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Abstract: An emergent research area in software engineering and software reliability is the use of
wearable biosensors to monitor the cognitive state of software developers during software devel-
opment tasks. The goal is to gather physiologic manifestations that can be linked to error-prone
scenarios related to programmers’ cognitive states. In this paper we investigate whether electroen-
cephalography (EEG) can be applied to accurately identify programmers’ cognitive load associated
with the comprehension of code with different complexity levels. Therefore, a controlled experiment
involving 26 programmers was carried. We found that features related to Theta, Alpha, and Beta
brain waves have the highest discriminative power, allowing the identification of code lines and
demanding higher mental effort. The EEG results reveal evidence of mental effort saturation as code
complexity increases. Conversely, the classic software complexity metrics do not accurately represent
the mental effort involved in code comprehension. Finally, EEG is proposed as a reference, in par-
ticular, the combination of EEG with eye tracking information allows for an accurate identification
of code lines that correspond to peaks of cognitive load, providing a reference to help in the future
evaluation of the space and time accuracy of programmers’ cognitive state monitored using wearable
devices compatible with software development activities.

Keywords: software engineering; bio-signal processing; electroencephalogram; biofeedback; human error

1. Introduction

Software defects (i.e., bugs) represent the most enduring problem of software quality.
In spite of decades of research and advances in software engineering and software reliability,
the number of defects per 1000 lines of delivered code (KLoC) remains astonishingly high.
Steve McConnell’s seminal book [1] points to an industry average of about 15 defects per
KLoCs, which is a very large standard deviation. Even when software is developed using
highly mature processes, the deployed code still has a relatively high defect density, from
1 to 5 bugs per KLoC [2–5]. More recent field data from several projects show defects
densities from 1 to 6 bugs per KLoC [6], suggesting that in real projects, often characterized
by millions of lines of code, the defect density remains quite significant and represents
a huge cost for the software industry and society in general. Subsequently, reports on
the finance impact of software defects and software failures show dramatic figures. The
global cost of debugging software defects was estimated as $312 billion in 2013 [7], and the
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cost of software failures for the worldwide economy reached $1.1 trillion in 2016 [8] while
“software failures affected 3.6 billion people in 2017, causing US$1.7 trillion in financial
losses” [9].

Known causes of human error from a software developer perspective such as fatigue,
cognitive overload, attention slips, and stress have not been much addressed in software
engineering research. All these cognitive states (high mental effort, stress level, attention
shifts, cognitive overload, mental fatigue) have been associated with error-prone scenarios,
as established by human error models [10] and their adaptation to software development
tasks [11,12], but so far none of the available software development methodologies uses
any form of direct information from the cognitive state of the software developer.

The idea of using biometric measures such as heart rate variability (HRV), respiratory
responses, pupillary response (pupillometry), electrodermal activity (EDA), or electromyo-
gram (EMG) to gather information on the cognitive load while carrying out specific tasks
(and inherently infer the difficulty associated with such tasks) is not new [13–16]. Further-
more, specific biometric measures such as EDA have also been proposed to discriminate
stress from cognitive load [17,18]. However, only in recent years has the use of biometric
measures been proposed for the context of software development. First works have shown
that biometric measures can be linked to task difficulty or difficulty in comprehending
code snippets [19], and that HRV can be used to predict the quality of the code made by
programmers, which is useful to optimizing software testing [20].

Recent studies proposed a broader idea named Biofeedback Augmented Software
Engineering [21] to integrate biometric measures such as HRV and pupillometry [22] in the
software development process through the use of cognitive state code annotations [23].
The proposal consists of using eye tracking devices, particularly non-intrusive desktop
eye trackers, to provide accurate information on the code lines where the programmer is
looking, and annotate such code lines with the programmer’s cognitive state (expressing
cognitive load, distractions, fatigue, etc.) gathered using HRV and pupillometry [23].
Cognitive state code annotations are expected to allow predictions of code quality in order
to provide online warnings to the programmer, or to guide code inspections or the software
testing effort in general. The idea of such predictions is intuitively simple and can be
illustrated by straightforward examples (just three examples among many others):

a. If the annotations associated with a given set of code lines say that the programmer is
under high cognitive overload while producing/reviewing such code lines, then the
chance of having software bugs in such code lines is higher than normal;

b. If the code is complex (measured by classic complexity metrics) and the annotations
show that the programmer is distracted while dealing with such code lines, then the
probability of software bugs in the annotated code lines is higher than normal;

c. If the code is simple and the annotations show that the programmer is under high
mental effort, then the probability of software bugs in the annotated code lines is
higher than normal.

Importantly, these first studies [19–23] have shown that programmers’ cognitive load
during typical code development activities can be assessed using biometric measures ob-
tained through wearable and low intrusive devices compatible with standard software
development environments. Although quite encouraging, all these recent studies [19–23]
have used wearable technology to infer programmer’s cognitive states while carrying out
software development tasks, and all of them share an inherent limitation: The programmers’
cognitive states are inferred indirectly, through peripheral physiological signals driven by
the autonomic nervous system (ANS) (e.g., HRV, pupillometry, EDA, EMG, among others),
which raises the question of the accuracy and precision of the cognitive states assessed in
that way. Furthermore, the response time of the ANS driven signals captured by wearable
technology is another important concern, as the whole idea of cognitive code line annotation
requires a timely response (or at least the delay must be known) to achieve accurate annota-
tions. And, finally, physiological responses driven by the ANS is influenced by many other
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stimuli, which means that the signals gathered by the wearable devices will include noise
and spurious physiological reactions not related to the software development activities.

There are other alternative technologies that do not focus on the recordings of ANS-
related biosignals to assess the cognitive states of a subject, such as face analysis or gaze
analysis. However, to the best of our knowledge, most studies exploring face analysis to
assess cognitive states use it alongside other biosignasl [24]. Furthermore, for face analysis,
the recording of video or images of the software programmers, while they are performing
software tasks, can be psychologically intrusive. Regarding gaze analysis, there are a lot
of research on this topic in software engineering [25], but most of the works focus on
the afterwards analysis, i.e., based on the fixations, saccades, and scan-paths, needing
some time to obtain the overall analysis of the gaze points. Consequently, it presents a
low response time to gather information about the complexity of the task and inherent
cognitive load. Therefore these type of approach might be useful as an complementary
analysis, but not to validate the accuracy and precision of the cognitive states assessed
based on physiological signals driven by the ANS.

These important limitations of all the existing proposals towards the use of biometric
measures to improve the software quality can only be addressed through the creation of a
ground truth to evaluate the accuracy of wearable devices that rely on physiologic manifes-
tations driven by the ANS. This paper evaluates existing and new electroencephalography
(EEG) biomarkers related to the central nervous system (CNS), sensitive to different levels
of cognitive load in the context of software development.

EEG can be a powerful tool to this end, since it records the electrical activity of the
brain, which is one of the most relevant physiological areas analyzed when assessing
cognitive states [26]. From this signal we can explore and extract different and useful
information to infer directly the cognitive states of the subject from the brain activity
recorded, and still offers a less intrusive approach than other imaging techniques such
as functional magnetic resonance imaging (fMRI) and near field infrared spectroscopy
(fNIRS). Therefore, with our experiment, we intend to investigate and respond to the
following research goals: (i) The cognitive load measured using EEG is representative of
the subjective perception of code complexity; (ii) the complexity measured using classic
software complexity metrics do not translate the EEG and subjective perception results
from the code snippets; and (iii) EEG biomarkers combined with eye-tracking data can
differentiate code regions that cause a higher cognitive load. Based on those hypotheses,
this paper proposes the use of EEG to create a ground truth to be used as a reference in
the evaluation of the accuracy of wearable devices. Although EEG is turning into a low
cost and portable solution with advances in technology [27,28], it still cannot be used in
normal software development environments, because it is too intrusive (in most practical
realizations, it needs a cap to apply the large number of electrodes to the subject).

In short, the contributions of this paper are the following:

• Proposes the very first approach to use EEG as a reference to evaluate and improve
the accuracy of wearable devices that rely on physiologic manifestations driven by
the ANS, as indicators of programmers’ cognitive load. This contribution includes the
online availability of a package including the proposed method, protocols, datasets,
and EEG results;

• Demonstrates the viability of using EEG-derived features for assessing the cognitive
load of programmers in comprehending program snippets of different complexities;

• Shows that cognitive load of programmers in code comprehension is consistent with
the subjective perception of the programmers on the complexity and mental effort
spent on comprehending a given program snippet;

• Confirms that software complexity metrics have clear limitations as indicators of
the code complexity as perceived by (human) programmers, and shows that pro-
grammers’ perceived code complexity saturates very quickly as complexity metrics
increase. This contribution has a relevant impact on existing software development
practices, as it shows that the use of complexity metrics by the software industry (as
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a code complexity indicator during development) must be revisited to include both
complexity metrics and programmers’ perceived code complexity measures.

The next section presents additional background and related work, particularly on
cognitive state assessment using EEG. Section 3 describes the controlled experiment, the
data, the acquisition protocol, and also details the methods used for preprocessing EEG
data, feature engineering, and classification. Section 4 presents the main results and
respective discussion, and proposes the use of the EEG as a reference to calibrate wearable
devices that collect physiological signals driven by the ANS. Section 5 presents the threats
to the validity of this work and Section 6 concludes the paper.

2. Background and Related Work

The root causes of software defects are buried deep in human error manifestations
and must be addressed in an interdisciplinary perspective involving software engineering,
cognitive psychology, neuroscience, and even biomedical fields. In fact, this interdisci-
plinary research perspective on software defects has gained ground and is now an emergent
research line. The next subsections briefly overview the key aspects of this interdisciplinary
research effort.

2.1. Software Complexity Metrics and Software Quality

Software complexity metrics are used worldwide in software engineering to guide
software testing coverage, to estimate software defect density, and even to determine
the most adequate component granularity in software architectures. In general, it is
assumed that complexity metrics also portray the inherent complexity of software artefacts,
as perceived by (human) software developers. However, it is known that complexity
metrics deviate considerably from human perceived complexity in code structures such
as recursive or multi-threading programming, as in these cases the complexity is not in
the code structures (usually very compact) but in the recursive and/or parallel nature of
the code. In addition, recent work has exposed the limits of complexity metrics as a tool to
express software complexity in the human/programmers sense [21]. The present paper
reinforces this conclusion using the much more reliable measurement provided by the EEG.
In fact, as shown in Section 4, subjective complexity felt by participants (measured by the
NASA TLX tool [29]) is inline with the cognitive load measured by EEG results. However,
both measurements (i.e., EEG and subjective complexity results) deviate considerably from
software complexity metrics, showing that the use of complexity metrics as predictors of a
programmer/tester’s cognitive effort (and, consequently, predictor of error prone code)
could be misleading.

Metrics can be relative to the code, documentation, or programmer subject [30]. Classic
code-related metrics (i.e., McCabe [31] and Halstead’s [32] metrics) focus mainly on code
and data structures. Well-known examples of code metrics include McCabe Cyclomatic
Complexity (V(G)) [31], average Number of Nested Block Depth, Number of Parameters
and Lines of codes, among others [33]. Documentation-related metrics are used to measure
the quality of the code documentation, while the developer-related metrics are used to
quantify the programmer’s experience, such as the time (in years) spent programming in
general or/and in a specific programming language. A brief description of the metrics used
for code complexity and comprehensibility assessment [34], that are mentioned throughout
this paper, are presented in Table 1.
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Table 1. Brief description of the code complexity software metrics used in the present work.

Code Complexity Metrics Description

Lines of codes Measures the number of lines in the code

Number of Parameters Measures the number of parameters in the code

Weighted Method Count Measures the sum of the complexity of the code methods

McCabe Cyclomatic Complexity Measures the number of paths that are linear independent in the code

Nested Block Depth Measures the maximum nested block depth in the code, i.e., the depth
level of the block (e.g., condition) that is deeper in the code

2.2. Electroencephalography

Code comprehension has a key role in the software development process. An extensive
experimental study [35] shows that programmers spent about 70% time in code compre-
hension tasks, while writing software code. This central role of code comprehension maybe
explains the recent interest of the neuroscience community in researching the brain and
neural mechanisms related to programming tasks, especially code comprehension. Most
of these neuroscience studies rely on complex and intrusive imaging equipment such as
functional magnetic resonance imaging (fMRI) [36–43] and near field infrared spectroscopy
(fNIRS) [44,45]. In this section we will provide a brief background of EEG and discuss related
work on EEG during software development task, due to its relevance for this paper.

EEG can be a powerful tool to help understanding the brain mechanisms behind
code comprehension and subsequently the complexity associated with software codes
and human error while coding. The scalp-EEG is the most frequently used, since it is
non-invasive and it provides a general perspective of the brain to understand the neural
mechanisms [46]. At the scalp level, the signals recorded with EEG are the result of
the activity of populations of pyramidal neurons that when fired in a synchronized way
produce potential differences that cross bone and skin and can be sensed externally in the
microvolts (µV) range. For interpretation, the EEG signal is commonly divided into 5 main
frequency bands (Delta, Theta, Alpha, Beta, and Gamma) [47], presented in Table 2. It
should be noted that this is just a simplified idea because there are subtypes of Alpha and
Theta bands, for example.

Table 2. Electroencephalography (EEG) frequency brain bands and associated brain state.

Name Frequency Range Associated State of Brain

Delta <4 Hz Unconscious/Deep sleep

Theta 4–8 Hz Conscious/Imagination/Memory

Alpha 8–13 Hz Conscious/Relaxed mental activity

Beta 13–30 Hz Conscious/Emotional/Focused

Gamma >30 Hz Conscious/High mental activity

Several research studies reporting the analysis of general task engagement and mental
workload through the acquisition of EEG have been published in the last 20 years and in an
extensive range of fields [48–50]. In many of them, strong correlations were found between
the cognitive states of the subjects and the EEG frequency bands. The findings pointed out
mainly to the strength of Theta and Alpha waves to represent these mental states [49–52].

Fritz et al. [19] accomplished the first automated approach for the assessment of a
mental workload during code comprehension using psycho-physiological information
(eye-tracker, EEG, and EDA). With data recorded from 15 software programmers, the
authors achieved a F-measure (harmonic mean of the precision and recall) of only 56.73%
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using EEG information, which increased up to 67.71% by fusing the information from the
three sensors.

Igor Crk and Timotthy Kluthe [53] performed a study reporting a binary qualification
of a programmer’s expertise through code comprehension using recorded EEG signals
from 14 electrodes in 34 participants. By using information of Theta and Alpha bands,
the authors could distinguish the expertise with an accuracy from 53% to 63% depending
on the task. Later, Lee et al. [54] also recorded EEG signals, using 13 electrodes, from
18 subjects, to analyze neurophysiological processes occurring during code comprehension
tasks and the possibility to distinguish between expert programmers from beginners. The
results showed that high frequencies are dominant features, namely Beta and Gamma
bands, and the most significant channels were from frontal and parietal regions.

Lee et al. [55] conducted a study involving 38 participants with the aim of predicting
their expertise level (novice or expert) or the difficulty (easy/difficult) of the comprehension
tasks they performed, through the use of EEG and eye tracking data. The best result
obtained for the prediction study of the difficulty of the task was a F-Measure of 66.6%,
while for the study of prediction of the participants’ level of expertise, a F-Measure of 97%
was achieved. Although striking results have been obtained, the authors did not specify
what features were extracted from the recorded EEG, keeping unknown the EEG features
that led to these surprising results.

Yeh et al. [56] carried out a controlled experiment in order to investigate the brain activ-
ity of 8 participants while they were performing code comprehension tasks of 12 confusing
or non-confusing code snippets. Using only eight EEG electrodes from the frontal region of
the brain, the authors computed the power of the Theta and Alpha bands of the signals,
and found for all eight participants, there were significant statistical differences between
the two categories of code snippets. Nevertheless, there were no significant statistical
differences between the codes of the same category using such EEG features.

The most recent study on this topic was conducted by Kosti et al. [57] in 2018 and
had the purpose of investigating the brain activity during two different programming
tasks: Comprehension and inspection of syntax errors in C code. Using only 14 electrodes,
they recorded EEG signals from 10 participants. The authors found that Theta, Beta, and
Gamma waves during comprehension tasks correlate with cognitive effort, with stronger
correlations observed for higher frequency waves. Another surprising finding was the
detection of a much higher activation of Theta and Beta waves in comprehension tasks
than in tasks of inspection of syntax errors. Authors argued that this was due to the fact
of inspection tasks being considered easier tasks that do not require as much effort in the
imagination of the program output as it is demanded for comprehension tasks.

Despite the encouraging results, most of the authors are aware of the limitations
of such results, either because of the low number of participants or given that there
are few studies in this area, making it difficult to make a comparison of results and
conclusions. Furthermore, the studies that presented high performance did not indicate
the most discriminant features for further investigation of their feasibility as potential
biomarkers, which is a significant challenge for reproducing these results. However, such
achievements prompt a further investigation of biosignals such as EEG, which, given
the current technological advances and the existence of low-cost off-the-shell acquisition
devices, are becoming more user friendly [27,58]. Furthermore, it can also encourage
the investigation of correlations between EEG biomarkers with the ANS responses, in
order to explore the possibility of replacing EEG by more comfortable and non-intrusive
measurement modalities that allow monitoring of such responses in daily life conditions.

The limited number of studies and the small number of participants make it difficult
to establish measures regarding cognitive load in Software Engineering. Our study differs
from previous ones by providing a systematic analysis using EEG information with a
considerable number of participants and having control elements such as the use of the
NASA TLX tool to assess the subjective complexity of the code, as perceived by participants.
The main aim is to understand the brain activity involved during different types of tasks
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and propose the use of EEG as a reference to attest the accuracy of the programmers’
cognitive load code annotation using simple, non-intrusive, and wearable biosensors that
rely only on physiologic manifestations driven by the ANS (and not on direct brain signals
such as EEG).

3. Materials and Methods
3.1. Protocol

Subjects were submitted to three different trials of code comprehension tasks using
three code snippets written in Java. The three code snippets, named as Code 1, Code 2, and
Code 3, have different complexity levels, being Code 1 the simplest code and Code 3 the
most complex one. Each trial consisted of a Control task of text reading in natural language
(60 s maximum) and a task of code comprehension (10 min maximum). Before and after
each task, a screen with a cross in the middle was shown for 30 s to the subject, acting as a
baseline interval for the next task (see Figure 1).

After each trial, the subjects answered two questionnaires. In the first one, the subject
had to explain the purpose of the code and the general idea of the algorithm/code structure
with the goal of knowing whether the participant has understood the code or not. In reality,
a second, and very important goal of the first questionnaire was to create an incentive for the
participant to really try to understand the code, as the participant was informed beforehand
that he/she would be asked about the code at the end of the trial. In the second questionnaire,
the subject filled a survey based on NASA-TLX (Task-Load Index) survey [59] with four
questions, rating it from 1 to 6, in order to assess the subjective mental effort, task fulfilment,
pressure over time, and frustration of the subject while doing the code comprehension task.

The acquisition protocol is represented in Figure 1 with an estimated experience time
of about one and a half hours for each subject—around 45 min for the preparation of
experimental setup and then 45 min for the trial procedures.

Preparation of

Experimental Setup

Baseline Cross

Baseline CrossBaseline Cross

Reading Control Task

Code Comprehension Task

+

+

+

Questions about the code

and  NASA TLX Survey

30s 60s

30s <10min 30s

Figure 1. Representative schematics of one trial procedure, involving the fixed cross, in a screen,
before and after the relevant tasks for analysis, i.e., the reading control task and the code comprehen-
sion task.

The order of the trials is always the same (i.e., no randomization) to assure that all the
code comprehension tasks were executed in the same conditions by all the participants.
The participants were not informed about the complexity of each program to avoid bias.
The order used was Code 1→ Code 2→ Code 3, being Code 1 the less complex and Code 3
the most complex, at least according to software complexity metrics (as we will see in the
results, participants considered Code 2 and Code 3 as having similar complexity). Figure 2
shows the code complexity metrics of the three programs used in the study. According to
the metrics, differences between the three different codes complexity are visible, being the
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major difference noticed for the McCabe Cyclomatic Complexity metric, one of the most
popular and widely used in software development [60].

Code 1

Code 2

Code 3

Wighted
Method
Count

Lines of
Code

Nested
Block
Depth

Number of
Parameters

McCabe
Cyclomatic
Complexity

3

13

2
3 3

9

47

3 3 4

15

49

5 4

15

Code 1 Code 2 Code 3

Figure 2. Complexity level of each code tasks according to each one of the five software complexity
metrics used.

Our dataset, experiment protocol and the sample programs (Code 1, Code 2, and
Code3) are publicly available in the repository of the H2020 project AI4EI (A European AI
On Demand Platform and Ecosystem) in the following link: https://ai4eu.dei.uc.pt/base-
mental-effort-monitoring-dataset (accessed on 15 March 2021).

3.2. Participants, Acquisition Setup, and Quality Control

EEG signals were recorded from 30 subjects that were selected after a series of inter-
views. Subjects were students, university professors, and professional software developers,
with experience in Java programming language. Specifically, from the 30 participants,
24 were male and 6 female, with ages ranging from 19 to 42, and average age of 24 years
old. In addition, through the interview and based on years of experience in Java program-
ming or in the number of lines of code programmed in Java in the last months or years,
the participants were classified into three levels of proficiency: Intermediate, advanced, or
expert, including 13 intermediate, 12 advanced, and 5 expert participants.

EEG signals were acquired using the Neuroscan SynAmps 2 amplifier, from Com-
pumedics, at a sampling frequency of 1000 Hz, with 64 channels placed according to the
International 10-10 system. Neuroscan also included four integrated bipolar leads for EMG,
ECG, and the ocular-movement references VEOG (vertical electrooculogram) and HEOG
(horizontal electrooculogram).

In the acquisition setup designed to record the EEG data, the EEG quick-cap was
connected to the amplifier through the EEG HeadBox, which was connected to the acqui-
sition computer that controls the whole experience, communicating synchronously with
all sensors and to a second computer, used to present the stimuli to the participant and,
additionally, sends the trigger to the acquisition computer (see Figure 3).

Data Acquisition ComputerStimuli Computer Participant with Neuroscan

EEG quick-cap

Trigger acquisition when the stimuli is presented

Stimuli presented 

to the participant

Data Acquisition

Figure 3. Schematic representation of the acquisition setup.

https://ai4eu.dei.uc.pt/base-mental-effort-monitoring-dataset
https://ai4eu.dei.uc.pt/base-mental-effort-monitoring-dataset
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During the data acquisition of one of the subjects, several electrodes in relevant locations
did not properly work, therefore this subject was discarded in posterior analysis. In addition,
three more subjects were later removed since after analyzing the eye tracking data, those
participants were more than 90% of the time out of the areas of interest (the codes), suggesting
that they did not really tried to comprehend the code during some of the trials. Thus, the
initial dataset was reduced to 26 subjects.

The data collection was authorized by all the participants involved and the written
consent was approved by the Ethics Committee of the Faculty of Medicine of the University
of Coimbra, in accordance with the Declaration of Helsinki.

3.3. Preprocessing

The step of preprocessing is mandatory for cleaning as much as possible the EEG data,
yet preserving the neural content, in order to get a reliable analysis and interpretation of
the postprocessed neural signals. This step was performed using the open source toolbox
EEGLAB [61], one of the most widely used software for preprocessing/analysis of EEG
data. Before proceeding to filtering, the EEG channels location information was added to
the data, and the non-used channels, i.e., the mastoid electrodes (M1, M2) and the cerebellar
electrodes (CB1, CB2), were removed.

3.3.1. Filtering

Filtering followed the usual pre-processing applied in EEG processing. In particular,
FIR filters with Hamming sinc window were applied to EEG. Firstly, a high-pass filter,
with a cut-off frequency at 1 Hz, was applied to remove the DC component and slow-
wave drifts. Secondly, a low-pass filter, with a cut-off frequency of 90 Hz was considered,
since it is recognized as the upper limit of the frequency band of interest for the analysis.
Additionally, a notch filter was also applied in order to remove the powerline interference
at 50 Hz.

3.3.2. Channels Spatial Interpolation

After filtering the data, it is important to perform visual inspection of the EEG data in
the time domain, and proceed to the removal and replacement of flat or noisy channels
(due to electrode malfunctioning), by interpolated signals based on the remaining channels’
information. This interpolation step was performed using the spherical spline interpolation
algorithm from Perrin et al. [62].

3.3.3. Re-Referencing

In this study, for the re-reference, the average reference was used, which is performed
by doing the average of all 60 channels and the linear transformation of the data. This
step is important, not only to eliminate some noise common to all channels and to reduce
lateralization bias, but also because of the fact that a reference electrode should not be close
or over regions of interest with important brain activity for the analysis [63]. Since the most
activated regions during code comprehension are also being investigated, it is important to
change the original reference, usually placed between Cz and Pz electrodes, for a proper
spatial analysis.

3.3.4. Blind Source Separation

Despite the various preprocessing steps already taken, there are still many artifacts to
remove from the EEG signals, such as ocular (eye blinks and eye movement), muscle, and
cardiac artifacts. Therefore, independent component analysis (ICA) was applied for blind
source separation (BSS) in order to accomplish artifact removal.

When preparing the data to run ICA, large muscular activity or other strange events
(non-stationary data) were rejected manually from the data, in order to improve the ICA
decomposition quality [64]. For this study, the Extended Infomax Algorithm [65] was used
for BSS, due to its higher performance in removing ocular and myogenic artifacts [66].
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After computing the ICA components, the components associated with artifacts were
selected (examples in Figure 4), and subsequently removed, by inspection of the following
components: (i) Topographic map; (ii) activity power spectrum; and (iii) continuous time
course.

Figure 4. Examples of some artifact components that were identified and removed: (i) In component IC1, an eye blinking
artifact component can easily be recognized; (ii) component IC2 contains cardiac artifact; (iii) component IC3 shows another
example of ocular artifacts, the saccades/microsaccades; and (iv) component IC10 contains involuntary muscle movement.

3.4. Feature Extraction

After preprocessing the EEG data, a handcrafted feature engineering approach was
followed using the most commonly reported features in emotion recognition and cognitive
workload literature.

A 1-second window with 80% overlap was used to extract and explore linear features.
This type of features are computed using methods that extract amplitude and frequency
information from a single EEG electrode (uni-channel) or from multiple electrodes (multi-
channel). These features were divided into three groups:

(a) Uni-channel Time Domain features

• Statistical features commonly used in EEG analysis [67] to characterize ampli-
tude changes and distribution of the signal over time, such as the mean of raw
and normalized signal as a measure of the central tendency; variance as mea-
sure of the dispersion; skewness as a measure of the distribution asymmetry;
and kurtosis as a measure of the distribution tailedness;

• Hjorth Parameters—in order to describe the EEG signals, Hjorth [68] derived
a set of three parameters (activity, mobility, and complexity), widely used
nowadays [69]. Activity measures the variance of the signal’s amplitude, and it
was already included in the statistical features. Mobility measures the variance
of the signal derivative in relation to the variance of the signal’s amplitude.
Finally, complexity measures the deviation of the signal from the pure signal
with the sine shape.
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(b) Uni-channel Frequency Domain features
Frequency content has long been correlated to cognitive states and, therefore, these
features are commonly applied in EEG related analysis. The power spectrum density
(PSD) was calculated by squaring the absolute value of the fast fourier transform of
the signal. Then, from the PSD, several features were extracted aiming at analyzing
specific frequency bands. Among these features it is expected that Theta, Alpha, Beta,
and Gamma bands stand out as result of the increase of cognitive workload [54,56,57],
either individually or when combined;

• Power features obtained by computing the area under the PSD curve:

– Total Power corresponding to the total area of the frequencies of interest.
– Absolute and Relative Power of frequency bands: Delta (0–4 Hz), Theta

(4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (30–90 Hz). The
latter given its wide range, was divided into three sub-bands: Low Gamma
(30–50 Hz), Medium Gamma (50–70 Hz), and High Gamma (70–90 Hz).

– Power ratios between bands (combinations of all the seven bands two-by-
two), as suggested by [19], it can improve the analysis by minimizing the
variability effect of the PSD between subjects.

– Task engagement indexes, first reported by Pope et al. (1995), are ratios
between Theta, Alpha, and Beta power bands, and were being widely used
for two possible representative indexes of the participants’ engagement
during tasks [70–72]:

Index 1 =
βPower

θPower + αPower
(1)

Index 2 =
θPower

βPower + αPower
(2)

• Average frequency as estimation of the mean frequency of the PSD, in order to
explore what are the most predominant frequencies;

• Alpha peak frequency defined as the frequency corresponding to the maximum
peak in the Alpha band has been shown to be able to differentiate mental
states [73], with some studies suggesting that it is positively correlated with
cognitive performance [74].

(c) Multi-channel features

• Differential Asymmetry and Rational Asymmetry, defined as the difference
and quotient of the power of the frequency bands between pairs of electrodes
(left-right brain hemispheres) has been extensively explored to find relations
between brain locations [69];

• Cognitive load index “Brainbeat” was showed by Holm et al. [75] to be a
powerful feature in estimating cognitive load during tasks through the ratio
between powers of two frequency bands from frontal and parietal brain location:

“Brainbeat” Index =
θPower(Fz)
αPower(Pz)

(3)

Taking into account that the applied setup uses 60 EEG channels, we extracted 480 uni-
channel time domain features (8 features × 60 EEG channels), 2400 uni-channel frequency
domain features (40 features × 60 EEG channels), and 127 multi-channel features. Thus, a
total of 3007 features were computed for analysis.

3.5. Feature Normalization

After feature extraction, each feature value was normalized in order to reduce the
high inter-subject variability and even to reduce the intra-subject variability throughout the
experiments [76]. More specifically, regardin intra-subject variability, this normalization
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step is crucial, even in small duration experiments, to try to minimize the influence of
eventual external factors such as fatigue. Taking into account that there are neutral load
events (e.g., the event of the cross), it can be possible to normalize the features with
respect to that baseline event. Thus, each cross-event was used for the normalization of
the baseline of the next event, i.e., first cross normalized the reading task while the second
cross normalized the code comprehension task, as represented in Figure 5. The final value
of each feature becomes a variation with respect to the fixation cross baseline task [76]:

∆Featuret,r(k) =
Featuret,r(k)− Baselinet,r(k)

Baselinet,r(k)
(4)

where Featuret,r(k) is a vector with the values of the feature k from the task t and run r, being
normalized by Baselinet-1,r(k), which is the average of the feature k in the baseline fixation
cross of the same run r, and previous to the task t being normalized.

Baseline

Cross

Reading Control

Task

Code Comprehension

Task

Baseline

Cross

2nd - Feature Transformation 2nd - Feature Transformation

1st - Feature Normalization 1st - Feature Normalization

Figure 5. Schematic representation of the feature normalization and transformation steps.

3.6. Feature Transformation

Following feature normalization, each task was divided into four segments (see
Figure 5), and five parameters (second-order features) were computed from the normalized
features for each segment of those tasks. The second-order features computed were the
following ones: Maximum, minimum, mean, standard deviation, and median. This was
performed in order to capture and enhance the state of the subject for each code complexity
and respective control tasks, while maintaining sufficient instances for classification.

Concerning multiclass models, in order to differentiate Code 1, Code 2, Code 3, and
Control, all the Control tasks were grouped from each trial, as a global Control, and then the
maximum, minimum, mean, standard deviation, and median were computed. Thus, at the
end there are two final datasets: One with 624 samples (26 subjects× 6 tasks× 4 segments) for
binary models and another with 416 samples (26 subjects× 4 tasks× 4 segments) for multiclass
models. Both datasets have 15,035 features (3007 features × 5 transformed parameters).

3.7. Feature Selection and Reduction

Feature selection and/or dimensionality reduction are of utmost importance, since
they might improve the learning efficiency of the classifier, their prediction performance,
and reduce the possibility of overfitting [77]. Previously to this step, z-score feature scaling
is performed to the data, in order to improve the feature selection or/and classification
methods, since the features are all in the same range of values.

In this work, four different approaches were investigated for feature selection and
dimensionality reduction, separately.

Three types of rank-based methods were investigated for feature selection with the aim
of keeping interpretation regarding the features selected. One of the methods used was the
Kruskal–Wallis H test [78] for multiclass classification, or the Mann–Whiney U-test [79] in
case of a binary scenario. Another ranking method used was the robust and noise tolerant
ReliefF Algorithm [80,81]. On both these methods, the redundant correlated features were
eliminated through the computation of the Pearson correlation coefficient [82]. Lastly, the
third method explored was the normalized mutual information (NMI) [83], which consists
in selecting the best subset of features that besides being relevant, are not redundant [83].
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Additionally to the feature selection methods approach previously mentioned, a
well-known, widely-used dimensionality reduction technique, the PCA [84], was also
tested. The number of principal components selected was based on the percentage of the
cumulative explained variance (CEV) that was decided to be maintained [85].

3.8. Classification

For classification, we considered four conventional classifiers, in particular, the Fisher
linear discriminant analysis (FLDA) classifier [86], the support vector machine (SVM) [87],
the k-nearest neighbors algorithm (k-NN) [88], and the Naïve Bayes classifier [89]. We decided
to consider a more conservative approach with these classifiers since our main objective was
not the classification and finding the best classifier, but instead to demonstrate the separability
of the classes.

Although FLDA and SVM are natively binary classifiers, they can be used in multi-
class problems by using a one-vs-one, or one-vs-all strategy. Concerning SVM, a linear
kernel was used in this study, given its simplicity, speed, and interpretability. Additionally,
a linear kernel also reduces the risk of overfitting of our data, which may be more likely if
non-linear kernels are used.

The leave-one subject-out cross-validation procedure [90] was considered in this study.
This method consists in training the classifiers with the samples of 25 subjects and testing
them with the samples of one subject. The choice of this type of cross-validation makes possi-
ble to find a robust model that is close to a real application, i.e., classifying new independent
samples, from a new different subject, with previous information about other subjects.

The grid search of the parameters in the different feature selection/reduction-classifier
models was performed considering a nested leave-one subject out cross-validation. There-
fore, the tuned models obtained based on the validation dataset were tested in the inde-
pendent test dataset, i.e., in the samples of the subject that was left out in each run. For
evaluating the performance of the models (feature selection/dimensionality reduction
methods combined with different classifiers), we considered five classic evaluation metrics:
Recall, precision, specificity, F-measure, and accuracy. In the following section, the classifi-
cation results achieved for the different tuned models will be presented and discussed.

4. Results and Discussion
4.1. Software Metrics Labeling Analysis

In this study, the first analysis was performed using a data labeling based on the
software metrics of the three codes used in the experiments, being Code 1 the less complex
and Code 3 the most complex.

Multiple combinations were explored using the different feature selection/reduction
techniques and classifiers, in order to distinguish, through the EEG features, the three
code complexities (C1, C2, and C3 labels) and the reading control task (Control label).
Afterwards, a statistical analysis aiming to assess differences between the classification
models was conducted based on the accuracy results obtained. Figure 6 presents the
p-values of the Mann–Whitney test obtained between the different combinations feature
selection/reduction-classifier models tuned, considering a significance level of 5% or
1% (different colors). The classification options are ordered from the highest accuracy
performance (PCA-SVM) to the lowest accuracy performance (PCA-Naive Bayes).

From these results, it can be observed that the classification options that present more
often statistical significant difference from the others, are the ones where the PCA with the
SVM or FLDA classifiers were used.
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Figure 6. p-values of the pairwise comparison of the classification model options, with Bonferroni
correction. The values higher than the significance level of 0.05 are colored with light blue, while
the intermediate blue is related to a significance level of 0.05 and dark blue to a significance level
of 0.01. PCA: Principal Component Analysis; Krusk: Kruskal-Wallis H test; NMI: Normalized
Mutual Information; Reli: ReliefF Algorithm; SVM: Support Vector Machine; FLDA: Fisher Linear
Discriminant Analysis classifier; kNN: k-nearest neighbors algorithm; Naive: Naive Bayes classifier.

Based on the above, we will present herein the classification results obtained for the
example of the option using PCA algorithm and the SVM classifier (see Table 3).

Table 3. Multiclass classification results considering software metrics labeling.

Classifier Multiclass
Classification

Evaluation Parameter
Recall (%) Precision (%) Specificity (%) F-Measure (%) Accuracy (%)

SVM
(OAO, C = 2−10)

C1 91.35 ± 19.93 99.23 ± 3.93 99.03 ± 4.73 93.60 ± 14.54

74.76 ± 12.46
C2 57.69 ± 38.13 51.68 ± 33.39 83.91 ± 12.94 50.60 ± 30.82

C3 50.96 ± 36.74 52.06 ± 35.11 85.52 ± 13.70 47.09 ± 30.03

Control 99.04 ± 4.90 91.17 ± 14.90 93.75 ± 10.76 94.42 ± 9.67

An overall performance of 75% of accuracy was achieved with the linear SVM classifier.
The results show a clear distinction of the C1 and the Control tasks from the other two Codes
(F-Measure around 94%). However the model is not able to distinguish the more complex
codes, i.e., the C2 and C3 (F-Measures only around 50%), which means that from the point
of view of the model the participants consider that C2 and C3 have similar complexity.

Another aspect observed is that the F-measure of the reading (Control) task was
around 94%. Moreover, by looking at the evaluation parameters, recall and precision, of
the C1 and the Control task, it is possible to observe that there are samples of the Code
tasks that are being classified as the Control task, whereas all the samples of Control are
being classified properly (recall around 99%). Therefore, this was explored by performing a
binary classification model of each code comprehension task and the corresponding control
task of the same trial (see Table 4). This way, it is possible to verify if the unexpected non-
maximum separation of the Control task was due to the normalization step of the classes
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or instead related to parts of segments with low mental effort during the comprehension of
codes in comparison to the mental effort in the reading control tasks, for some participants.

Table 4. Binary classification results considering software metrics labeling.

Classifier Binary Classification Evaluation Parameter
Recall (%) Precision (%) Specificity (%) F-Measure (%) Accuracy (%)

SVM (C = 25)
C1 vs. Control 75.96 ± 34.26 73.48 ± 29.98 70.19 ± 36.07 70.67 ± 28.92 73.08 ± 22.27

C2 vs. Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45

C3 vs. Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45

It can be observed that the accuracy results achieved for the classification of C2 vs.
Control 2 and C3 vs. Control 3 lie around 100%. However, for the case of C1 vs. Control 1
the results decrease considerably, which might be explained by the low difficulty of the
task, suggesting that there are segments during this task that did not present any additional
mental effort for some of the participants in comparison to the mental effort in the reading
control tasks.

4.2. NASA-TLX Labeling Analysis

In the previous analyses, the models were designed considering the class labeling
according to the software complexity metrics of the code used in the code comprehension
tasks. The results obtained reveal that the features discriminate tasks when the code that
participants are trying to comprehend have quite different complexity metrics (e.g., C1
vs. C2 and C1 vs. C3). The difficulties in differentiating C2 from C3 suggest a complexity
saturation in the participants perception. Therefore, it is possible to conclude that the
results do not match the complexity levels evaluated with the software metrics, especially
the well-known McCabe Cyclomatic Complexity metric. Nevertheless, the results are
coherent with the answers to the NASA-TLX survey, which also points to such saturation
behavior in C2 and C3 (see Figure 7).

0

1

2

3

4

5

6

Code 1 Code 2 Code 3

Figure 7. Mental effort felt by the participants and written on the NASA-TLX for the three different
Code tasks.

In view of the results of Figure 7, carrying out a new labeling of the codes’ complexity
was considered, according to the cognitive effort of the NASA-TLX. Thus, a new multiclass
model was trained in order to distinguish C1, C2/C3, and Control, i.e., two levels of
code complexity classes and a control class. The results obtained for this model, which is
preceded by the PCA technique and the SVM classifier, are presented in Table 5.
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Table 5. Multiclass classification results considering NASA-TLX labeling.

Classifier Multiclass Classification Evaluation Parameter
Recall (%) Precision (%) Specificity (%) F-Measure (%) Accuracy (%)

SVM (OAO, C = 25)

C1 91.00 ± 20.26 98.40 ± 5.54 99.33 ± 2.31 92.90 ± 14.74

96.50 ± 5.13C2/C3 98.50 ± 4.15 100.00 ± 0.00 100.00 ± 0.00 99.20 ± 2.21

Control 98.00 ± 6.92 91.62 ± 13.39 96.00 ± 6.85 93.94 ± 8.30

As expected, the overall performance of the model increased with the new labelling,
achieving a maximum accuracy of 96.5%. Concerning class C2/C3 classification performance,
a F-measure of 99% was achieved whereas the F-measure for Code 1 and Control classes
remained similar (around 93%), for the reason already mentioned in the previous results.

4.3. Discriminant Features

Afterwards, using the Kruskal–Wallis H test as a feature selection method, the most
frequent discriminant features were inspected. This was performed by analyzing the first
100 selected features in all folds of validation using the four class labeled dataset (C1, C2,
C3, and Control task). Figure 8 presents a topographic map indicating the brain regions
corresponding to the most frequent selected features. In Figure 9, a radar plot is depicted
containing information about the most frequent type of features selected.

Figure 8. Topographic map representing the percentage of the features corresponding to each
electrode after feature selection with Kruskal–Wallis H test, for the multiclass scenario C1 vs. C2 vs.
C3 vs. Control.

In Figure 8, it is possible to verify that the most frequent features belong to the parietal
region (mainly in Pz channel) or near to it, i.e., central parietal (mainly CPz and CP2), and
to the evident frontal region (mainly in Fz, F2, and FCz) as well. These results emphasize
how important the frontal and parietal electrodes can provide information regarding
cognitive workload, going in agreement with the findings of recent studies focused in
code comprehension tasks and the mental workload, which pinpoint frontal and parietal
regions as the most relevant ones [54]. Furthermore, these findings may potentiate the
development of an EEG acquisition system with fewer electrodes, located only on those
specific regions, to be used by programmers in software development environments.
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Figure 9 shows that the most frequent types of features are mainly related to Theta,
Alpha, and Beta band derived features, especially the ratios between them. The type of
frequency band features mentioned are in line with the findings of recent studies in the area,
which emphasized the significant discriminative power of these bands in distinguishing
tasks difficulty and assessing mental workload [54,56,57], suggesting a positive correlation of
Theta power and a negative correlation of Alpha power with the increase of code complexity.

Figure 9. Radar plot depicting which type of features are more frequent (in %) in the dataset obtained
after feature selection, for the multiclass scenario C1 vs. C2 vs. C3 vs. Control.

4.4. Spatial-Temporal Features Analysis

So far, the previous results have been a general analysis of the overall cognitive load
associated in the four chunks of the different complexity codes. However, concerning
the goal of annotating code lines (or even lexical tokens within each code line) with
programmers’ cognitive load, a deeper and more detailed study is needed, exploring the
most discriminant EEG features in a spatial-temporal analysis. This was performed by
doing a fusion of information with eye tracker data that provides instant information on
where the participants are looking, i.e., the gaze points of the eye tracker. This analysis is
particularly relevant because it is focused on the accurate assessment of cognitive load while
the participants are reading specific code lines. The goal here is to verify if it is possible to
determine the exact code lines that require higher cognitive load for a given participant.

As an illustration of what is intended to be performed in this analysis, Figure 10 shows
an example of C1 code comprehension for a participant selected at random (almost all
participants show a similar behavior).

Regarding eye tracking data, in Figure 10A, it is possible to observe the horizontal
density of gaze points along the vertical Y axis of the task. Furthermore, it is also possi-
ble to observe the clusters of the gaze points over the experimental time and the Y axis
(Figure 10B). The step of clustering was performed using the Density-based spatial cluster-
ing algorithm considering a three dimensions feature space (time instants, y-coordinates,
and the distance between consecutive gaze points). Finally, the gaze points are overlapped
with the code task figure (Figure 10C), where it also represents the geodesic lines that
correspond to the clusters with a higher density of gaze points.
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In the code task figure (Figure 10C), critical areas of the code (i.e., code lines that are
expected to be more difficult to understand by an average programmer) considered by
four software developer professionals are also represented. Each developer critical area is
marked with a different color, and the common critical areas found by the four developers
are marked with a blue rectangle. This can be better visualized in the following example of
the Code task 2 (Figure 11).
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Figure 10. Example of the fusion of EEG with eye tracking, for an intermediate participant during Code task 1. (A) Density
of gaze points with the red line as a reference of 50% of the maximum row density; (B) clusters of gaze points over time and
the y-axis; (C) code task figure overlapped with gaze points; and (D) discriminant EEG features values over time.
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Figure 11. Example of the fusion of EEG with eye tracking, for an expert participant during the Code task 2. (A) Density of
gaze points, with the red line as a reference of 50% of the maximum row density; (B) clusters of gaze points over time and
the y-axis; (C) code task figure overlapped with gaze points; and (D) discriminant EEG features values over time.
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Finally, the figure also represents two of the most discriminant features from EEG over
time (Figure 10D), i.e., the ratio of θ/(β + α) extracted from the electrode F2 and the ratio of
θ/α extracted from electrode PZ. Thereby, by analyzing the variation of the feature values
(from only two EEG electrodes) and the corresponding gaze points of the eye tracking data,
it makes it possible to achieve a space-time resolution and a deeper and detailed analysis
of the cognitive load during the code task under comprehension.

Figure 11 depicts one example for the C2 of one expert participant, which emphasizes
the idea of the space-time resolution power in the assessment of the cognitive load over
the code, through the combination of EEG biomarkers with eye-tracking information.

From the figure, it can be observed that there are some significant spikes or group
of spikes of features (Figure 11D) that match with the clusters with a higher density of
gaze points (Figure 11A,B) and with the upper two critical regions marked (Figure 11C),
more specifically around the instants: (1) 160–190; (2) 220–240; (3) 280–350; (4) 420; (5) 510;
and (6) 600–660 s. From these instants there are spikes that are common to both features,
while there are some spikes corresponding to the high density clusters (Figure 11B) or
critical regions (Figure 11C) that are only present for one of the features, e.g., the instant
represented as (5). This result suggests that depending on the brain region or the frequency
band derived features, it can contribute with the same or additional information about the
task being performed.

Afterwards, a statistical analysis was performed in order to verify if the values values
are significantly different between the critical areas annotated, i.e., code regions that
cause higher cognitive load, and non-critical areas. Therefore, based on the eye-tracking
information, it was possible to synchronize and select the samples of the EEG features
that were inside and outside the critical regions from runs of the participants. After
grouping all the data in two classes for each type of feature, we checked the normality
of the distributions of the different groups of the two features. Given the groups did not
follow a normal distribution, we used the Mann–Whitney U test to evaluate the following
null hypothesis (H0), and respective alternative hypothesis (H1):

Hypothesis 0 (H0). The proposed EEG biomarkers combined with eye-tracking data can not
differentiate code regions that cause higher cognitive load.

Hypothesis 1 (H1). The proposed EEG biomarkers combined with eye-tracking data can differen-
tiate the critical regions that cause higher cognitive load.

We obtained a p-value of 0.012 for the feature F2:(θ/(β + α)) and a p-value of 0.034
for the feature PZ:(θ/α). Considering a significance level α = 0.05, we reject the H0 and
therefore we can conclude that the features values in the regions annotated as difficult to
comprehend have statistically significant differences in relation to the features values from
the regions not marked as difficult, i.e., we accept the H1.

In sum, the overall results of both EEG features, from the two different brain regions
highly related with mental workload, reveal possible powerful EEG biomarkers to spot
code areas that demand more mental effort or tend to be critical.

The promising findings from this analysis, followed by the results discussed in the
previous subsections, support the idea that EEG offers a huge potential in assessing the
software programmers cognitive load, in significant space-time resolution, and therefore
suggests that future research and applications should focus on using EEG as a reference
to validate wearable non-intrusive devices which are more compatible with the software
development environment.

4.5. EEG as a Reference for Accurate Programmers’ Cognitive State Monitoring

An emergent research area in software engineering and software reliability is the
use of wearable biosensors to monitor the cognitive state of software developers during
software development tasks.
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The EEG biomarkers identified in this work showed enough space-time resolution to
allow accurate annotation of code lines with information related to the cognitive state of
programmers, opening new possibilities to predict and avoid software bugs. Furthermore,
these findings also opens the floor for the usage of the EEG as a reference to validate
promising non-intrusive and comfortable wearable devices.

Our proposal is to use the EEG biomarkers and the datasets resulting from this study
as a reference to compare, and consequently to validate, other potential biomarkers, partic-
ularly biomarkers that can be gathered using wearable non-intrusive devices compatible
with the software development activity. This includes biomarkers related to physiologic
manifestations driven by the ANS such as heart rate variability (HRV), through wrist-located
photoplethysmography (PPG) [91,92], typically done with bracelets or smartwatches, and
task-evoked pupillary response [15,93] that is available in most desktop eye tracking systems.
Bracelets, smartwatches, and desktop eye trackers are clearly non-intrusive devices fully
compatible with software development environments. But the big question is whether this
indirect way (i.e., through ANS-related signals) of gathering programmers’ cognitive state
information is accurate enough to be used in practice.

The first step to use EEG as a reference to evaluate and improve the accuracy of pro-
grammers’ cognitive load gathered using wearable devices is to make our dataset available
to the research community. Currently, we have made the dataset available through specific
requests to the authors of this study but the dataset will fully be available as soon as this
study is published. The dataset includes the following:

(1) Set of programs specifically designed for code comprehension tasks including different
complexity levels (measured using the NASA TLX tool) and the annotations made
by programming experts identifying the programs snippets that are considered more
difficult to understand for the average programmer;

(2) Experiment protocol including the images used as stimulus during the experiment
(i.e., the natural language texts, fixation cross, and the software code examples) and
the detailed workflow of the experiment to allow reproducibility of the study;

(3) Anonymized raw data collected for the 26 participants (programmers) including EEG
and eye tracking data, synchronized and sharing a common time reference. This data
is organized in folders per participant, containing for each folder the data of all the
trials of code comprehension performed with each participant. The files can be opened
using the Matlab EEGLAB toolbox [61].

This set of resources provides an EEG reference of accurate annotation of code lines
with information related to the cognitive load of participants while comprehending pro-
grams of different complexity. Since it is well known that EEG features present a higher
temporal and spatial resolution than features extracted from the ANS-related signals (which
are the ones that can be obtained using non-intrusive bracelets/watches, together with
desktop eye trackers), the experimental data provided can be used in general to validate
future experiments relying on non-intrusive devices. In that sense, the set of resources
provided, which includes EEG data, can be used as a reference for future studies.

It is clear that the cognitive load is highly specific for each participant (i.e., different
participants with different levels of programming skills may have rather different cognitive
loads while comprehending the same code snippet). This is in fact the strongest point of
the idea of measuring the (individual) programmer’s cognitive load in order to associate
such information to specific code lines for future use as software bug predictor, as the
bug predictions will reflect the cognitive state and skills of the actual programmer that
wrote/inspected the code. But this also means that care should be taken while using
our EEG data to validate other potential biomarkers, particularly biomarkers obtained
from ANS-related signals, which are the ones gathered by wearable devices compatible
with the software development activity. Since our data includes the characterization of
each participant concerning his/her level of expertise, and also includes the results of the
surveys done at the end of each trial to determine whether the participant has understood
the program or not, it is possible to cluster participants according to their actual level of
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expertise. Participants of the same level of expertise tend to find similar difficulties in code
comprehension, which means that the level of expertise should be used to guide the actual
comparison of the results obtained from our EEG biomarkers with other future biomarkers.

5. Threats to Validity

Although there are promising results reported in this paper, there are still limitations
that will be mentioned and discussed in this section, as the main threats to validity of the
present study.

First of all, as the data of this study was acquired in a controlled environment, it
will always present limitations regarding the made-up setup, i.e., the natural software
environment might not be perfectly realistic, given the natural limits of a complex exper-
iment. Nevertheless, given the limited number of studies using EEG for cognitive load
assessment in a software engineering context, our goal here was to provide a systematic
analysis using only EEG, by evaluating potential EEG biomarkers present in the cognitive
load literature, and proposing ones sensitive to different levels of cognitive load during
software activities. Therefore, through the described experiment design protocol, and
using carefully designed code samples, the mentioned limitations are not prone to affect
the validity of the accomplished results. Moreover, the intra-subject variability of the
participants, for example eventual fatigue felt by the participants over the experiment, was
carefully minimized by performing the feature normalization of the main tasks in relation
to the baseline fixation crosses.

Regarding the code snippets used in the controlled experiment, we are aware that
the code snippets could be larger and other software metrics could be used to assess the
complexity of the codes. Nevertheless, for practical reasons, we could not use very large
programs as the participants would require a considerable amount of time to analyze and
comprehend, which would make the experiments unfeasible. We used a task scenario
similar to code reviews (focused only on code comprehension) and limited the duration of
the experiment for each participant to 45 min. In future work, if the experiment conditions
allows, object oriented cognitive complexity metrics should be considered to assess the
code snippets.

Another limitation concerns the number of participants (26) in the study. Although 26
participants might be considered a reasonable number for a valid statistical analysis in a
complex experiment, we are aware of this limitation and that the number of the dataset
should be increased in order to clarify the findings herein described. Additionally, the
same goes for the subject group lack of diversity. Despite our effort to gather a balanced
group of participants during the screening of participants, unfortunately, the percentage of
female software developers (among both Master students and software industry) is quite
small when compared to the male percentage, and the group of participants resulted in not
being evenly balanced in gender. In future larger datasets, the influence of gender-related
factors should be also considered in the analysis.

The last limitation regards the last analysis performed, the spatial-temporal features
analysis, since it is an introductory analysis of the feasibility of the potential EEG biomark-
ers identified in the previous analyses concerning the discriminant features. This type
of ambitious analysis, focused on the possibility of determining the exact code lines that
require higher cognitive load for a given participant, needs further investigation and vali-
dation for establishing the potential code complexity biomarkers as ones to be used in a
real space-temporal application in the software industry.

6. Conclusions

The controlled experiments performed with 26 programmers showef that EEG could
assess programmers’ cognitive load while performing code comprehension tasks with
very high confidence. Our results showed that the cognitive load assessed through EEG
was consistent with the subjective perception of code complexity measured using the
NASA-TLX survey, and both the EEG and NASA-TLX results deviated considerably from
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complexity metrics in some of the programs used in the experiments. This means that com-
plexity metrics alone are not a good indicator of code complexity as perceived by (human)
programmers, which suggests that widespread practice in software engineering such as
using metrics to limit complexity of the different modules during software development
should be revisited.

Concerning the most discriminant type of features and the scalp regions from which
are extracted, the presented results show the importance of Theta, Alpha, and Beta band
derived features for the separability between the cognitive load required in low and high
complexity code comprehension tasks. In addition, the results also showed that the electrodes
on frontal and parietal regions were the ones that most contributed to the discrimination
of cognitive load, suggesting that in future applications it might only need a very small set
of EEG electrodes in order to have EEG biomarkers as a reference, e.g., using only the two
electrodes (F2 and Pz) as presented in the space-temporal features analysis.

More relevant than distinguishing whether a programmer is dealing with complex or
simple code is to differentiate exactly the code lines that cause higher cognitive load (or the
lines where the programmer may be distracted). This is the key element needed to annotate
source code lines with the cognitive load of the programmers while dealing with such
code lines (i.e., write, update, inspect), which makes it possible to use such information to
improve software quality by providing immediate feedback to the developer on code areas
that may need a second look or require a more thorough software inspection or testing. The
results of our study showed that EEG biomarkers in association with eye tracking could
measure the programmers’ cognitive load in real-time allowing the accurate annotation
of the exact code lines where the programmer was looking. This is personalized to each
programmer, as the code annotations reflect the way that a specific programmer dealt with
the code (e.g., high cognitive load could mean comprehension difficulties but also other
states such as distraction could be significant to identify error prone scenarios).

Although EEG can assess programmers’ cognitive load with high accuracy, we con-
sider that EEG is generally too intrusive to be used in normal software development setups.
Our conclusion that just two electrodes can be enough to assess cognitive load opens the
possibility of using EEG in some specific development scenarios. In any case, we believe
that future utilization of programmers’ biofeedback in software development will use
non-intrusive wearable devices such as bracelets and watches, together with desktop eye
trackers. Since these non-intrusive devices rely on indirect signals driven by the autonomic
nervous system, their accuracy in space (i.e., code lines) and time is clearly an issue. The
contribution of our EEG study is to provide a reference for future research works, as the
high time-space resolution obtained by EEG biomarkers combined with eye tracking can
be used to fine tune or validate the results obtained with non-intrusive wearable devices.
To allow this utilization as reference we propose to share our experimental setup, including
experiment protocol, key elements such as the set of programs with annotations provided
by programming experts, the adapted version of the NASA-TLX tool, and the anonymized
raw results obtained with the all the experiment participants.
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