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Abstract: In this paper, we propose a new approach to the attitude control of quadrotors, by which
angular velocity measurements or a model-based observer reconstructing the angular velocity are
not needed. The proposed approach is based on recent stability results obtained for nonlinear
negative imaginary systems. In specific, through an inner-outer loop method, we establish the
nonlinear negative imaginary property of the quadrotor rotational subsystem. Then, a strictly
negative imaginary controller is synthesized using the nonlinear negative imaginary results. This
guarantees the robust asymptotic stability of the attitude of the quadrotor in the face of modeling
uncertainties and external disturbances. First simulation results underline the effectiveness of the
proposed attitude control approach are presented.

Keywords: nonlinear negative imaginary systems; quadrotors; attitude control; robustness;
feedback stability

1. Introduction

In recent decades, unmanned aerial vehicles (UAVs) have seen increasing interest
within the research communities and industry due to their potential for numerous ap-
plications including, for instance, inspection, surveillance, data acquisition, and military
applications. Their potential future applications include search and rescue, border patrol,
surveillance of wildfires, surveillance of traffic and land surveys. An important type of
UAVs are quadrotors, which have useful properties such as a simple structure, and low
operation and manufacturing costs [1,2]. Numerous control methods have been proposed
in order to tackle the quadrotor stability problem, see, e.g., [3–6].

In many of the aforementioned applications of quadrotors, designing an attitude
controller with high level of performance and reliability is crucial. In the existing literature,
a typical method of estimating the quadrotor’s attitude assumes that the angular velocity
measurements are required. However, the velocity measurements in quadrotors can be
noisy or even not available. Furthermore, using observer-based methods to reconstruct the
angular velocity normally lead to inaccurate estimation of the velocity and, hence, degrade
the attitude control performance [7–10]. This suggests using direct measurements of the
attitude rather than indirect estimations.

Theoretically, different methods can be used to measure the attitude of the quadrotor
such as: Euler angles, direction cosine matrices, and quaternions. However, the Euler
angles have the advantage of being more physically sensible and easier to use, as each of
the three Euler angles represents elementary rotations around the three principles axes
of the quadrotor: roll, pitch, and yaw. Euler angles can be determined directly based on
measurements earth’s magnetic field on the three body axes of the quadrotor. Sensors
like AMR (anisotropic magneto resistive) magnetometers [11] are used to measure earth’s
magnetic field.

Motivated by the forgoing, we aim in this paper to design an attitude control scheme
for quadrotor systems where the angular velocity measurements or a model-based observer
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reconstructing the angular velocity are not required. The proposed approach rely on
using the nonlinear negative imaginary systems framework, which is recently developed
in [12] for nonlinear systems which are passive from the input to the derivative of the
output (rather than the output as in the classical passivity theory). The nonlinear negative
imaginary property of the quadrotor system will be established, and we shall employ the
stability robustness results of [12] to design a velocity-free attitude controller by direct use
of the Euler angles. For future work, the nonlinear negative imaginary approach can be
employed or combined with other techniques as in [13–15] to provide the full flight control
to quadrotor systems.

The rest of the paper is organized as follows: In Section 2, main related definitions
and robust stability results from the linear/nonlinear negative imaginary literature are
reviewed. In Section 3, we use the Euler–Lagrange dynamics of quadrotors systems to
establish the nonlinear negative imaginary property of these systems. We use in Section 4,
an inner-outer loop technique to design a velocity-free stabilizing controller for the attitude
of quadrotors based on recently obtained nonlinear NI stability results. Finally, in Section 5,
simulation results and some concluding remarks along with future directions are provided.

2. Preliminaries

Negative imaginary (NI) systems theory has been introduced in [16] for the control
of flexible structures with colocated force actuators and position sensors. NI systems
theory has seen significant progress in theory and application in the last decade, see for
instance [17,18]. In this section, we review some of the related definitions and stability
results from the NI literature in both the linear and nonlinear case.

2.1. Negative Imaginary Systems: Linear Case

We consider here the following linear time invariant (LTI) system:

ẋ(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) + Du(t) (2)

where the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m. Assume that the
system (1) and (2) has the m × m real-rational proper transfer function G(s) := C(sI −
A)−1B + D. The frequency domain characterization of the NI property of the above LTI
system is given in the following definition.

Definition 1 ([19]). A square transfer function matrix G(s) is called negative imaginary if the
following conditions are satisfied:

1. G(s) has no pole at the origin and in <[s] > 0;
2. For all ω > 0, such that jω is not a pole of G(s), and j

(
G(jω)− G(jω)T) ≥ 0;

3. If jω0; ω0 ∈ (0, ∞), is a pole of G(jω), it is at most a simple pole and the residue matrix
K0 = lims→jω0(s− jω0)sG(s) is positive semidefinite Hermitian.

A linear time invariant system of the form (1) and (2) is NI if its transfer function is NI.
An equivalent time-domain definition of the NI property for the LTI system (1) and (2) is
given in the following lemma.

Lemma 1. Suppose that the system (1) and (2) (with D = 0) is controllable and observable. Then,
G(s) is negative imaginary if and only if there exists matrix P as in LMI (4) such that along the
trajectories of the system, the function V(x) = 1

2 xT Px satisfies

V̇(x(t)) ≤ ẏ(t)u(t), ∀ t ≥ 0. (3)

A strict notion of the negative imaginary property of the above LTI system is provided
in the following definition.
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Definition 2 ([19]). A square transfer function matrix G(s) is strictly negative imaginary (SNI) if:

1. G(s) has no poles in <[s] ≥ 0;
2. j[G(jω)− GT(jω)] > 0 for ω ∈ (0, ∞).

The next two lemmas provide a state-space characterization of the NI and SNI proper-
ties for the LTI system (1) and (2), respectively.

Lemma 2 ([20]). Let (A, B, C, D) be a minimal state-space realization of the transfer function
matrix G(s). Then G(s) is negative imaginary if and only if det(A) 6= 0, D = DT and there exist
matrices P = PT > 0, W ∈ Rm×m, and L ∈ Rm×n such that the following LMI is satisfied:[

PA + AT P PB− ATCT

BT P− CA −(CB + BTCT)

]
=

[
−LT L −LTW

−WT L −WTW

]
≤ 0. (4)

Lemma 3 ([21]). Let (A, B, C, D) be a minimal state-space realization of the transfer function
matrix G(s). Then G(s) is strictly negative imaginary if and only if:

1. det(A) 6= 0, D = DT ;
2. there exists a matrix P = PT > 0, P ∈ Rn×n, such that

AP−1 + P−1 AT ≤ 0, and B + AP−1CT = 0;

3. the transfer function matrix M(s) v

[
A B

LPA−1 0

]
has full column rank at s = jw for

any ω ∈ (0, ∞) where LT L = −AP−1 − P−1 AT . That is, rank M(jω) = m for any
ω ∈ (0, ∞).

The stability robustness of a positive feedback interconnection of NI system is estab-
lished in the following theorem:

Theorem 1. [16] Assume G(s) is a negative imaginary system with no poles at the origin and
H(s) is a strictly negative imaginary system such that G(∞)H(∞) = 0 and H(∞) ≥ 0. Then, the
positive feedback interconnection of G(s) and H(s), as in Figure 1, is internally stable if and only if

λmax(G(0)H(0)) < 1,

where λmax(·) denotes the maximum eigenvalue of a matrix with only real eigenvalues.

+ G(s)

H(s) +

u1 y1

u2y2

Figure 1. Positive feedback control systems of NI systems.

2.2. Nonlinear Negative Imaginary Systems

In [12], negative imaginary systems theory has been recently generalized to nonlinear
systems. Here, we review the main definitions and stability results of nonlinear negative
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imaginary systems. We consider the following multi-input multi-output (MIMO) general
nonlinear system of the form

ẋ = f(x, u) (5)

y = h(x) (6)

where f : Rn×Rm → Rn is Lipschitz continuous function and h : Rn → Rm is continuously
differentiable function. The following definitions give a time-domain characterization of
the nonlinear negative imaginary property of the nonlinear system (5) and (6).

Definition 3 ([12]). The system (5) and (6) is said to be nonlinear negative imaginary if there
exists a non-negative function V : Rn → R of a class C1 such that the following dissipative
inequality

V̇(x(t)) ≤ ẏT(t)u(t), (7)

holds for all t ≥ 0. Here, the function V is called a storage function.

Analogously to [22] for passive systems, we introduce a slightly stronger notions of the
above definition for the purpose of stability analysis. We have the following two definitions.

Definition 4 ([12]). The system (5) and (6) is said to be a marginally strictly nonlinear NI system
if the dissipative inequality (7) is satisfied, and for all u and x such that

V̇(x) = ẏT(t)u(t) (8)

for all t > 0, then limt→∞ u(t) = c, and c is a constant vector.

Definition 5 ([12]). The system (5) and (6) is said to be weakly strictly nonlinear NI system if it
is marginally strictly nonlinear NI and globally asymptotically stable with u = 0.

Remark 1. For LTI systems of the form (1) and (2), weakly strictly nonlinear negative imaginary
property becomes strictly negative imaginary property. This can be readily seen by considering a
positive definite storage function as V(x) = 1

2 xT Px, where x is the state vector of the system and
the matrix P is positive definite symmetric matrix which satisfies the LMI (4). Differentiating V
with respect to time, we have V̇(x(t)) = ẏTu− ỹT ỹ, where ỹ is the output of the auxiliary system
given by H(s) = sM(s) = LP(sI − A)−1B− LPA−1B which has no zeros on the imaginary axis
except at the origin (see Lemma 3). Since the system is stable, u(t) can consist only of exponentially
decaying terms and sinusoids (including zero frequency). Note that Ỹ(s) = H(s)U(s). The
condition that H(jω) has no zeros on the imaginary axis implies it is not zero for all ω 6= 0, which
guarantees the convergence of u(t) to a (possibly zero) constant.

In what follows, we highlight the main robust stability result introduced in [12] for
the positive feedback interconnection of two nonlinear NI systems. This nonlinear stability
result will be used later to robustly stabilize the attitude of the quadrotor system.

Now, consider the following general two MIMO nonlinear systems described by:

H1: ẋ1 = f1(x1, u1)

y1 = h1(x1)

and

H2: ẋ2 = f2(x2, u2)

y2 = h2(x2)
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where hi : Rn → Rn is a C1 function with hi(0) = 0, fi : Rn ×Rn → Rn is continuous and
locally Lipschitz in xi for bounded ui, and where fi(0, 0) = 0. We shall consider the open-
loop interconnection of the systems H1 and H1 as shown in Figure 2. This interconnected
system determines the stability properties of the closed-loop system, see [12]. We have the
following assumptions for the open-loop interconnection of systems H1 and H2.

H1 H2
ū1 ȳ1 ū2 ȳ2

Figure 2. Open-loop interconnection of H1 and H2.

Assumption 1. For any constant ū1, there exists a unique solution x̄1, ȳ1 to the equations

0 = f1(x̄1, ū1)

ȳ1 = h1(x̄1)

such that ū1 6= 0 implies x̄1 6= 0 and the mapping ū1 7→ x̄1 is continuous.

Assumption 2. For any constant ū2, there exists a unique solution (x̄2, ȳ2) to the equations

0 = f2(x̄2, ū2)

ȳ2 = h2(x̄2)

such that ū2 6= 0 implies x̄2 6= 0 and the mapping ū2 7→ x̄2 is continuous.

Assumption 3. hT
1 (x̄1)h2(x̄2) ≥ 0, for any constant ū1 where ū2 = ȳ1.

Assumption 4. For any constant ū1, let (x̄1, ȳ1) be defined as in Assumption 1 and (x̄2, ȳ2) be
defined as in Assumption 2 where ū2 = ȳ1. Then there exits a constant 0 < γ < 1 such that for
any ū1 and with ȳ2 defined as in Assumption 2, the following sector bound condition:

ȳT
2 ȳ2 ≤ γ2ūT

1 ū1, (9)

holds.

The stability robustness of the positive feedback interconnections of systems H1 and
H2 has been given in the next theorem using the Lyapunov theory and the LaSalle’s
invariance principal.

Theorem 2 ([12]). Consider a positive feedback interconnection of systems H1 and H2 where
u1 = y2, u2 = y1. Suppose that the system H1 is nonlinear NI and zero-state observable, and
the system H2 is weakly strictly nonlinear NI. Moreover, suppose that Assumptions 1–4 are
satisfied. Then, the equilibrium point (x1, x2) = (0, 0) of the closed-loop system of H1 and H2 is
asymptotically stable.

3. Quadrotor System

In this section, we aim to reveal the nonlinear negative imaginary structure of the
quadrotor system using the Euler–Lagrange equation of the quadrotor. First we recall the
kinematics and dynamics model of the quadrotor with parameters as shown in Table 1.

3.1. Kinematics Model

Two reference frames are used to study the quadrotor system (see Figure 3): a reference
frame fixed to the earth {R}(O, x, y, z), and a body-fixed frame {RB}{OB, xB, yB, zB}, where
OB is fixed to the center of mass of the quadrotor. {RB} is related to {R} by a position
vector ξ = [x, y, z]T , describing the position of the center of gravity in {RB} relative to
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{R} and by a vector of three independent angles, known as Euler angles and denoted by
η = [φ, θ, ψ]T , which represent roll, pitch, and yaw angles of the quadrotor. It is assumed
that the Euler angles are bounded as follows:

φ ∈ (−π/2, π/2), θ ∈ (−π/2, π/2), ψ ∈ (−π, π].

x

y

z

xB

yB

zB
F1F2

F4

{R}

{RB}

O

OB

ω2

ω4

ω1

F3

ω3

g

ψ
θ

φ

l

ξ = (x, y, z)

Figure 3. Quadrotor configuration with body-fixed frame and inertial frame.

A vector in the body reference frame can be transformed into vectors in the earth
reference frame. For example, given a force FB, expressed using the coordinates of the body
frame, the force F can be expressed in the coordinates of the earth frame as follows:

F = RB→EFB (10)

where RB→E is the transformation (rotation) matrix given by

R :=


CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ

CθSψ SθSφSψ + CφCψ CφSθSψ − CψSφ

−Sθ CθSφ CθCφ

. (11)

Here S(·) and C(·) represent the functions sin(·) and cos(·), respectively. Likewise, the
relation between the angular velocity vector in the inertial frame ω = [p, q, r]T , and the
angular velocity in the body frame η = [φ, θ, ψ]T is given as:

ω = Wηη̇ (12)

where

Wη :=


1 0 −Sθ

0 Cφ SφCθ

0 −Sφ CφCθ

. (13)

Remark 2. For small-angle approximation, we obtain an equality between the Euler rates
η̇ = [φ̇, θ̇, ψ̇]T and the angular velocity vector ω = [p, q, r]T , i.e., Wη = I.
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Table 1. Quadrotor Parameters.

Definition Parameter Unit

Quadrotor mass m kg
Gravitational acceleration g m/s2

Arm length l m
Thrust coefficient b N · s2/rad2

Drag coefficient d N · s2/rad2

Roll inertia x-axis Jx kg ·m2

Pitch inertia y-axis Jy kg ·m2

Yaw inertia Jz kg ·m2

Rotational Inertial JR kg ·m2

3.2. Euler–Lagrange Model: Nonlinear Negative Imaginary Structure

Here, an Euler–Lagrange approach is adopted in order to write the equations which
describe the translational and rotational motion of the quadrotor. The Euler–Lagrange
dynamics of the quadrotor are given by

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= F (14)

where q = [ξT , ηT ]T = [x, y, z, φ, θ, ψ]T is the generalized coordinates vector for the quadro-
tor, and F = [FT

ξ , τT ]T , is the input (generalized forces) of the system where Fξ is the thrust
force and τ is total torque. The Lagrangian L(q, q̇) of the quadrotor is the difference
between the total kinetic energy T and the potential energy P; that is

L = Ttrans + Trot − P. (15)

Herein, Ttrans represents the translational kinetic energy, and is given by

Ttrans =
1
2

mξ̇T ξ̇, (16)

where m denotes the whole mass of the quadrotor. The term Trot represents the rotational
kinetic energy, and is given by

Trot =
1
2

η̇TJη̇, (17)

where J is positive-definite matrix denotes the rotational inertia matrix of the quadrotor
and is defined in the body frame as

J =

 Jx 0 0

0 Jy 0

0 0 Jz

. (18)

The rotational inertia matrix J is diagonal due to the quadrotor’s symmetry with the
four arms aligned with the body x− and y− axis. The potential energy is P = mgz, where
g is the acceleration due to gravity. Then, the Lagrangian of a quadrotor is given as follows:

L(q, q̇) =
1
2

mξ̇T ξ̇ +
1
2

η̇TJη̇−mgz =
1
2

q̇TMq̇ + G(q), (19)

where

M =

[
mI3×3 03×3

03×3 J

]
, G(q) = [0 0 −mg 0 0 0]T . (20)
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To establish the nonlinear negative imaginary property of the quadrotor we express
the equation (14) in terms of the generalized coordinates. Using the Lagrangian (19),
Equation (14) can be written as follows

M(q)q̈ + C(q, q̇)q̇ + G(q) = F, (21)

where M(q) denotes inertia matrix (given in (20)) and is symmetric and positive definite.
C(q, q̇) is the Coriolis and centrifugal matrix where C(q, q̇) = d

dt M(q)− 1
2

∂
∂q
(
q̇TM

)
, the

term G(q) is the gravitational vector where G(q) = ∂P(q)
∂q , and F is the input of the

quadrotor system. We assume that the matrix C(q, q̇) is defined using the Christoffel
symbols; then Ṁ− 2C(q, q̇) is skew-symmetric [23,24]. Furthermore, P(q) is assumed to
have an absolute minimum at q = 0.

In the following lemma, we show that the quadrotor system (21) with F as input and
q as output is nonlinear negative imaginary.

Lemma 4. Consider the system (21) with input F and output q. Then the system (21) is nonlinear
negative imaginary with a positive-definite storage function given by

V(q, q̇) =
1
2

q̇TM(q)q̇ + P(q). (22)

Proof. It can be easily shown that V is positive definite since where M(q) is positive-
definite matrix, and P(q) is a nonnegative scalar quantity. Taking the first time derivative
of the function V we obtain

dV
dt

(q, q̇) = q̇TM(q)q̈ +
1
2

q̇TṀ(q)q̇ + G(q)q̇

= q̇T [−C(q, q̇)q̇−G(q) + F] +
1
2

q̇TṀ(q)q̇ + G(q)q̇

= q̇TF +
1
2

q̇T[Ṁ(q)− 2C(q, q̇)
]
q̇ = q̇TF,

which shows that the systems is nonlinear negative system from F to q.

Remark 3. By revealing the nonlinear negative imaginary structure of the quadrotor model, we
can leverage powerful techniques from negative imaginary systems theory to be utilized in future
work to achieve a broad range of control objectives for the quadrotor system.

3.3. State-Space Model

Since the stability results of [12] deal with state-space representation of nonlinear
systems, we aim here to use the state-space representation of the quadrotor rotational
subsystem to design quadrotor attitude system, which is the main scope of this paper. We
see that the Lagrangian contains no cross-terms in the kinetic energy combining ξ̇ and η̇, so
the Euler–Lagrange Equation (14) partitions into two parts; that is, the translational and
rotational components. The translational equation of the quadrotor is described by the
following equation

mξ̈ +

 0

0

mg

 = Fξ , (23)

with Fξ is the thrust force generated by the four rotors and is given by Fξ = ∑4
i=1 bω2

i ,
where ωi is ith-rotor’s speed and b is the thrust factor. The rotational subsystem describing
the roll, pitch and yaw rotations of the quadrotor is described by the following equation

J(η)η̈+
d
dt
{J(η)}η̇− 1

2
∂

∂η
(η̇TJ(η)η̇) = τ, (24)



Sensors 2021, 21, 2387 9 of 15

or, by appropriate definition of variables,

J(η)η̈+ C(η, η̇)η̇ = τ, (25)

where the input vector τ = [τφ, τθ , τψ]T is the total torque in the pitch, roll, and yaw. The term
J(η)− 2C(η, η̇) can be proved a skew-symmetric by using specific representation [24].

In matrix form, the vector τ is defined in terms of the four rotor speeds as follows,

τ =

 lb
(
ω2

2 −ω2
4
)

lb
(
ω2

1 −ω2
3
)

d
(
ω2

1 + ω2
3 −ω2

2 −ω2
4
)
, (26)

where l is the arm length, the distance from the axis of rotation of the rotors to the center of
the quadrotor, and d is the drag force. By defining the input of the quadrotor as follows

Fξ

τφ

τθ

τψ

 =


u1

u2

u3

u4

 =


b b b b

0 b 0 −b

b 0 −b 0

d −d d −d




ω2
1

ω2
2

ω2
3

ω2
4

, (27)

we obtain the overall quadrotor dynamic model in the following form

ẍ = −(cos φ sin θ cos ψ + sin φ sin ψ) · u1

m

ÿ = −(cos φ sin θ sin ψ− sin φ cos ψ) · u1

m

z̈ = g− (cos φ cos θ) · u1

m

φ̈ = θ̇ψ̇

(
Jy − Jz

Jx

)
− Jr

Jx
θ̇g(u) +

l
Jx

u2

θ̈ = φ̇ψ̇

(
Jz − Ix

Jy

)
+

Jr

Jy
φ̇g(u) +

l
Jy

u3

ψ̈ = φ̇θ̇

(
Jx − Jy

Jz

)
+

1
Jz

u4

(28)

Introducing the abbreviation g(u) = ω1 −ω2 + ω3 −ω4, the system (28) can be rep-
resented in the form ẋ = f(x, u) with the 12-dimensional state vector x = [x1, . . . , x12]

T =
[φ, φ̇, θ, θ̇, ψ, ψ̇, z, ż, x, ẋ, y, ẏ]T , and the input vector u = [u1, u2, u3, u4]

T :

f(x, u) =



x2

x4x6a1 − x4a2g(u) + b1u2

x4

x2x6a3 + x2a4g(u) + b2u3

x6

x4x2a5 + b3u4

x8

g− u1
m cos x1 cos x3

x10

− u1
m (sin x1 sin x5 + cos x1 sin x3 cos x5)

x12
u1
m (sin x1 cos x5 − cos x1 sin x3 sin x5)



(29)
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where
a1 =

(
Jy − Jz

)
/Jx b1 = l/Jx

a2 = Jr/Jx b2 = l/Jy

a3 = (Jz − Jx)/Jy b3 = 1/Jz

a4 = Jr/Jy

a5 =
(

Jx − Jy
)
/Jz

4. Attitude Control Design

As it can be seen from the previous section, the state-space model of the quadrotor
can be divided into two subsystems, one of which, the rotational subsystem, describes
the dynamics of the attitude (i.e., the angles) and the other describes the translation of the
quadrotor. In this paper, we are interested in the problem of stabilizing the attitude of
the quadrotor around a desired reference signal by using a nonlinear negative imaginary
approach. For this purpose we confine ourselves to the rotational subsystem whose state is a
restriction to the last 6 components of x representing the roll, pitch and yaw angles and their
time derivatives. The rotational subsystem is then described by the differential equation

ẋ = fα(x, u) =



x2

x4x6a1 − x4a2g(u) + b1u2

x4

x2x6a3 + x2a4g(u) + b2u3

x6

x4x2a5 + b3u4


. (30)

In recent studies, the use of a multi-loop control architecture has been proposed
for a variety of quadrotor control problems; see for instance [25,26]. In this section, we
propose an inner-outer loop architecture based on the nonlinear negative theory [12]
to robustly stabilize the attitude, i.e., the Euler angles, around desired reference signal
ηd = [φd, θd, ψd]

T = [xd
1 , xd

3 , xd
5 ]

T , where the angular velocity measurements are not needed.

4.1. Inner-Control Loop

The inner-control loop is mainly designed due to the free motion behavior of the
quadrotor. We define the following feedback control law:

τ = −Kp(η− ηd) + v (31)

where v = [v1, v2, v3]
T denotes the new input torque of the quadrotor, and

Kp = diag
(

kφ
p , kθ

p, kψ
p

)
is a positive diagonal matrix and the diagonal elements are used as

tuning parameters. The architecture of the inner-loop can be interpreted as a proportional-
only controller as seen in Figure 4 below.
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Kp

τ

η

_
+

Quadrotor Rotational 

Subsystem Eq. 9
v

(η -   ) ηd 

Figure 4. Inner-control loop.

The designed torque τ is then defined as follows,

τ =

 u2

u3

u4

 =


−kφ

p

(
x1 − xd

1

)
+ v1

−kθ
p

(
x3 − xd

3

)
+ v2

−kψ
p

(
x5 − xd

5

)
+ v3

 (32)

Using (32), and setting the desired reference signal ηd = [xd
1 , xd

3 , xd
5 ]

T = 0, the rota-
tional subsystem can be put in the form ẋ = f̃α(x, u):

f̃α(x, u) =



x2

x4x6a1 − x4a2g(u)− b1kφ
p

(
x1 − xd

1

)
+ b1v1

x4

x2x6a3 + x2a4g(u)− b2kθ
p

(
x2 − xd

3

)
+ b2v2

x6

x4x2a5 − b3kψ
p

(
x3 − xd

3

)
+ b3v3


,

or equivalently,
J(η)η̈+ C(η, η̇)η̇ = −Kpη+ v. (33)

The above rotational dynamical system (33) can be seen as a nonlinear negative
imaginary system from the input v to the output η according to the following lemma.

Lemma 5. Consider the quadrotor rotational subsystem (33) with v as input and η as output.
Then, the system (33) is a nonlinear negative imaginary system with respect to the following
positive-definite storage function,

V(η, η̇) =
1
2

η̇TJ(η)η̇+
1
2

ηTKpη. (34)

Proof. It can be easily shown that V is a valid storage function; since the rotational inertia
matrix J is positive definite and Kp > 0. Taking the time derivative of V we obtain

dV
dt

(η, η̇) = η̇TJ(η)η̈+
1
2

η̇T J̇(η)η̇+ ηTKpη̇

= η̇T [−C(η, η̇)η̇−Kpη+ v] +
1
2

η̇T J̇(η)η̇+ ηTKpη̇

= η̇Tv +
1
2

η̇T [J̇(η)− 2C(η, η̇)]η̇ = η̇Tv,

which shows that the system (33) is nonlinear negative imaginary from the input v to the
output η.
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4.2. Outer-Control Loop

We aim here to design the outer control loop of the rotational subsystem in order to
get a positive-feedback closed-loop system which guarantees the asymptotic stability of the
quadrotor attitude in view of Theorem 2. For simplicity, we will use the following linear
MIMO integral resonant controller as the outer control loop controller,

Cv(s) = [sI + Γ∆]−1Γ. (35)

Here, Γ and ∆ are positive-definite matrices given by ∆ = diag(δ, δ, δ), and Γ =
diag(Γ, Γ, Γ), where δ and Γ are tuning parameters. The transfer function matrix Cv(s) is
strictly negative imaginary [16]. The dc-gain (the gain of the system at steady-state) of the
controller is Cv(0) = ∆−1.

In order to apply Theorem 2, we need to validate Assumptions 1–4 on the open-
loop interconnection (as shown in Figure 5) of the quadrotor rotational subsystem (33)
and the SNI controller (35) in the steady-state case. We have f̃α(x̄, ū) = 0, this implies
x̄2 = x̄4 = x̄6 = 0 and

x̄1 =
v̄1

kφ
p

,

x̄3 =
v̄2

kθ
p

,

x̄5 =
v̄3

kψ
p

,

(36)

which shows for every constant value of v̄ there is a corresponding unique value of x̄ and
hence Assumption 1 holds. Furthermore, Assumption 2 trivially holds since the controller
(35) is a linear system.

f̃α(x̄, ū) = 0,
ȳ = η̄

∆−1ū = v̄ ȳ = η̄ ūc ȳc

Figure 5. Open-loop interconnection (in the steady-state case) of the quadrotor rotational subsys-
tem (33) and the SNI controller (35) (where ‘c’ refers to the controller).

We can easily see that Assumption 3 is valid since we have ȳc = ∆−1ūc =
1
δ

ȳ, where
δ > 0, it yields

ȳTȳc =
1
δ

ȳTȳ ≥ 0.

Lastly, using (36) we see that

ȳT
c ȳc =

1
δ2 [x̄1 + x̄3 + x̄5]

=
1
δ2

 v̄2
1(

kφ
p

)2 +
v̄2

2(
kθ

p

)2 +
v̄2

3(
kψ

p

)2


≤ 1

δ2 max
i=φ,θ,ψ

 1(
ki

p

)2


(

v̄2
1 + v̄2

2 + v̄2
3

)

=
1
δ2 max

i=φ,θ,ψ

 1(
ki

p
)2

v̄T v̄

= γ2v̄T v̄,
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where

γ2 =
1
δ2 max

i=φ,θ,ψ

 1(
ki

p

)2

.

Thus, to ensure that Assumption 4 is valid such that γ2 < 1, we choose the tuning
parameter δ such that:

δ2 > max
i=φ,θ,ψ

 1(
ki

p

)2

. (37)

Based upon the above arguments, we have found a lower bound on the DC-gain of
the outer controller that is necessary to achieve asymptotic stability of the attitude vector
around the reference signal by virtue of Theorem 2. We summarize the above result in the
following theorem.

Theorem 3. Consider the closed-loop system, as in Figure 6, of the quadrotor rotational sub-
system (33) and the strictly negative imaginary controller (35). Assume that the system (33) is
zero-state observable, and the condition (37) is satisfied. Then the closed-loop system is asymptoti-
cally stable.

v η

+

+ Rotational
 32

Nonlinear NI from v to η

u = 0

η v

 
4

Figure 6. Block diagram of the proposed attitude control system comprised of a positive feedback
interconnection of the rotational subsystem (33) and SNI controller (35).

Proof. The proof follows from the proof of Theorem 2 along with remark 1.

Remark 4. The above stability result leads to a robust control system since the stability is guaran-
teed irrespective of the quadrotor and controller parameters so long as the condition (37) is satisfied.

5. Simulation Results

In order to verify the proposed attitude control method in this paper, we present
a simulation results of the underlying quadrotor system tracking a desired reference
attitude ηd. The quadrotor parameters used in the simulation are given as follows:
m = 0.5 kg, Ixx = Iyy = 4.85× 10−3 kg ·m2, Izz = 8.81× 10−3 kg ·m2, g = 9.81 m/s2,
b = 2.92 × 10−6 Ns2, d = 1.12 × 10−7 Nms2. Using these parameters, the quadrotor
rotational subsystem (33) is then implemented in MATLAB/Simulink for a simulation.
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The parameters of the inner-loop controller are chosen as kφ
p = kθ

p = kψ
p = 5. Based on the

result of Theorem 3, the tuning gains of the outer controller are set as ∆ = diag(0.3, 0.3, 0.3),
and Γ = diag(160, 160, 160). We assume that the initial state of the attitude vector is
(30,−20, 10)T , where the control goal is to stabilize the quadrotor at a hovering position,
i.e., ηd = 0. The obtained control result is shown in Figure 7 as a time plot of all Euler
angles of the quadrotor system. The simulations show that the proposed control method
asymptotically stabilize the attitude of the quadrotor to the desired reference signal.

0 0.5 1 1.5 2 2.5 3 3.5 4

seconds

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

R
a

d
ia

n
s

Angle response

Roll angle

Pitch angle

Yaw angle

Figure 7. Euler angles during attitude control.

6. Conclusions and Future Directions

The nonlinear negative imaginary systems theory has been employed to control the
attitude of the quadrotor model based on the nonlinear NI property of the quadrotor
rotational subsystem. The designed attitude control doesn’t rely on the angular velocity
measurements through an appropriate design. In specific, an inner-outer loop architecture
has been proposed to design a positive feedback control system that robustly stabilizes the
quadrotor’s attitude in the face of model uncertainties and disturbances. Future direction
of the proposed nonlinear negative imaginary approach is to address other quadrotor
control problems (trajectory tracking, altitude control, etc.) and then complement the
control applied to the quadrotor.
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