) such as
filling levels or momentum. Within each mode, the latent behavior is modeled by means
of a linear Ordinary Differential Equation (ODE). Please note that different modes have
different ODEs. The ODE for mode Mi is defined as a state space model:

ẋ(t) = Ai · x(t) + Bi · u(t)
y(t) = Ci · x(t) + Di · u(t)

(1)

with state variables x(t) ∈ Rm, system inputs u(t) ∈ Rp and the system outputs y(t) ∈ Rq.
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Figure 1. General concept of the CPS data generation model: An automaton (e.g., containing four
modes Mi) interacts with a dynamical system. Its control values u(t) force the dynamical system to
move its response y(t) towards the control values. While performing this movement, the internal
states x(t) ∈ Rm, that define the order of the dynamical system change their values according to
Equation (1). As the automaton cyclically evaluates whether ei from Equation (2) is true, mode
changes are triggered automatically. The resulting trajectory of x(t) is then transformed trough the
nonlinear mapping function g(·) (Equation (3)) into the observation space o(t) ∈ Rn.

The matrices Ai, Bi, Ci, Di from Equation (1) parameterize the behavior of the ODE in
the following sense:

Ai ∈ Rm×m (System matrix): This models the dynamical behavior which can be
characterized by its eigenvalues.
Bi ∈ Rm×p (Input matrix): This determines which state variables can be influenced by
the input vector u(t)
Ci ∈ Rq×m (Output matrix): This maps the state variables x(t) to the output y(t).
Di ∈ Rq×p (Feedthrough matrix): The system output is directly accessed by the system
input (appears rarely in real-world systems)

The matrices are generated in a way that ensures the stability of behavior: the dynam-
ics are defined by poles and zeros p, z ∈ Cm of a transfer function G(s) —an approach
typical for describing the I/O behavior of ODEs (more information can be found in [24]).
Using the controllable canonical form for the ODE in Equation (1), the matrices Ai; Bi; Ci; Di
can be derived directly using the coefficients of G(s) [24]. Asymptotic stability is ensured
by the real part of every pole <(pi) < 0 (a proof can be found in Chapter 3.2 of [25]). For
matrices Ai; Bi; Ci; Di, as defined above, for t → ∞, the limit y(t) = u(t) holds. For the
sake of the comparability of y(t) and u(t), their dimensions are chosen to be q = p.

Modeling physical behavior by means of linear ODEs is a common-place and well-
accepted approach [26]. For adding discrete (control) behavior to ODEs, hybrid automata
are a well-established formalism [27,28]. Events ei trigger the transition from one mode
Mi to the next mode Mi+1. For the presented approach, we define events ei according to
Equation (2).
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ei =
(
(y(t) ≥ bl) ∨ (y(t) ≤ bu)

)
∧
(
|ẏ(t)| < γ

)
where bl = ui − ε and bu = ui + ε ε, γ ∈ R+

(2)

Using the commands ui of mode Mi and some interval defined by ε, bounds bl , bu
are generated. They are used to check if the dynamical system has executed the commands
from the automaton’s mode. Furthermore, the parameter γ allows us to ensure that
the event is triggered only if the system movements are below some threshold by the
observation of ẏ(t). To make the decisions non-deterministic to a certain extent, the time
interval in Equation (2) is processed, which can be larger than the simulation time interval
(e.g., a controller cyclically checks sensor values every 100 ms while the underlying process
reacts more quickly). As CPS often show some cyclic behavior (i.e., a production system
repeating a sequence of actions for every product), the automaton is able to model cyclic
behavior by restarting at its initial mode (e.g., e4 in Figure 1). Through environmental
influences, these cycles also have a slightly unique character. Therefore, some noise sui

is sampled from a normal distribution ∼ N (0, σ), which is the common case for a large
number of environmental influences, and is added to the command vector ui of the modes
Mi of the automaton for every cycle.

To map from the m-dimensional, non-observable latent space to the n-dimensional
observation space, the mapping function g is used (see also Figure 1) . This latent space,
including the system behavior, is shown in Figure 2. The mapping function g used here
(see Equation (3)) is a superposition of linear, sinusoidal and exponential components:

g(x(t)) =α1 · (x(t) + n0)E

+α2 · sin(x(t) + n1)F

+α3 · exp(x(t) + n2)G

(3)

Mode
1.0
2.0
3.0
4.0
5.0

Latent Space

Figure 2. The latent space of x(t) ∈ R3 of a third-order dynamical system over 25 cycles of a five-
mode automaton. Every dimension of x(t) is shown as an axis and allows a graphical interpretation
of the internal dynamics of the dynamical system from Equation (1). The colors indicate the trajectory
taken to follow the commands within the automaton’s modes. It can be seen that each state has a
unique shape.

The function g is parameterized by matrices E, F, G ∈ Rm×n which are randomly
taken at the beginning of the generation process. n0, n1, n2 ∼ N (0, σ) models added noise.
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α1, α2, α3 ∈ R weigh the different terms. E, F, G model interdependencies between signals.
Sensor readings are modeled by the linear part. The sinoid term captures machine cycles.
The exponential parts are typical when intensifying machine behavior; e.g., with reinforced
errors. Based on this approach, a large number of feasible parameterizations and therefore
datasets can be generated automatically.

3.3. Anomaly Insertion

CPS processes can deviate from their normal behavior due to wear or failures of
system components; for example, the temperature of a gas may not increase due to a failure
of heating, or the speed of a pump may decrease due to the abrasion of the ball bearings.
The result is a deviation of the system state from the original trajectory which is propagated
to the observation space. Anomalies that are only present in the observation space—e.g.,
caused by malfunctioning sensors—are beyond the scope of this paper.

We create abnormal datasets by the insertion of the following anomalies at different
intensities. Please note that we use also cross combinations of them as more than one type
of error can occur in a system:

(i) Adding or removing modes from the automaton: Adding modes corresponds to additional
tasks or functions. Removing modes is often equivalent to skipping tasks.

(ii) Changed noise: The variance of the noise term ni is increased.
(iii) Offset to u(t) or x(t): Offset to the state vector of the mode’s ODE model; e.g., system-

atic errors.
(iv) Shifting the poles p of the dynamical system: The real part of the poles <(pi) determines

how fast the system is able to move. By increasing (slower) or decreasing (faster), it
can be simulated that, e.g., the masses of the system increase or decrease.

We differentiate between two types of methods for anomaly detection: (1) static
methods that neglect temporal dependencies as they take the samples xt independently
and (2) dynamic methods that incorporate temporal dependencies by processing pieces of
a time series xt−n, ..., xt. While static methods aim to detect point anomalies (e.g., inserted
anomalies (i), (ii) and (iii)), dynamic methods are able to detect contextual anomalies such
as inserted anomaly (iv).

4. ML Methods

Learned models can be applied to several tasks in the context of CPS. In this work,
we focus on anomaly detection using unsupervised machine learning. Figure 3 shows the
main idea.

Self-Organizing Maps (SOMs), also known as Kohonen maps, were first proposed
in 1982 [29] and have been widely applied in many fields since then. SOMs consist of
neurons that are arranged on a two-dimensional grid and are associated with reference
vectors in the observation space. The reference vectors are initialized randomly and then
updated in a cycle. In each cycle—i.e., each iteration over the whole dataset—every data
point xn is associated with the closest reference vector zk, also denoted as the winning node.
The winning node and all its neighboring neurons on the two-dimensional grid are then
shifted towards the data point xn in the observation space. Both the size of the neighbor
and strength of shift (learning rate) decrease with each cycle, resulting in the convergence
of the map.
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Figure 3. Using anomaly detection for the evaluation of unsupervised machine learning methods.

Support Vector Machines compute a classifier by maximizing the margin—i.e., the
space—between the classes [30]. Using the so-called kernel trick—i.e., a mapping into
higher dimensions—nonlinear-separable classes can also be classified. First-Class Support
Vector Machines (1-SVMs) extend these algorithms to unsupervised learning [31]. For this,
the margin between the class and the origin of the observation space is maximized. In this
paper, a 1-SVM with a radial basis function kernel (RBF) is used for a static data analysis .

Long Short-Term Memory (LSTM) models have first been proposed as an alternative
to the simple recurrent neural net by [32]. They are, in one form or another, a major part
of state of the art algorithms in a wide area of domains ranging from speech, natural
language and image recognition to deep reinforcement learning or time-series forecasting.
In such use cases, they can be used to detect anomalies by comparing predictions with
observations (see e.g., [33] applied to aircraft data, or [34], where LSTM is used to detect
anomalies in different scenarios). LSTMs are used for dynamic data analysis. In this paper,
they are used as a baseline for two dynamical anomaly detection approaches. In contrast
to the methods mentioned above, they use xt−n, . . . , xt to predict the next values xt+1.
Furthermore, we employ a variant that uses an energy-based loss function, the Maximum
Likelihood Estimation Loss function (MLE), as proposed by [9]:

Lt+1 = ∑
i

[(
xt+1 − x̂t+1

σt+1

)2
+ 2 log σt+1

]
(4)

It incorporates the standard deviation σ into the prediction and allows us to predict
how certain (or uncertain) the prediction is [35]. For the LSTM algorithm, we employ the
standard mean-squared-error (MSE) as well as the MLE approach, denoted as LSTM MSE
and LSTM MLE.

5. Evaluation of Data Generation
5.1. Artificial Dataset

To evaluate the model presented, 1728 datasets of different complexity and error
intensity were generated. For the sake of simplicity, the dynamical system for every
mode Mi remained the same and was of the third order (poles: −15, (−5 + 3j), (−5− 3j);
zeros 10); thus, our latent dimension was m = 3. Furthermore, a scalar control value
0 < u(t) ≤ 100 for our experiments was used. The following main parameters were used
and varied between the data sets:
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• nmodes: The automaton had {5; 15}modes;
• nobs: The number of observation dimensions n was {10; 50} sensors;
• The model was simulated over 25 cycles (no variation);
• sui Noise of different levels {2; 5} was added;
• α2 and α3: Non-linear terms of Equation (3) were scaled by α2 = {0; 1} and α3 =

{0; 0.1}.
For the unacceptable datasets, the following errors were varied:

(i) Two modes were added and two modes removed;
(ii) Noise was added to the latent space (n0 to n2 of Equation (3) is increased);
(iii) Offset for ui of {5; 15};
(iv) The poles shifted towards a faster ODE were {20%; 50%}.

5.2. Evaluation Metrics for Anomaly Detection

Not all unsupervised ML methods provide a binary classification result. Some return
a confidence or even probabilistic estimate that can be converted into a binary classification
by the use of a threshold. However, he choice of the threshold is mostly arbitrary.

In anomaly detection tasks, the trade-off between false positives and false negatives
depends on the use case. Usually, false negatives (no anomaly is detected when one
is present) are penalized much more heavily than a false positive (a false warning). In
order to make the evaluation independent of these application-specific trade-offs, we show
receiver-operating-characteristic (ROC) curves—i.e., the true positive rate as a function
of the false positive rate—to allow a comprehensive evaluation. In order to produce an
absolute ordering of the anomaly detection algorithms, the area-under-the-ROC-curve
(AUC) metric [36] is used. High AUC values indicate a good sensitivity to anomalous data
and therefore a high efficiency for detecting anomalies. The AUC metric, however, assumes
that true positives and false positives have equal importance.

5.3. Definition of Evaluation Criterions

To evaluate the suitability of artificial data is a challenge as no established definition of
CPS data characteristics exist. Thus, to some extent, such an evaluation must be heuristic.
In the following, we define six evaluation criteria on the behavior of ML methods to assess
the data generation process and show that the artificial data capture features of real data
recorded in CPS.

Sensitivity to data complexity: Each ML method should show a variance of results
according to different difficulty levels in the data. Data complexity is defined
in terms of the dimensions of the observation space, the number of modes and
sinoid/exponential factors. Only if results vary according to characteristics such
as the dimensions of the observation space, the count of modes and exponential
factors can the performance of ML methods be analyzed.

Improved anomaly detection for increasing pole shifts: Increasing pole shifts should
lead to better AUC results, especially for dynamical methods, as they are able
to consider the timing behavior of the dynamical system (that is, changes in this
case). Furthermore, MLE should outperform MSE optimization metrics as it in
cooperates with uncertainty.

Uncertain regions: MLE-based methods should mark regions in the data where
variance changes dynamically and/or the uncertainty in the data is non-negligible.
This should be the case near the mode changes, as Equation (2) is evaluated more
slowly than the simulation.

Superior performance of SVM for large observation spaces: SVM should perform
especially well for high numbers of observation dimensions, as more observation
dimensions from the same latent space should simplify the finding of suitable hy-
perplanes.
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Influence of non-linear effects: The larger the influence of non-linear effects (e.g.,
exponential and sinoid terms in the mapping function g), the worse the ML
methods perform with regard to anomaly detection.

Consistent performance on real and artificial data: The ML methods should show a
similar behavior for real data to that for artificial data.

In the following, these evaluation criteria are analyzed based on the AUC score.

Sensitivity to Data Complexity

To determine the sensitivity of the ML algorithms to data complexity, we investigated
the impact of variations in nmodes, nobs, sui , α2 and α3 on the AUC score. We averaged
the AUC scores over all variations except that for the parameter under investigation. We
denoted the average as AUC. Based on this, we computed the relative difference between
the AUC values from the two settings of the parameter under investigation and denoted
the results as ∆relAUC. Figure 4 shows ∆relAUC for the four ML algorithms as a function
of the five data complexity parameters.

We conclude that variations in sui , α2 and α3 have a minor impact on the AUC values
below 1% for all ML algorithms. However, an increase in the number of modes from 5 to
15 results in a decrease in the AUC by 10% to 25%. As expected from intuition, a larger
number of modes increases the difficulty of detecting anomalies. In contrast, increasing the
number of dimensions in the observation space from 10 to 50 increases the AUC by about
27% for SVMs and about 10% for LSTM MSE. Thus, it becomes easier for those algorithms
to detect anomalies if information from more dimensions becomes available. While SOMs
still profit from an increase in dimensions, although on a low level of the order of ∼2%,
the ability of the LSTM MLE algorithm to detect anomalies is decreased by about 1%. The
cause of this is subject to future investigations.

−0.2

−0.1

0

0.1

0.2

0.3 LSTM MLE
LSTM MSE
SVM
SOM

Complexity Parameters

Figure 4. Relative difference of average area-under-the-curve (AUC) values ∆relAUC (see text for
exact definition) as a function of five parameters that are relevant for data complexity.

5.4. Improved Anomaly Detection for Increasing Pole Shifts

Figure 5 shows the previously defined ∆relAUC values for variations in pole shifts.
Pole shift 1 denotes the increase of the pole shift from 0% to 19%, and pole shift 2 denotes
the increase from 10% to 37%. Since all values of ∆relAUC are positive, we can conclude
that an increase in pole shift generally improves the performance of all algorithms in
detecting anomalies while LSTM MLE profits most. It follows our intuition that the LSTM
MLE method performs well with this type of error as it is a dynamical method. Through
the ability to learn a difference equation of the normal ODE, it can easily detect changed
gradients in the unacceptable dataset.
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
LSTM MLE
LSTM MSE
SVM
SOM

Figure 5. Comparison of Maximum Likelihood Estimation (MLE) versus mean-squared-error (MSE)
as function of variations in the number of dimensions in the observation space and pole shift.

5.5. Uncertain Regions

An important key insight is that the LSTM MLE algorithm allows it to be shown that
the uncertainty behaves as expected from the data generation. Table 1 shows the MSE and
uncertainty in the region of a state change from the automaton. The randomness caused by
sampling the automaton more slowly than the simulation model (100 ms vs. 1 ms) was
correctly reflected by a significantly higher uncertainty estimate 10 ms before the mode
changed.

Furthermore, noise in the automaton’s target values was correctly considered be a
higher uncertainty estimate shortly after the mode changed. When considering the MSE,
this kind of hidden uncertainty cannot be observed.

Table 1. Exemplary comparison of MSE to MLE in the area of a change in the mode of the automation
for a single observation variable.

σ (MLE) MSE

Mean value dataset 0.057 3.88 · 10−3

10 ms before mode change 0.099 0.487 · 10−3

5 ms after mode change 0.2 1.2 · 10−3

5.6. Superior Performance of SVM for Large Observation Spaces

Figure 6 shows that, for a large number of observation dimensions, SVM outperforms
the other methods. This was expected as more observation dimensions make it easier for
the SVM to separate the modes via its hyper planes.

5.7. Influence of Non-Linear Effects

Figure 7 shows that the performance of the LSTM MLE Method decreases as the
non-linearity increases through the exponential factor α3 in Equation (3). Future work will
investigate why some of the results are below an AUC of 0.5.

5.8. Consistent Performance on Real and Artificial Data

Figure 8 shows that the dynamic (LSTM) as well as the static methods (SVM) are able
to perform well on a real dataset from a Vega shrink-wrapper [37]. The dataset consists
of three datasets from seven sensors (observation dimensions). In case of an anomaly, the
cutting blade was worn out.



Sensors 2021, 21, 2397 11 of 14

10 15 20 25 30 35 40 45 50

0.6

0.65

0.7

0.75

0.8
LSTM MLE
LSTM MSE
SVM
SOM

Figure 6. Average AUC for the four Machine Learning (ML) algorithms as function of the number of
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6. Conclusions

We have introduced a theoretical system-based model for the generation of artificial
data for CPS, consisting of a hybrid automaton that uses an ODE to generate a contentious
latent space (RQ 1). With the aim of anomaly detection, four types of typical CPS failures
were defined and could be inserted into the CPS data generation model (RQ 2). Further-
more, we generated 1728 datasets containing training, acceptable and unacceptable data.
Each dataset had a different complexity and error intensity (for the unacceptable case)
(RQ 3). Using these datasets, we compared four ML methods (SOM, 1-SVM, LSTM MLE
and LSTM MSE) with regard to five intuitive evaluation criterions. The results show that
the data generation process produced data and corresponding ML results which were
consistent with theory and experiences; i.e., the generated datasets resembled, from an ML
point-of-view, real data (RQ 4).

We conclude that the generated data can be used to benchmark algorithms, check the
correctness of new implementations and compare algorithms’ results. In particular, the
implementations for the SOM and 1-SVM show comparable results; i.e., the results support
the correctness of both implementations. The artificial data can also be used to analyze
systematically the influence of individual data characteristics on the results of specific
ML algorithms. For example, 1-SVM is less sensitive to changes of the observation space
dimensions than SOM, which is probably due to the kernel trick and is therefore consistent
with the theory.

As only some exemplary ML methods have been chosen to evaluate the data genera-
tion our work, this gives a limited picture for the creation of a benchmark of the methods.
This will be investigated in our future work, as we will continuously add further bench-
mark algorithms and improve the data generation method. Furthermore, more elaborate
comparisons of the behaviors of the anomaly detection methods are planned. An open
question is why a static method (e.g., SVM) outperforms dynamical methods (e.g., LSTM).

For further analyses, comparisons and validations, the authors will publish all data,
the complete data generation code and the used algorithm implementations. Additionally,
the code for a systematic comparison of ML methods will be published in the future
(https://www.hsu-hh.de/imb/en/projects/ArtDataGen, accessed on 30 March 2021).
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12. Niggemann, O.; Stein, B.; Vodenčarević, A.; Maier, A.; Kleine Büning, H. Learning Behavior Models for Hybrid Timed Systems.
In Proceedings of the Twenty-Sixth Conference on Artificial Intelligence (AAAI-12), Toronto, ON, Canada, 22–26 July 2012;
pp. 1083–1090.

13. Yang, S.; Khot, T.; Kersting, K.; Natarajan, S. Learning Continuous-Time Bayesian Networks in Relational Domains: A Non-Parametric
Approach; AAAI: Menlo Park, CA, USA, 2016.

14. Shelton, C.R.; Fan, Y.; Lam, W.; Lee, J.; Xu, J. Continuous Time Bayesian Network Reasoning and Learning Engine. J. Mach. Learn.
Res. 2010, 11, 1137–1140.

15. Sürmeli, B.G.; Eksen, F.; Dinç, B.; Schüller, P.; Tümer, B. Unsupervised mode detection in cyber-physical systems using variable
order Markov models. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden,
Germany, 24–26 July 2017.
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