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Abstract: Ground moving target imaging finds its main applications in both military and homeland
security applications, with examples in operations of intelligence, surveillance and reconnaissance
(ISR) as well as border surveillance. When such an operation is performed from the air looking down
towards the ground, the clutter return may be comparable or even stronger than the target’s, making
the latter hard to be detected and imaged. In order to solve this problem, multichannel radar systems
are used that are able to remove the ground clutter and effectively detect and image moving targets.
In this feature paper, the latest findings in the area of Ground Moving Target Imaging are revisited
that see the joint application of Space-Time Adaptive Processing and Inverse Synthetic Aperture
Radar Imaging. The theoretical aspects analysed in this paper are supported by practical evidence
and followed by application-oriented discussions.

Keywords: GMTI; radar; radar imaging; STAP; SAR; ISAR

1. Introduction

Synthetic Aperture Radar (SAR) exploits the radar platform motion to form a large
antenna aperture and, therefore, to provide high resolution images of an illuminated
scene [1]. SAR systems have been widely used for various Earth observation applications,
including geoscience, disaster monitoring, homeland security as well as in military contexts.
More specifically, in homeland security and military-related scenarios, the attention is often
paid to moving human-made targets, often addressed as non-cooperative targets. Similarly
to the case of a photographic camera, moving targets typically appear defocused in SAR
images. This is mainly due to the fact that a standard SAR processor is not designed to
account for target’s motions. A solution to the imaging of moving targets is proposed in [2]
in which Inverse SAR (ISAR) processing is successfully applied to targets detected within
SAR images. Such solution, though, only considered maritime targets, which are much
easier to detect than ground targets because of the reduced clutter intensity of the former
with respect to the latter. In fact, in the presence of ground clutter and, particularly when
considering slow moving targets, the echo of the latter overlaps with that of the ground
clutter, which is typically much stronger. Another approach for SAR ground moving target
imaging with inverse SAR scenario is suggested in [3] where a generalised inverse synthetic
aperture radar (GISAR) geometry is addressed. Well-established methods for separating
moving targets from stationary clutter in single-channel SAR systems are based on a
Doppler analysis. More specifically, the signal relative to a moving target and that coming
from the stationary clutter may be separated based on their spectral occupancy [4,5]. Such
techniques are based on the assumption that the radar Pulse Repetition Frequency (PRF) is
high enough to obtain a region in the Doppler frequency domain that is free of the static
scene components. Doppler-based techniques can be readily applied to single-channel
SAR data although they do not prove very effective. First of all, for these techniques to be
applicable, high PRFs must be transmitted. Unfortunately, high PRFs may significantly
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reduce the SAR swath as well as they may increase the amount of data to be processed.
Moreover, such techniques fail when attempting to detect slow moving targets. In fact,
slow-moving targets generate low Doppler frequencies, which fall completely within the
Doppler bandwidth of the stationary clutter, therefore not producing the required spectral
separation. Other ground moving target detection techniques that are readily applicable to
single-channel SAR systems are based on change detection. Such techniques make use of
different looks of the same scene at different times [6]. Although they may be very effective,
their implementation requires two passages over the same zone at different times, which
complicates the overall acquisition mission. Moreover, an effective change detection needs
a fine image co-registration, which is not always simple and easy. Last but not least, this
method only leads to a detection that cannot be related to a real-time event but can only
confirm that a target has moved in or out of a certain position in the time between the
two passages. Additional ideas are proposed in [7], where the motion of moving targets is
exploited for improving resolution and enhance their detectability, and in [8] where the
motion of controllable illumination is exploited to obtain high-resolution imaging through a
small effective aperture and therefore enhance signal to clutter ratio. When spatial Degrees
of Freedom (DoFs) are available, such as in the case of multi-channel radar systems, more
powerful techniques can be devised. These techniques exploit the ability to collect multiple
spatial samples of the target’s echoes. This can be obtained by means of radar systems that
employ multiple antenna and receiving channel elements. Multiple spatial samples are
then mixed with multiple time samples, i.e., echoes collected at different Pulse Repetition
Interval (PRIs), and processed jointly to reduce or even suppress strong ground clutter
components. Displaced Phase Centre Array (DPCA) [9,10], Along Track Interferometry
(ATI) [11-13], Space Time Adaptive processing (STAP) and Time-Frequency Transforms
(TFT) [14-16] are examples of multichannel SAR techniques for mitigating the effects of
stationary clutter. Particularly, STAP techniques have proven to be very effective in terms
of their ability to suppress stationary clutter and have been widely used to detect slowly
moving ground targets [17-19].

In the more recent years, with the development of multichannel M-SAR (SAR) systems,
applications of Space Time Adaptive Processing to imaging systems have attracted the at-
tention of many radar scientists and engineers. The authors of [20,21] derived an optimum
space-time processing for moving target detection in SAR images and compared it against a
number of reduced rank methods. Pre- and post-Doppler STAP were introduced by Rosen-
berg for joint jammer and clutter cancellation in multi-channel SAR images [22-24]. As a
result of extensive studies and assessments, STAP and all its derived approaches are to be
considered the most effective techniques for the detection of slow-moving ground targets.

Much attention has also been paid to the problem of clutter heterogeneity and limited
availability of training data. Both these factors can drastically reduce the clutter-rejection
performance of STAP. In recent years, several techniques have been developed to solve the
problem of the lack of training data for an effective estimation of the clutter covariance
matrix. In [25], a priori knowledge is exploited to effectively estimate the clutter covariance
matrix, whereas, in [26], a method based on a small number of secondary samples is
proposed. Differently, a method for the exploitation of additional training data has been
proposed in [27], where additional data is obtained by means of a diverse waveform
pulse compression. On the other hand, in a heterogeneous clutter environment, the clutter
statistics are range-dependent and, therefore, the selected training data may have a different
characteristic with respect to that of the area under test. Improper training data selection
and the presence of non-stationary interference have been addressed, respectively, in [28]
and [29], where a post-Doppler parametric adaptive matched filter and STAP based on
piecewise sub-apertures have been proposed as solutions. Clutter range dependence, which
involves a strong heterogeneity in the training data, is also present in forward-looking
airborne SAR. In [30], an adaptive Doppler compensation to mitigate the degraded STAP
performance has been proposed.
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Only very recently, STAP has been investigated as a means to form images of ground
moving targets. A combination of STAP and ISAR techniques has been proposed in [31]
to obtain well-focussed images of moving targets when using a multi-channel SAR sys-
tem. The approach in [31] has been formulated in the classic space/slow-time domain
although, as introduced subsequently, a more interesting and effective implementation can
be obtained in the space Doppler domain, [32,33].

This review paper collects a number of concepts and results that provide the au-
thor’s view and solution to the problem of imaging moving targets against strong clutter.
Emphasis is given to both the theoretical aspects and practical implementation with real
data-based case studies as evidence of the validity of the proposed concepts, architectures
and algorithms. The paper is organised in order to illustrate theoretical findings through
signal modelling and processing and to provide evidence of results based on real data
collected in a number of airborne radar scenarios. In more detail, Section 2 provides the
mathematical background that is necessary to fully understand the system concepts and
architectures as well as the derived signal processing techniques. Subsequently, Section 3
addresses and validates the SDAP-ISAR technique on a set of real data acquired with a
multi-channel SAR system. Section 4 illustrates the Virtual SDAP approach, which allows
to apply, under certain conditions, SDAP by using only a single channel radar system.
Virtual SDAP is also validated by using real data in Section 4. Section 5 introduces the
concept of Cognitive SDAP through the definition of a cognitive multi-channel radar ar-
chitecture and presents some evidence of its validity by using real data. Conclusions are
finally drawn in Section 6.

2. Background of Ground Moving Target Imaging

This section provides some background knowledge that is fundamental for introduc-
ing and comprehending the concepts that will follow in this paper. In particular, it focuses
on multichannel and non-cooperative target imaging techniques and on the definition
of signal and clutter models that will be used throughout the rest of this paper. More
specifically, a formulation of a multi-static version of the range-Doppler image formation
algorithm will be provided, followed by a review of an effective imaging technique to
produce high resolution images of moving targets.

2.1. Multichannel ISAR Signal Model

The multichannel ISAR signal model, addressed briefly in this section, is a generalisa-
tion of the model introduced in [34] where a configuration with two orthogonal baseline
for 3D target reflectivity function reconstruction was considered.

Figure 1 shows a geometry where a bidimensional array carrying by a moving platform
observe a scene in which a non-cooperative moving target is present. The moving platform
can be either an airborne or a spaceborne platform. In this geometry three different
reference systems can be easily defined. The reference system T; has its origin in the phase
centre of the transmitter and the ¢ axis parallel to the radar Line of Sight (LoS). Moreover
the ¢1 and the {3 axes correspond, respectively, to the horizontal and vertical baselines.
As detailed in [35], the target’s own motion can be modelled as a superimposition of
a translational motion component, namely Ry (), and rotational motion velocity vector,
namely Qr(f). Both components are considered to be applied to the same reference point
of the target. The projection of Q7 (t) on the plane orthogonal to the LoS is namely the
effective rotation vector Q),¢¢(t) and represents the aspect angle variation that can be
observed by the radar. The other reference system, Ty, which appears in Figure 1, is centred
in the target’s reference point and has the x; axis directed along the radar LoS and the x3
axis oriented along the direction of (2, f f(t). The angle between the axes {3 and x3 is the
angle a. It is worth pointing out that x3 is chosen to complete the orthogonal Cartesian
triad. Finally, the reference system T, is fixed with the target and it is defined so that it
coincides with Ty at t = 0 and rotates with respect to T, depending on the relative LoS
direction. In this case, all the antenna elements act as transmitting and receiving antennas.
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However, as demonstrated in [36], if only one antenna acts as transmitter and all the other
antenna elements are receive-only elements, it is still possible to define an equivalent
monostatic configuration for each transmitter-receiver bistatic couple. The inter-element
spacing d between antenna elements is considered to be the same in both dimensions.
The couple (p, q) denotes the element position, i.e., {1 = pd, & = gqd where the indexes
p=- g, e g —landg=— %, e Q _ 1 define the element position within the array. If a
monostatic (or equivalent monostatic) configuration is considered and by assuming that
the straight iso-range approximation is verified (this is always true in far field [35]), the
phase of the received signal from a single transmitter /received positioned at the centre of
the reference system Tz can be written as follows:

oyt ) = T (Ro(1) +y - ias(0) )

where R(t) is the relative distance between the moving platform and the target reference
point at a generic time ¢, y represent the position of the scatterer in the Ty reference system
and iy,s(t) is the unit vector along the radar LoS at time t. Consequently, the signal received
by the array element (p, q) can be express as follows:

_i4nf | p(pa) 4P (4
S5, = s, ) [oly)oe o 00
1%

dy (2)

where (f, t) represent the range frequency and the slow-time respectively. A rotation matrix
Mg, is here introduced to generate a rotation of Ty with respect to Tz of an angle «, and
can be written as:
cos(a) 0 sin(a)
Mg, = 0 1 0 (©)]
—sin(e) 0 cos(w)
It is possible to obtain the LoS unit vector 1(5);2(1?) in the reference system Ty as the
normalised difference between the positions of each sensor and the origin of Ty by means
of the rotation matrix Mgy:

(r) (r) 1 —pdcos(w) — gdsin(a)
ihe () = MéxiLilsqé(t) =C Ro(t) 4)
pdsin(a) — gdcos(a)

where

C = \/R3(t) + (pd)? + (qd)? = Ro(t) )

is the normalisation factor. By considering that the radar-target distance is much larger
than the array size, it is possible to approximate the normalisation factor C as in the right
side of Equation (5). Moreover, for small observation times, Ro(tf) &~ Ro(0) = Ry. As
detailed in [35], the scatter position x(t) can be expressed as follows:

x(t)Za+b+ct=y+ct 6)
wherea:%QT,b:y—%QT,C:QTXY

T T
By considering Equation (3), the inner product can be rewritten as:

y il () = x(t) - 178 () = KPP+ KPP @)
where v4)
K" = y2 — & [y1 (peos(a) + gsin(a)) + y3(qcos(a) — psin(a))] ®)
Kip'w =cp— R%[cl(pcos(oc) + gsin(a)) + c3(geos(a) — psin(a))]
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and where ¢, = Qe [33,37].

554

51 w(=0)=y,

x(t=0)=y

&=x(t=0)=y,

Figure 1. Multichannel ISAR geometry.

The ISAR point spread function (PSF) related to a single scatter y(¥) at the generic
receiving channel (p, q) is obtained through a two-dimensional inverse Fourier transform
(2D-IFT) of the signal after motion compensation, and can be expressed as follows:

i (p4)
1P (2,0) = B Ty - oy, ) - 20 (2K
)
sinc {Tobs (1/ + 2{0K§p"7))] . sinc |:B (T _ iKéPr‘i))]

It should be noted that, when the array size is much smaller than the radar-target
distance, Ky and K; can be approximated as:

K(()M) =1
(10)
KPP = 2 = Qg

The model presented here can be simplified in the case of linear arrays, which can be
derived from the general case by posing q = 0.

An integrated image can be obtained by summing up the resulting images at the
output of each of the P channels. The sum can be performed effectively only if all the P
channels are phase-aligned. Theoretically, this can only be true for a single point on the
ground. In practice a tolerance in the phase error can be introduced that allows of a region
on the ground to be effectively imaged with a linear array. Such a bound poses a constraint
directly on the array size. As a consequence, the maximum array size can be found by
imposing the maximum tolerable phase difference among the images:

%

T(P_ 1)1%(]/1 cosa — yzsina) <

x| 3

(11)

which leads to:
ARg

Y1 cosa — y3sina) (12)

Durray < 32(

where A = % and where (17 cos & — y3 sina) represent the target size in the ¢; dimension.
In the event that the target size along the ¢; dimension does not satisfy the bound expressed
in Equation (12), it is still possible to apply the described method by splitting the entire
illuminated area into regions with a smaller size such as to satisfy Equation (12). Then, for
each of these regions, a separate image focus point should be used as a reference point.
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Distortions appear in the image, in case the constraint is not met. A closed-form solution of
the attenuation term can be calculated as follows:

(]
2
Iy,y2) = Y, IV (y1, 1)
p=—%
gil 4w d
O T ST @

p=—%

amdPyy Pl am g
:I(O)(yl,yz)eJr] A 2Ry 2 6] A RoY1P
p=0

In order to simplify the notation and to make it clearer for the reader, we will show
below the case with a = 0. After some mathematical manipulations, Equation (13) can be
expressed as follows

2npd, SIN ( 27RdRylP )
1(y1,y2) = 19 (y1,92)¢ “’%yl-(m;l) "
sin( =g
. _sin(hRe) N
As explained above, the term [(y1) = W produces a distortion in the image
ARy

amplitude due to the phase misalignment. The attenuation term J(y) is shown in Figure 2
for a distance equal to Ryp = 5 km and a carrier frequency fy = 10 GHz. The inter-element
distance is instead obtained by imposing the condition expressed in Equation (12), with
y1 = 100 m, which yields:
g ARg
32y, (P—1)
Equation (12) produce a loss of 0.2 dB within a distance of 100 m from the focusing

point, indicating that this condition may be quite restrictive if longer synthetic apertures
are used.

(15)

0
k=l
c
e
®
2 6l
g -
< —P=2
81 ---p=3
wP=5
----- P=10
10 ' ‘
-500 0 500

(@)

Figure 2. Cont.
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Figure 2. Attenuation factor. (a) The attenuation term J(y;) is shown for the radar center-scene
distance, Rg = 5 km, a carrier frequency, fo = 10 GHz. (b) Represent a zoom-in version of sub-
plot(a) Reproduced with permission from Alessio Bacci, Optimal Space Time Adaptive Processing for
Multichannel Inverse Synthetic Aperture Radar Imaging, PhD Thesis; published by University of Pisa
and University of Adelaide, Australia 2014.

2.2. High Resolution Imaging of Non-Cooperative Moving Targets

Standard SAR processing implies the assumption of a known platform trajectory and
a static scenario during the synthetic aperture formation. Under these assumptions, a
direct motion compensation can be applied. This produces a highly focused image of the
observed static area by means of coherent integration of the received signal. On the other
hand, a non-cooperative moving target would not appear well-focussed and it would be
displaced in the SAR image because the relative motion between the moving platform
and the moving target is not compensated [35,38]. Many techniques [39—-42] have been
proposed in the literature to overcome the problem of the phase compensation between the
radar moving platform and a non-cooperative target. Some of these are based on restrictive
assumptions, which constrain the target to move along rectilinear trajectories, whereas
others require the existence of multiple prominent scatterers on the target. ISAR processing
can be a viable solution to the problem of focusing moving targets that are present in a
SAR scene. Differently from the SAR case, where fine cross-range resolution is obtained
by using the platform motion during the Coherent Processing Interval (CPI), in the ISAR
case, the radar is assumed fixed to the ground and the cross-range resolution is obtained
by exploiting the movement of the target [38]. It is worth pointing out that the relative
motion between radar and target is estimated and compensated by the ISAR processing
during the image formation process and no a priori information about radar-target relative
motion is required. For this reason, a method has been proposed in recent years that
exploits the ISAR technique to refocus moving targets in SAR images for both monostatic
and bistatic configuration [2,43]. A processing block scheme is depicted in Figure 3 that
describes the signal processing steps that are needed to refocus a blurred image of a non-
cooperative moving target. The required signal processing is composed of the main steps
described follows:
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SAR Image

Detection

Sub-image Sub-image
» ISAR
TARGET CROP #1 » [ <election ]»[ - ] [ ] »

Target

Sub-image Sub-image
TARGET CROP #N - » - ISAR -
[ selection ] [ inversion ] [

Figure 3. Processing chain of detection and refocusing processor.

Target Detection

The target, independently of how well is focussed, must be detected first. Differently
from maritime scenario, where the backscatter of sea clutter is typically weaker than
the target’s return, the detection of moving target in ground clutter scenarios can be
critical since ground clutter can often mask the target completely.

Sub-Image Selection

After the first step (of target detection), each detected target must be extracted from
the SAR image. This is done by separating the target’s return from clutter and other
target’s returns. This is a fundamental step since each target has its own motion, which
is different from that of the other targets and, therefore, its signal must be processed
independently of the others. A number of sub-images equal to the number of detected
targets can be obtained by processing each target’s return in parallel with separate
instances of the ISAR processor.

Sub-Image Inversion

A conversion from the image domain to the raw data domain is required as already
implemented ISAR processors accept raw data as input. Depending on the algorithm
used to form the SAR image, different algorithms can be used for image inversion.
The following conditions will be here assumed: (1) the straight iso-range (or far field)
approximation holds true and (2) the total aspect angle variation can be considered
small enough and then the effective rotation vector can be considered constant during
the CPI. Generally the received signal is defined on a polar grid in the Fourier domain.
However under these approximations the Fourier domain can be approximated with
a rectangular and regularly-sampled grid. Consequently, the two-dimensional Fast
Fourier Transform (2D-FFT) can be used to reconstruct the image through the range
Doppler algorithm. In this case the Inverse range-Doppler (IRD), which consist of a
two-dimensional inverse Fourier transform, is the most viable inversion algorithm
and can be easily implemented by means of an inverse 2D-FFT.

A number of more accurate image reconstruction algorithms have been proposed in
many years of SAR image formation research. A non-exhaustive but significant list
of such algorithms follows: Omega-k also called range migration algorithm [1], Range
stacking [44], Time Domain Correlation (TDC) [45] and Back-projection [1].

ISAR Processing

As mentioned about, after target detection, it is possible to separate the target contri-
bution from both the contribution of clutter and that of other targets. Through the
sub-image inversion step the raw data for each sub-image can be obtained. ISAR
processing can be then applied to produce a high resolution image of the moving
target. It is worth emphasizing that the SAR image formation processing focuses the
static scene by compensating for the movement of the platform. Therefore, only the
residual motion between the radar platform and the non-cooperative moving target
needs to be compensated by means of ISAR processing.

ISAR Processing

Figure 4 shows the main steps that compose the ISAR processor, which are briefly

summarised below and detailed in the following paragraphs

Motion Compensation;
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Compensation

e  Time Window Selection;
¢ Image Formation;
¢  Cross-Range Scaling.

S}ef(fsr) SRC,m'(f’f) ](T=V) ](J”l’y:)

Motion - Time Window ‘ ‘ Cross-Range »

Selection Formation Scaling

Figure 4. ISAR processing chain

Motion Compensation

Different motion compensation techniques can be found in the literature. Some of
them are summarised in [38]. The technique implemented here is the Image Contrast Based
Autofocus (ICBA) algorithm, and aims estimating and compensating the target radial
motion by maximising the Image Contrast (IC).

Briefly, the ICBA algorithm is a parametric autofocus technique where the problem of
the target motion compensation, i.e., the estimation and the suppression of the term Ry(t),
is recast as an optimisation problem based on the Image Contrast (IC) maximisation. More
details can be found in [46].

Time Window Selection

Under the assumption of a constant effective target rotation vector and small total
aspect angle variation, the RD algorithm can be applied. However, in some cases, these
approximations do not hold true. A viable solution to this problem is to take into account
a temporal window in the slow time domain that can be used to select a suitable time
interval. In fact, if the time interval is small enough, the RD processing can be applied
effectively for the image formation. However, a large window is instead required in order
to obtain a fine cross-range resolution.

In [47], a solution for the optimal selection of the length and the position of the window
to obtain an image with highest focus (largest image contrast), is addressed. It should
be mentioned that the IC allows for the largest time window to be selected for the finest
resolution to be obtained before aspect angle variations start producing their negative
effects in terms of image distortions.

Image Formation

Given the previous processing steps, the RD algorithm, which is implemented through
a two-dimensional inverse fast Fourier transform, is used for the image formation as follow:

I(T,v) = 2D — IFT[Sgc(f, )] (16)

where Sg c(f, t) is the received signal after motion compensation in which (f, ) represent
the range frequency and the slow-time respectively, while I (7, v) represents the ISAR image
and 2D — IFT represents the two-dimensional Inverse Fourier Transform.

Cross Range Scaling

Without any further refinement, an ISAR image is obtained in the time delay-Doppler
domain, i.e., I(7,v), by appying the RD algorithm. Nevertheless, in order to determine
some target’s geometrical feature, such as the size, a spatially scaled image should be
presented, i.e., an image in the range and cross-range domain. Firstly, as shown in [38],
the well-known relationship, y, = &, can be used to easily scale the image from the delay
domain to the range domain. The cross-range scaling, instead, requires the knowledge of
the target’s effective rotation vector magnitude, namely (),¢, which is not known a priori
and cannot be measured directly.

Under the assumption of a constant target rotation vector in the CP]I, the chirp rate
produced by the target scatterers can be related to the effective rotation vector. If a sufficient
number of scatterers can be extracted from the ISAR image and, therefore, an equal number
of chirp rates estimated, the modulus of the effective rotation vector can be estimated by



Sensors 2021, 21, 2391

10 of 39

applying a simple Least Square Error (LSE) estimator. In [48], an effective algorithm has
been introduced that solves the cross-range scaling problem.

3. Ground Moving Target Imaging via Space-Doppler Adaptive Processing

As already mentioned, STAP allows for stationary clutter to be suppressed in order
to detect ground moving targets. In this section, we will shift the focus to target imaging
rather than target detection. For this reason, a new technique has been introduced by
the authors in [33] where a different implementation of STAP has been developed and
combined with ISAR processing to form well-focused images of non-cooperative moving
targets, which will be recalled in this section. Firstly, a method will be implemented that
will allow for ISAR processing to be applied to a clutter-mitigated SAR image. Then, a
sub-optimal approach will be introduced for an effective estimation of the clutter space-
time covariance matrix. Finally, a modified version of the classical Space Time Adaptive
Processing (STAP) [17], will be detailed as a result of the derivation of the range-Doppler
image formation algorithm. As this modified version is directly implemented in the
Doppler domain, it has been renamed Space-Doppler Adaptive Processing (SDAP).

The SDAP theoretical formulation will be derived for both the optimum and sub-
optimum case.

3.1. Optimum Processing

Figure 5 shows the acquisition geometry where a moving target is immersed in a
stationeries clutter background. The signal received by the radar on the moving platform
after Fourier transform (signal spectrum) can be expressed as follows:

S(f,t) = Se(f,t) + Sc(f, 1) + N(f, ) (17)

where S;(f, t) represents the target return, S¢(f,t) is the clutter contribution and N(f, t)
is an additive noise. f € [ fo—5,fo+ 2} and t € [ “Lobs, "bb} denote the range frequency
and the slow-time, respectively. It is worth pointing out that, according to Section 1, the

multi-channel signal can be derived form the single channel signal model. The target return
can be expressed as follows:

—jin p) 4 g (p)
Se(f,t)=e —i R (1) Zake A[KO' K”‘t] (18)

where both terms K((]p ) and K§p) are derived in Equation (8).

It is worth reminding that both K(()p ) and Kip ) can be reasonably approximated as in
Equation (10). In fact, in the case where the antenna dimension is smaller that the distance
between the radar and the target, the LoS of each antenna element can be considered
equivalent to the others.

Under this assumption the received signal relative to a moving target, namely S;f ),
and the static background, namely S.(f,t), can be expressed as:

. (k
St(f/ t) — e*]%Rgt Z Uke [yz +ngf tYq ) } (19)
Self, 1) = e T TRt // o(y1,ya)e K LT Ot ay, ay, (20)
(v192)

where the position of the reference point on the target, which includes both the motion of
the target and the motion of the platform, is indicated with Ro(t), k indicates the index of
a generic scatterer while the coordinates in cross-range and in range relatively to the k"
scatterer are indicated, respectively, with ygk) and yék). Finally, the platform and the target
motions are included in the term Q)¢ ; which is the effective rotation vector.
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Figure 5. Acquisition geometry relative to a multichannel side-looking SAR system.

It is worth highlighting that the proposed SDAP processing for clutter suppression
and target imaging is based on the range- Doppler algorithm and that the straight-iso
range approximation is mandatory to apply this processing. According to the theory, range
resolution is related to the signal bandwidth. Then high range resolution can be obtained by
exploiting wideband signals in transmission and by matched filtering the echoes. Moreover,
through the RD processing, high azimuth resolution can be achieved [33,38]. Let consider
a static scatter point placed in (y1,y2) and let S;(f, t) be the received signal. Then, the
range-Doppler image formation can be obtained by means of a Fourier Transform, as above:

up(f,v) = FTLSi(£,085(f,1) } e

where FT{} is the Fourier Transform along the slow time domain. Equation (21) can be
also expressed via a convolution in the Doppler frequency domain:

up(f,v) = gref(f/ —v)® St (f,v) (22)
where
St(f,v) = FT{S(f,t)} (23)
and
Sref(fv) = FTi{Sup (£,1)} (4)

are the received signal and the reference signal after a Fourier transform, respectively.

Noticeably, Equation (22) shows that the image formation process via the range Doppler
algorithm can be interpreted as a matched filtering in the Doppler frequency domain.

A discretised form S(n,m) = S(nAf,mTg) can be used to express the proposed
formulation. The indexes n = {%, ey % — 1} and m = {#, ey % — 1} represent the
discrete frequency and the pulse index, respectively, whereas Jf and Ty represent the
frequency sampling step and the Pulse Repetition Interval (PRI), in the same order. When
considering a discretised domain, the RD processing can be rewritten as follows:

up(n,my) = DFTm{St(n,m)Sfef(n,m)} (25)
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where m, denotes the Doppler frequency index. Equivalently, the same can be written
directly in the Doppler domain as a matched filtering operation, as follows:

up(n,my) = S;(n,my) @m, Syer(n, —my) (26)

where
St(n,my) = DFT,,{S;(n,m)} (27)
Srep(n,my) = DFTm{S,ef(n,m)} (28)

In the last expression, DFT;, represent the Discrete Fourier Transform operation along the
discretised slow-time domain while the discrete convolution is denoted with ®,,,.

A vectorial form can be used to rewrite the matched filtering operation in Equation (26).
After defining the signal vector, i.e., S(n), and the reference vector, i.e., Gp(n,m,), as

S(n) = [S(n,0),5(n,1),..,5(n, M —1)]" € CM*1 (29)

~ & & T Mx1
Gp(n,my,) = [S,gf(n, my), ..., S,gf(n, my, — (M — 1))} eC (30)
the vectorial form can be then obtained:
up(n,my) = GH(n,m,)8(n) (31)

The achieved result can be extended in the case of a multichannel system. Consequently,
the multichannel range-Doppler image formation can be expressed as follows:

P P
up(n,my) =Y upp(nmy) =Y S p(n,my) @u, Sref,p(n, —my) (32)
p=1 p=1

Through a staking operation, first along the channel dimension, as expressed in
Equations (33) and (34), and, then, along the Doppler frequency dimension, as shown
in Equations (35) and (36), it is possible to express Equation (32) in a vectorial form as fol-
lows:

S(n,my) = %[Sl(nfmv)/52(”1mv),...,§p(n,mv)]T e ¢Px1 (33)
Sref(n,my) = %{S]ef,l(n, my), Srefp(1,1y), .., Syef,p (1, mv)r c cPx1 (34)
S(n) = [S(n,0),5(n,1),...,5(n,M — 1)]T c CMPx1 35)
Gp(n,my,) = [grgf(f’l, mMy),s oo Spep (1,1, — (M — 1))} T ¢ omPx 36)

The Doppler matched filter can be then expressed as:
up(n,my) = GH(n,m,)S(n) (37)

It is worth reminding that the straight iso-range approximation must be effective for this
image formation processing to be effective. After applying the Doppler processing, in order
to for a range-Doppler image, a last Fourier transform must be carried out along the range
frequency dimension.

3.2. SDAP-ISAR

The application of optimum SDAP produces a weight vector that maximises the output
SINR. Mathematically, the maximum SINR output can be then obtained by substituting the
reference vector with the weight vector obtained through the application of SDAP

up(n,my) = WH(n,m,)S(n) (38)
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Practically, the optimum SDAP filter can be realised by means of the sample matrix inver-
sion (SMI) implementation [49], as detailed in Equation (39):

Wp(n,my) = 'YRB,}GD(V[/ my) (39)

where the SINR at the filter output is not affected by the scalar parameter . Moreover, the
estimation of the interference cross-power spectral matrix Rp., indicated with Rpe, can be
obtained by exploiting N, target-free training data as follows:

Rpe = — Y. Z(n,)Z"(n,) € CMPXMP (40)

The vector Z(n,) represent the nth target-free range cell expressed in the Space-Doppler
frequency domain.

In order to effectively implement SDAP to perform clutter suppression and high
resolution imaging of moving targets, two considerations must be made and relative
solutions identified. The first concerns the target’s non-cooperativity and the second
the estimation of the clutter covariance matrix. Relatively to the first issue, it should be
mentioned that Equation (39) allows simultaneous clutter suppression and target imaging
through the range Doppler algorithm. It is clear that both the platform motion and the
target’s own motion must be compensated by the reference vector Gp(n,m,) to obtain
a focused image of the moving target. However, a full knowledge of such a reference
vector does not represent a realistic scenario since the target’s motions are not know. The
platform motion can be known and then can be compensated. A well-focused image of
a non-cooperative target can be achieved by ISAR processing applied at the output of
the SDAP filtering operation. As stated previously, ISAR processing must be applied
individually to each detected target in order to be effective.

The functional block of the SDAP-ISAR algorithm is shown in Figure 6.

S (n.m) So(
ie,],p(n m,) \{/
W §(n) Uy (n,m,)
: ISAR
- STACKING & >
J PROCESSING
f}(n,m‘,) l
RD;1 ‘if'(n, m,) Refocused
> Image

Figure 6. Optimum SDAP ISAR functional block.

The second issue to be addressed concerns the clutter covariance matrix estimation, i.e.,
Rp¢. The Reed-Mallet-Brennan (RMB) rule [49], indicates that N, = 2 MP target-free and
identically distributed range cells are needed to accurately estimate the clutter covariance
matrix. In fact, ref. [49] demonstrates that, in such conditions, the average performance
loss is roughly 3 dB with respect to a perfect knowledge of the clutter covariance matrix. As
an example, if we consider values of PRF = 2 KHz, T,;; = 0.5 s and P = 4, then N, = 8000
range cells would be needed to satisfy this condition. More practically, if we assume a
range resolution of 0.5 m, this would mean that an area of 4 km in the range dimension
where a homogeneous clutter should be present. It is quite easy to figure out that this
condition cannot always be met in practical scenarios. In the next section, a sub-optimum
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approach will be presented to overcome this issue by reducing the dimension of the clutter
covariance matrix, which, in the Doppler domain, is termed cross-power spectral matrix.

3.3. Use Case—SDAP-ISAR

The SDAP-ISAR algorithm presented in the previous section has been tested on real
data to prove the effectiveness of SDAP-ISAR in terms of joint clutter suppression and
target imaging. The measurement campaign took place on 18 July 2018 close to Teuge
airport, in the Netherlands. The radar system used for the acquisitions is characterised by
one transmitter and four receiving channels at X-band. Both the FMCW SAR system and
the navigation unit (GNSS-IMU) were installed and operated on board of Cessna 208. The
acquisition and the radar parameters are briefly summarised in Table 1.

Table 1. Acquisition parameters. Left column: parameter definition, right column: parameter value.

Parameter Value
Carrier frequency f 9.9 GHz
PRF 2.9 kHz
TX Bandwidth 600 MHz
ADC Sampling frequency 25 MHz
Platform Velocity 45m/s
Incident Angle 55°
Antenna Beamwidth 6, = 20°,6,, = 20°
Acquisition Time 0.6s
Platform Altitude 996 m
Baseline 0.08 m
Numbers of Rx channels 4

The baseline between adjacent channels (b; = 0.08 m) is quite long and, by considering

the imaging area size, namely Dy, does not meet the condition imposed by Equation (12).

In fact, by looking at the parameters shown in Table 1, the cross-range image size can

be roughly evaluated by considering the antenna azimuth aperture and the slant range
distance, i.e.,

Dy1 = Robaz = 603m (41)

The array size is therefore too large for the multichannel range-Doppler to be applied.
In fact, distortions appear that are induced by the J(y;) term . To coherently sum the
range-Doppler images, it is possible to virtually reduce the baseline between two adjacent
channels. To this purpose, the first N; samples are discarded in channel 1 and the last
N, samples are discarded in channel 2. In this way, the equivalent baseline b, ,; between
two adjacent channels becomes b;,; = b; — N;jvpTg, where v, and T are the platform
velocity and the Pulse Repetition Interval (PRI), respectively. It is worth pointing out
that an additional temporal decorrelation is introduced because, after discarding those
samples, the measurements are not longer simultaneous. It should be mentioned that this
is not an issue for the image formation processing but it can affect the performance of
clutter suppression. In order to appropriately select the training cells for clutter covariance
matrix estimation, an accurate SAR image formation of the observed area is needed. The
SAR image can be formed via a two-dimensional compression of the received signal.
Typically, the main differences between SAR reconstruction algorithms consist of the way
the Range Cell Migration Compensation (RCMC) and azimuth compression are handled.
In this paper, the range-Doppler Algorithm (RDA) is taken into account. As often occur
in practice, during real experiments, a misalignment between the true position of the
SAR platform and the position measured by the IMU system may be experienced. As a
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consequence, a residual range migration may still be presents after a nominal RCMC. The
SAR image of the area around the Teuge airport is shown in Figure 7, where the red box
includes the area of interest. The red box is better shown Figure 8a while an optical Google
image of the same area is shown in Figure 8b. The observation time and the corresponding
cross-range resolution are detailed below:

L
Tops =~ =134s

g (42)
CRO
O0pp = ———— =0.045m
“ Zf Ovaobs

SAR Image

340

360

380

Range [m]
-
15

420

440

1000 2000 3000 4000 5000 6000
Cross-Range [m]

Figure 7. SAR image of the observed area formed via the range Doppler algorithm (RDA). The red
box include the area of interest.
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Cross-Range [m]

(a) (b)

Figure 8. Image of the area under test (a) RDA SAR image—the yellow box includes the training area
used for the clutter covariance matrix estimation, (b) Optical Google image of the area under test.

It is worth pointing out that a despeckle filter, namely the Lee filter, is applied after
the RDA processing. After SAR image formation, the clutter covariance matrix must
be estimated by using some training data. It is worth pointing out that the SDAP is
computationally burdensome and the use of a standard PC may not be sufficient. As a



Sensors 2021, 21, 2391

16 of 39

matter of fact, a large synthetic aperture, i.e., 8,; =~ 20°, imposes to process a high number
of samples, which can be calculated as follows:

Nisamp = Tops PRF ~ 39000 (43)

A reduced number of samples, i.e., Nssmp = 2000, will be considered here to be able to
handle the data with a simple workstation. It is clear that a reduced number of samples
degrades the SAR azimuth resolution, therefore producing a worse range-Doppler image
after applying the SDAP technique. However, the application of SDAP for clutter suppres-
sion is possible. Although a reduced number of samples is considered, a large amount of
training data is required in order to estimate the clutter covariance matrix. In particular a
number equal to N; = 2NsgmpP = 16,000 is needed, where P = 4 is the number of available
channels. This corresponds to an area of A, = N, = 4000 m where 9, = ﬁ =025mis
the range resolution. Therefore, the sub-optimum implementation of the SDAP algorithm
is considered. In particular, a window length of L = 30 is selected, which reduces the
required training data to N, = 2LP = 240. The area used to estimate the training data
ranges from 390 m to 455 m and is highlighted by the yellow box in Figure 8a. The SAR
image, after the application of the SDAP algorithm, is shown in Figure 9.

SDAP

-50
-1000 -500 0 500 1000

Doppler [Hz]

Figure 9. SAR image after clutter suppression via SDAP in which the detected targets are highlighted
in the yellow, blue, green and red boxes. A smaller number of available slow-time samples is
exploited since SDAP is computationally burdensome when a standard PC is used.

Figure 9 clearly shows that the majority of the clutter has been suppressed and four
targets, which have been highlighted in the yellow, blue, green and red boxes, can be easily
detected. It should be mentioned that no specific technique has been used to select the
training cells. Therefore, we cannot exclude that some outliers may be present within the
selected training data, which, in turn, may degrade the clutter covariance matrix estimation
and so the SDAP performance. Another aspect to be considered is that the ground truth is
not available for this dataset and the clutter suppression performance cannot be assessed
directly. This means that it is not possible to know whether the detected targets are actual
moving targets or some residual stationary clutter. However, as previously described,
ISAR processing can be exploited in this sense. Since each target has its own motion, to
effectively apply ISAR processing, it must be separated from both the contributions of the
static scene and from other targets. The detected targets depicted in yellow, blue, green
and red boxes are shown, respectively, before and after the application of ISAR processing
in Figure 10.
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Figure 10. Target refocus through ISAR processing of Target 1 (yellow box in Figure 9) (a,b), Target 2
(blue box in Figure 9) (c,d), Target 3 (green box in Figure 9) (e,f) and Target 4 (red box in Figure 9)
(g/h), respectively. (a,c,e,g) Before ISAR, (b,d,fh) After ISAR.

The improvement of the image focus is quite evident also from a visual point of view.
This is true for the first three targets while there is no improvement for the fourth detected
target. This means that the first three detected targets are most likely moving targets, for
which the radial motion can be compensated, whereas the last one probably correspond to
a fixed structure residual image (quite likely a house near a secondary road, which has a
strong return and is not well suppressed by the SDAP algorithm). The improvement in
the image focus can be also evaluated by looking at the Image Contrast (IC), which cab
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be calculated before and after the application of ISAR processing. The IC can be defined

as follows:
VE{I - E[I]}
IC = Y—FF——— 44
C E(TT (44)
where E{.} denotes the average operation and I is the ISAR image magnitude. IC results
before (ICy) and after (IC,) ISAR processing are shown in Table 2 for the four detected

targets. Some additional considerations can be made regarding the radial velocity. In fact,

the radial velocity can be expressed as v, = fDTA, where fp is the Doppler frequency. As the

ISAR processor estimates the target’s radial velocity to compensate for the radial motion
before forming the image, this can us