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Abstract: Teleoperation is widely used for unmanned ground vehicle (UGV) navigation in military
and civilian fields. However, the human operator has to limit speed to ensure the handling stability
because of the low resolution of video, limited field of view and time delay in the control loop. In this
paper, we propose a novel guidance point generation method that is well suited for human–machine
cooperative UGV teleoperation in unstructured environments without a predefined goal position.
The key novelty of this method is that the guidance points used for navigation can be generated with
only the local perception information of the UGV. Firstly, the locally occupied grid map (OGM) was
generated utilizing a probabilistic grid state description method, and converted into binary image to
constructed the convex hull of obstacle area. Secondly, we proposed an improved thinning algorithm
to extract skeletons of navigable regions from binary images, and find out the target skeleton related
to the position of the UGV utilizing the k-nearest neighbor (kNN) algorithm. The target skeleton
was reconstructed at the midline position of the navigable region using the decreasing gradient
algorithm in order to obtain the appropriate skeleton end points for use as candidate guidance points.
For visually presenting the driving trend of the UGV and convenient touch screen operation, we
transformed guidance point selection into trajectory selection by generating the predicted trajectory
correlative to candidate guidance points based on the differential equation of motion. Experimental
results show that the proposed method significantly increases the speed of teleoperated UGV.

Keywords: unmanned ground vehicle; human-machine cooperative control; unstructured environ-
ment; skeleton extraction; guidance point

1. Introduction

Unmanned ground vehicles (UGV) have been very useful in a number of civilian
and military fields, including rescue, reconnaissance and patrol mission. With the rapid
development of sensor, communication and intelligent control, humans are able to increase
their distance from dangerous tasks. Control of a UGV over a distance is referred to as
teleoperation and has become a very popular control mode. While adding distance between
the human operator and UGV can be advantageous to the safety of the human, it also
introduces negative side effects. In particular, with this arrangement human operators
often have to control the vehicle using 2D video feeds with low resolution and limited
field of view [1]. To make matters more difficult, the video feed and control command
are delayed hundreds of milliseconds because of data processing and transmission over
a wireless network. Previous work has shown that time delays decrease the speed and
accuracy with which human operators can complete a teleoperation task [2,3].

Many researchers have been working on methods to assist humans overcome these
challenges inherent to teleoperation. For example, researchers have developed algorithms
to combine camera and lidar data to generate 3D exocentric views for more intuitive
teleoperation [4]. For well-defined tasks in structured environments, researchers could
design integrated multi-sensor systems and developed algorithms to make the UGV more
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autonomous [5,6]. However, many UGVs carry out tasks in unstructured environments
in which the current autonomous navigation technology is difficult to ensure the safety
of vehicles, and still require human knowledge or expertise. Cosenzo and Barnes claim
most military robotic systems will continue to require active human control or at least
supervision with the ability to take over if necessary [7].

Some studies have suggested that human–machine cooperative control (versus manual
control) of a UGV can improve task performance in high speed navigation [8]. Macharet
and Florencio developed a method that uses artificial potential fields and vector field
histograms for navigation with a human operator in the control loop [9]. Researchers
in the automotive domain have conducted studies that show model predictive control
(MPC) can be an effective tool in cooperative control. The MPC based methods augment
driver inputs based on factors such as predicted vehicle stability [10] and predicted vehicle
positions [11,12].

However, there are still gaps in the research and methods that attempt to best combine
human operator and navigation control system of a UGV. More specifically, many of
the previous works assumed that navigation control system knows the key guidance
information of task. In many cases this is a reasonable assumption, e.g., an autonomous
navigation task based on road network, it may be reasonable to assume that global path
points have been determined in advance. In unstructured environments, e.g., off-road
areas, often it is not reasonable to assume the navigation control system knows the human’s
goal position.

This paper presents a novel guidance point generation method that is well suited for
human–machine cooperative UGV teleoperation in unstructured environments without a
predefined goal position. The key novelty of this method is that the guidance points used
for navigation can be generated with only the local perception information of the UGV.
Firstly, the locally occupied grid map (OGM) was generated utilizing a probabilistic grid
state description method, and converted into binary image to constructed the convex hull
of obstacle area. Secondly, we proposed an improved Zhang–Suen algorithm to extract
skeletons of navigable regions from image, and find out the target skeleton related to the
position of UGV utilizing the kNN algorithm. The target skeleton was reconstructed at the
midline position of the navigable region using the decreasing gradient algorithm in order
to obtain the appropriate skeleton end points for use as candidate guidance points. For
convenient touch screen operation, we transformed guidance point selection into trajectory
selection by generating the predicted trajectory correlative to candidate guidance points
based on the differential equation of motion.

The remainder of this paper is organized as follows. Section 2 contains a review of
work in the literature related to mainstream cooperative control techniques for UGV tele-
operation. Section 3 introduces the proposed generating algorithm of candidate guidance
points. Section 4 describes the human–machine cooperative control method base on guid-
ance points selection. Section 5 introduces the hardware platform and the experimental
setting, and analyses the experimental results in detail. Section 6 provides conclusions and
suggestions for future research.

2. Related Works

With the continuous improvement of autonomy of UGVs, the relationship between the
UGV and human operator has changed from the traditional master-slaver control to a more
flexible cooperative relationship. In this paper the human–machine cooperative control
refers in particular to the operator and the navigation control system being in the control
loop at the same time, and sharing the task information, environmental information and
UGV status to complete the driving task [13]. According to the differences of cooperative
modes, the cooperative control can be divided into three categories: input correction coop-
erative control, haptic interaction cooperative control and guidance interaction cooperative
control.
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2.1. Input Correction Cooperative Control

The navigation control system uses the control command generated by the autonomous
navigation algorithm to modify the control command input by the operator through the
human–machine interface, and transmits the results to the chassis controller, so as to realize
cooperative control. Figure 1 shows an overview of the input correction cooperative control
system.
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Early research work was based on the assumption of fixed control ratio between
operator and navigation control system to design the cooperative control method [14,15].
Reference [16] points out that the distribution of control right between human and machine
should be adaptively adjusted according to the operator’s intention. Reference [17] uses
the human factor model to predict the operator’s control behavior, and designs a nonlin-
ear model prediction controller to assist the operator with minimal intervention. Some
researchers believe that the operator’s freedom of control should be guaranteed in the
process of cooperative control. Reference [18] proposed a human-machine input mixing
method based on path homotropy concept, and introduced autonomous control action
only when necessary to avoid collision, so as to achieve a balance between human freedom
of operation and driving safety.

2.2. Haptic Interaction Cooperative Control

A haptic interaction cooperative control mode has two advantages over input correc-
tion cooperative control method: (1) the operator continuously interacts with the UGV
through haptic interface, and thus integrates into the control loop deeply; (2) this mode
gives the operator higher control authority, and the operator can overcome the torque
feedback from the navigation control system to take over the UGV completely [11]. Figure 2
shows an overview of the haptic interaction cooperative control system.

In reference [19], a haptic guidance with predictive capability was added to the
cooperative control, which increases the completion rate of the remote driving task and the
operator’s workload were improved to a certain extent. Reference [20] has proved that the
performance of operators under cooperative control can be improved in both lane-keeping
and vehicle-following tasks.

The key factor of haptic interaction cooperative control is to determine the desired
auxiliary torque that conforms to the characteristics of human muscular motion. Refer-
ence [21] proves that the appropriate relationship model between muscular movement and
expected torque is a key factor to improve the interaction performance in the process of
cooperative control. Reference [22] studied haptic interaction cooperative control under
different degrees of haptic feedback force, and found that the performance of the system
improved more significantly when the feedback force was small. Reference [23] designed a
dynamic cooperative steering control system by modeling the biomechanical impedance of
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the human arm, and realized dynamic torque feedback to the operator by adjusting the
cooperative impedance.
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2.3. Guidance Interaction Cooperative Control

Under the guidance interactive cooperative control mode, there is a hierarchical
cooperative relationship between the operator and the navigation control system [24]. The
operator makes a control decision according to the statues and environmental perception
information from the UGV, and input corresponding global or local guidance information
to navigate the UGV maneuvering toward target position. Figure 3 shows an overview of
the guidance interactive cooperative control system.
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Guidance control based on global path is a cooperative control method for wide range
navigation. The operator plans the path based on the global map, and UGV takes the path
as the guide to complete the maneuvering by relying on its own autonomous navigation
ability [25]. In the process of autonomous maneuver, the operator can modify the global
path at any time so as to realize the dynamic update of global guidance information [26].

In the local guidance control mode, the operator plans the local path based on the local
environmental map to guide the UGV maneuvering in a limited area [27]. The key points
guidance mode is also known as the “point-to-go” mode [28], which can be regarded as a
special form of local guidance control. In this mode the operator selects a key point from
the local map or the video image feedback from the UGV as a maneuvering target point.

For navigation control in an unstructured environment, the above guidance control
methods have the following limitations:

1. Not all regions have high precision maps for global path guidance. Even for an
area with a global map, due to the lack of timely update of map data, the seemingly
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passable area on the map is actually impassable when the natural environment
changes, which leads to the infeasibility of the planned global path.

2. Due to the limitation of autonomous capability of a UGV, it is difficult to complete
the task only by its own autonomous navigation system in the complex unstructured
environment.

3. The operator needs to actively determine the position of the guidance point in the
absence of decision support, which results in a large workload for the operator. On
the other hand, if the guidance point is not entered in time, it will bring serious
fluctuation of speed.

In view of these problems, the paper proposes a novel guidance point generation
method that is well suited for human–machine cooperative UGV teleoperation in unstruc-
tured environments without a predefined goal position. The candidate points can be
generated automatically with only the local perception information of the UGV. The opera-
tor selects a candidate point as the guidance points through the human-machine interface
according to the driving intention. Subsequently, the navigation control system of the
UGV generates feasible trajectory line according to its own motion state and environmental
perception information, which can be tracked by the actuator.

3. Guidance Point Generation Method

The proposed generation method of candidate guidance points mainly includes the
following three parts of work: (1) the generation of OGM; (2) obstacle description based on
mathematical morphology; (3) generation of candidate guidance points based on skeleton
extraction. The details will be covered in this section.

3.1. Generation of Occupied Grid Map (OGM)

In the field of environment modeling for UGV, the common environmental represen-
tation methods include geometric feature map, point cloud map and occupied grid map.
The geometric feature map describes the object mainly using simple geometrical elements,
e.g., points, lines and planes. This representation method can describe the scene well in
the structured environment, but it is difficult to describe complex terrain accurately in
the unstructured environment. As an intuitive representation of lidar measurement data,
point cloud map contains all the information of the real world, but due to the large amount
of data, it is not easy to store and manage. OGM divides the environment into grids, as
shown in Figure 4. Each grid is given a probability of being occupied by an obstacle, which
can simply represent the distribution of obstacles in the environment.
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3.1.1. Assumption

This paper uses lidar to collect environmental information in order to avoid the impact
of changes in lighting and weather conditions on environmental features, and describes
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the surrounding environment of the UGV by OGM. Because the application scenario of the
UGV is an unstructured outdoor environment, we can make the following assumptions:

• Assumption 1: The trajectory of the UGV is located on a two-dimensional plane to
ensure that the measured data obtained at different times are in the same plane, so
that the environmental information obtained by light detection and ranging (lidar) at
close times contains the same environmental objects.

• Assumption 2: It is assumed that the environment is static, that is, the positions of all
or most of the objects or features in the environment do not change over time. This
assumption, also known as the Markov hypothesis, states that if the current state is
known, the future state is independent of the past states.

• Assumption 3: Based on the assumption of two-dimensional plane motion of UGV,
the 6 degrees of freedom (DOF) spatial motion of the UGV can be simplified into
3-DOF plane motion. The motion state of the UGV can be determined by its heading
and 2-DOF position information.

• Assumption 4: It is assumed that the UGV is a rigid body during motion, and the
influence of suspension changes, tire deformation and other factors on the vehicle
body and the pitch and roll angle of the lidar is ignored, so as to improve the real-
time performance of the map generation algorithm and meet the requirements of
high-speed driving.

3.1.2. OGM Update

We used a 325 × 150 OGM with a side length of 0.2 m, which corresponded to a range
of 65 m × 30 m in the real environment. In the traditional binary OGM representation
method, each grid only contains two states of “occupied” or “not occupied”, which are
represented by 0 and 1 respectively. However, the obstacle detection algorithm based on
lidar point cloud data faces the problem of missed detection and misdetection, which could
lead to the incorrect state of some grids. In order to avoid this problem, a probabilistic grid
state description method is adopted in this paper, and the probability range of grid occupied
is [0, 1]. The occupancy state of a grid m can be expressed by a number p(m) ∈ [0, 1]. The
p(m) is defined as:

p(m)


> 0.5
= 0.5
< 0.5

, (1)

where p(m) > 0.5 indicates that the grid is occupied by obstacles; p(m) < 0.5 indicates that
there is no obstacle in the grid; p(m) = 0.5 indicates that the area where the grid is located
has not been explored. At the initial moment of OGM creation, the states of all the grids in
the map can be initialized to p(m) = 0.5 since no valid observations of the environment
have been made. Considering that the grids in the map are independent of each other,
we only need to update the state of each grid to complete the update of the entire map.
The probability expression of the grid occupied state is p(mt|x1:t, z1:t). According to Bayes’
theorem, this expression can be further transformed into Equation (2).

p(mt|x1:t, z1:t) =
p(mt|x1:t, z1:t−1) · p(zt|x1:t, z1:t−1, mt)

p(zt|x1:t, z1:t−1)
, (2)

where t represents the time of data collection; x1:t and z1:t represent the position sequence
of UGV and data series collected by lidar from the beginning of OGM creation (t = 1) to
the current time, respectively.

Since the grid state mt at time t is only related to the data series z1:t, and the data zt
have not been obtained at time t−1, the following equation can be obtained:

p(mt|x1:t, z1:t−1) = p(mt−1|x1:t−1, z1:t−1). (3)
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Since environmental observation results zt at time t is only related to the position of
UGV at time t and the grid state mt−1 at time t− 1, the following equation can be obtained:

p(zt|x1:t, z1:t−1, mt) = p(zt|xt, mt−1), (4)

By substituting Equations (3) and (4) into Equation (2), the simplified probability
expression of a grid is obtained by using the following equation:

p(mt|x1:t, z1:t) =
p(mt−1|x1:t−1, z1:t−1) · p(zt|xt, mt−1)

p(zt|x1:t, z1:t−1)
. (5)

According to Bayes’ theorem and the conditional independence principle, p(zt|xt, mt−1)
can be transformed as follows:

p(zt|xt, mt−1) =
p(zt|xt) · p(mt−1|xt, zt)

p(mt−1)
. (6)

By substituting Equation (6) into Equation (5), the formula for calculating the gird
occupancy probability is defined as follows:

p(mt|x1:t, z1:t) =
p(mt−1|x1:t−1, z1:t−1) · p(zt|xt) · p(mt−1|xt, zt)

p(zt|x1:t, z1:t−1) · p(mt−1)
. (7)

Correspondingly, the formula for calculating the non-occupancy probability can also
be obtained as follows:

p(mt|x1:t, z1:t) =
p(mt−1|x1:t−1, z1:t−1) · p(zt|xt) · p(mt−1|xt, zt)

p(zt|x1:t, z1:t−1) · p(mt−1)
. (8)

The left and right sides of Equation (7) divided by the left and right sides of Equation (8)
gives us Equation (9).

p(mt|x1:t, z1:t)

p(mt|x1:t, z1:t)
=

p(mt−1|x1:t−1, z1:t−1) · p(mt−1) · p(mt−1|xt, zt)

p(mt−1|x1:t−1, z1:t−1) · p(mt−1) · p(mt−1|xt, zt)
. (9)

The sum of probabilities of occupancy and non-occupancy of each grid is equal to 1
under any conditions, so we can transform Equation (9) to Equation (10):

p(mt|x1:t, z1:t)

1− p(mt|x1:t, z1:t)
=

p(mt−1|x1:t−1, z1:t−1) · (1− p(mt−1)) · p(mt−1|xt, zt)

(1− p(mt−1|x1:t−1, z1:t−1)) · p(mt−1) · (1− p(mt−1|xt, zt))
, (10)

where p(mt−1|x1:t−1, z1:t−1) represents the grid state at time t− 1, and p(mt−1) is the prior
value of the gird state, which is only related to the initial state of the grid. Based on the
definition of the grid initial state p(mt−1) = 0.5, we simplify Equation (10) as follows:

p(mt|x1:t, z1:t)

1− p(mt|x1:t, z1:t)
=

p(mt−1|x1:t−1, z1:t−1) · p(mt−1|xt, zt)

(1− p(mt−1|x1:t−1, z1:t−1)) · (1− p(mt−1|xt, zt))
, (11)

then the relation between p(mt|x1:t, z1:t) and p(mt−1|x1:t−1, z1:t−1) is obtained by using the
following equations:

p(mt|x1:t, z1:t) =
S

1 + S
, (12)

S =
p(mt|xt, zt)

1− p(mt|xt, zt)
· p(mt−1|x1:t−1, z1:t−1)

1− p(mt−1|x1:t−1, z1:t−1)
. (13)

In Equation (13), p(mt|xt, zt) represent estimated grid state based on xt and zt, which
also known as the inverse sensor model [29]. This model describes how to estimate the en-
vironment’s state based on the sensor observation position xt and the sensor measurement
value zt.
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The light source of the lidar used in this paper is 905 nm infrared light, which has the
advantages of good directivity and no penetration to most materials. Therefore, it can be
considered that obstacles exist only at the location of the laser measurement point. However,
due to the limitation of the accuracy of the lidar system, the reflection characteristics of
the measured object and the difference of the transmission medium of the beam, the
measurement data of the lidar may produce errors. For the above reasons, the possibility
of inaccurate measurement is expressed in probability form based on the inverse sensor
model.

p(mt|xt, zt) =


pemp i f d > zt
pocc i f d = zt

punknown i f d < zt

, (14)

where:

• d is the distance between the center position of the grid and the lidar;
• pemp represent the occupancy probability of grid which locate in the area that the

laser beam passes through, and pemp 6= 0;
• pocc is the occupancy probability of grid where the measurement points are located,

and pocc 6= 0;
• punknown is the occupancy probability of grid outside the measurement range, and

punknown = 0.5;

In the course of research it was found that objects with smaller diameters, such as
tree trunks and shrubs, are observed less often than they are not. Theoretically we should
set pocc + pemp = 1, but if we follow this definition, the occupancy probability of grid
where objects with smaller diameters are located will be less than 0.5 in most cases. This
means that the locations of these obstacles will not be marked on the OGM. In order to
facilitate the detection of fine objects in the environment, we set pocc + pemp > 1 in practical
application, where pocc = 0.8, pemp = 0.4.

3.1.3. Binary Image Representation of OGM

To achieve skeleton extraction based on mathematical morphology, OGM needs to be
transformed into binary images. Let each grid of OGM correspond to a pixel in the image,
then the binary image is defined as:

D(x, y) =
{

255 i f P(x, y) > T
0 otherwise

, (15)

where D(x, y) represents pixel gray value, and threshold T = 0.5. Figure 5 shows a binary
image corresponding to a real environment, where the black pixel represents the obstacle
area, the white pixel represents the passable area, the red square indicates the position of
the UGV in the diagram.
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3.2. Obstacle Description Based on Mathematical Morphology
3.2.1. Basic Operations of Mathematical Morphology

Mathematical morphology is a tool for extracting image components that are useful
for representation and description [30]. The basic morphological operators are erosion,
dilation, opening and closing. Let E be a Euclidean space or an integer grid, and A a binary
image in E. The erosion of the binary image A by the structuring element B is defined by:

A	 B = {z ∈ E | Bz ⊆ A}, (16)

where Bz is the translation of B by the vector z, i.e., Bz = {b + z | b ∈ B}, ∀z ∈ E.
The dilation of A by the structuring element B is defined by:

A⊕ B = {z ∈ E|(Bs)z ∩ A 6= φ}, (17)

where Bs denotes the symmetric of B, that is, Bs = {x ∈ E |−x ∈ B}.
The opening of A by B is obtained by the erosion of A by B, followed by dilation of

the resulting image by B:
A ◦ B = (A	 B)⊕ B. (18)

The closing of A by B is obtained by the dilation of A by B, followed by erosion of the
resulting image by B:

A·B = (A⊕ B)	 B. (19)

3.2.2. Expanding of Obstacles

In order to treat the UGV as a particle in path planning, obstacles in binary image
need to be expanded. Considering the irregular and discontinuous shape of obstacles in
the unstructured environment, as well as the isolated distribution of some small obstacles
in space, a disc-shaped structural element is selected for the expanding of the original
image, and the radius of structural element is defined by the 1/2 width of the UGV. In this
paper, the widths of the UGV and grid of OGM are 1.97 m and 0.2 m. Thus, the disc-shaped
structural element has a radius of 5 pixels. The result of the obstacle expansion is shown
below. As can be seen from the Figure 6a, there are narrow gaps between some obstacle
areas. When we use the skeleton extraction method to generate the local path, it will
produce some undesired paths which pass through narrow gaps. Although theoretically
the UGV can safely pass through these narrow gaps, considering the positioning accuracy
and control accuracy, there is still a risk of the UGV colliding with an obstacle. Therefore,
we use the closing operator to fill the narrow gaps in the expanded binary image. The
result is shown in Figure 6b.
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3.3. Generating Algorithm of Candidate Guidance Points

A skeleton line is one of the important features to describe the plane region. It
reflects the geometric characteristics and topological structure of the plane region. Skeleton
extraction algorithms can be divided into three categories. The first is the topology thinning
algorithms [31], the basic idea of which is to continuously strip the boundary points of the
object in an iterative way until there is no extra boundary to strip off, and what remains is
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the skeleton. This method can ensure the connectivity of the skeleton, but it is sensitive to
boundary noise, and the end of the skeleton may deviate from the center of the object. The
second class of method is based on distance transformation [32], which forms the skeleton
by looking for gradient ridges of the distance field. The position of the skeleton obtained
by this method is accurate, but it is difficult to guarantee the connectivity of the skeleton.
The third class of method is based on the Voronoi diagram [33], which has high complexity
and requires pruning of the generated skeleton.

In order to generate the single-pixel skeleton with accurate connectivity in real time,
this paper proposed an improved Zhang–Suen topology thinning algorithm to extract
the skeleton [34]. In addition, we perform convex hull transformation on the obstacle
area to solve the problem that the skeleton shape is sensitive to the object boundary noise.
Furthermore, a solution based on the gradient descent method is given to improve the
deviation problem of the skeleton end.

3.3.1. An Improved Zhang–Suen Topology Thinning Algorithm

The algorithm principle of Zhang–Suen topology thinning algorithm is as follows:

• Define the foreground pixel value of a binary image to be 1 and the background
point pixel value to be 0. For a certain foreground pixel P1, the pixel set of its eight
neighborhoods is shown in Figure 7, where P2~P9 are adjacent pixels of pixel P1;

• M(P1) = P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9;
• N(P1) is defined as the number of times that the pixel value changes from 1 to 0 by

traversing neighbor pixels around P1 clockwise from P2;
• The two steps are repeated until no pixels are deleted in either step, and the output is

the thinning skeleton of the foreground in binary image.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 29 
 

 

tioning accuracy and control accuracy, there is still a risk of the UGV colliding with an 
obstacle. Therefore, we use the closing operator to fill the narrow gaps in the expanded 
binary image. The result is shown in Figure 6b. 

  
(a) Obstacle expansion (b) Narrow gaps filling 

Figure 6. Obstacle description in binary image. 

3.3. Generating Algorithm of Candidate Guidance Points 
A skeleton line is one of the important features to describe the plane region. It re-

flects the geometric characteristics and topological structure of the plane region. Skeleton 
extraction algorithms can be divided into three categories. The first is the topology thin-
ning algorithms [31], the basic idea of which is to continuously strip the boundary points 
of the object in an iterative way until there is no extra boundary to strip off, and what 
remains is the skeleton. This method can ensure the connectivity of the skeleton, but it is 
sensitive to boundary noise, and the end of the skeleton may deviate from the center of 
the object. The second class of method is based on distance transformation [32], which 
forms the skeleton by looking for gradient ridges of the distance field. The position of the 
skeleton obtained by this method is accurate, but it is difficult to guarantee the connec-
tivity of the skeleton. The third class of method is based on the Voronoi diagram [33], 
which has high complexity and requires pruning of the generated skeleton. 

In order to generate the single-pixel skeleton with accurate connectivity in real time, 
this paper proposed an improved Zhang–Suen topology thinning algorithm to extract the 
skeleton [34]. In addition, we perform convex hull transformation on the obstacle area to 
solve the problem that the skeleton shape is sensitive to the object boundary noise. Fur-
thermore, a solution based on the gradient descent method is given to improve the devi-
ation problem of the skeleton end. 

3.3.1. An Improved Zhang–Suen Topology Thinning Algorithm 
The algorithm principle of Zhang–Suen topology thinning algorithm is as follows: 

• Define the foreground pixel value of a binary image to be 1 and the background 
point pixel value to be 0. For a certain foreground pixel P1, the pixel set of its eight 
neighborhoods is shown in Figure 7, where P2~P9 are adjacent pixels of pixel P1; 

 
Figure 7. The neighbor pixels set of pixel P1. 

• 𝑀(𝑃ଵ) = 𝑃ଶ + 𝑃ଷ + 𝑃ସ + 𝑃ହ + 𝑃଺ + 𝑃଻ + 𝑃 + 𝑃ଽ; 
• 𝑁(𝑃ଵ) is defined as the number of times that the pixel value changes from 1 to 0 by 

traversing neighbor pixels around 𝑃ଵclockwise from 𝑃ଶ; 
• The two steps are repeated until no pixels are deleted in either step, and the output 

is the thinning skeleton of the foreground in binary image. 

Figure 7. The neighbor pixels set of pixel P1.

Step 1: Iterate through all the pixels in the foreground, deleting the pixels that meet
one of the following conditions.

(1) 2 ≤ M(P1) ≤ 6;
(2) N(P1) = 1;
(3) P2 · P4 · P6 = 0;
(4) P4 · P6 · P8· = 0.

Step 2: Iterate through all the pixels in the foreground, deleting the pixels that meet
one of the following conditions.

(1) 2 ≤ M(P1) ≤ 6;
(2) N(P1) = 1;
(3) P2 · P4 · P8 = 0;
(4) P2 · P6 · P8· = 0.

Although the Zhang–Suen algorithm has good real-time performance and can guaran-
tee the connectivity of the skeleton, non-single pixel skeleton will appear at the fork, corner
and step of skeleton. As shown in Figure 8, the yellow grid represents redundant pixels
that need to be removed.
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Figure 8. Non-single pixel skeletons generated by Zhang–Suen algorithm.

To solve the above problems, this paper proposes five criteria to identify redundant
pixels:

(1) (P2 × P8 = 1) ∧ (P4 + P5 + P6 + P9 = 0);
(2) (P6 × P8 = 1) ∧ (P2 + P3 + P4 + P7 = 0);
(3) (P2 × P4 = 1) ∧ (P3 + P6 + P7 + P8 = 0);
(4) (P4 × P6 = 1) ∧ (P2 + P5 + P8 + P9 = 0);
(5) (P3 + P5 + P7 + P9 = 0) ∧ (P2 + P4 + P6 + P8 = 0).

The first four criteria are used to identify redundant pixels at the fork and corner of
skeleton. The last criterion is used to identify redundant pixels at the step of the skeleton.
In order to facilitate binary image processing, we built five templates for eliminating
redundant pixels based on the above criteria, as shown in Figure 9.
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Figure 9. The templates for removing redundant pixels.

Figure 10 shows extracted single-pixel skeletons of navigable regions by using an
improved Zhang–Suen algorithm.
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3.3.2. Smooth Skeleton Generation Based on Convex Hull Transform

Another disadvantage of the Zhang–Suen algorithm is that it is sensitive to boundary
noise, which means that when the outline of navigable region is not smooth enough, the
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extracted skeleton is also not smooth and it is possible to generate spurious branches, as
shown in red circle in Figure 11.
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In this research, the obstacle convex hull is constructed to obtain the navigable region
with smooth outline. The flow chart in Figure 12 describes the detail of convex hull
transform for the grid map.
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For obstacles based on grid representation, the internal occupied grid has no contribu-
tion to generating a convex hull, so it can be considered to eliminate the internal occupied
grids as much as possible to improve the search speed of convex hull vertices. In this paper,
a grid elimination method for irregular regions is proposed. This method consists of two
phases:

Phase 1:

(1) The leftmost and rightmost grids of each row in the obstacle area are marked as
unremovable;

(2) The grids at the top and bottom of each column in the obstacle area are marked as
unremovable;
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(3) Eliminate the remaining unmarked obstacle grids in the obstacle area.

From the result of the first phase elimination in Figure 13b we can know that there are
still a lot of occupied grids inside the obstacle, which can be further removed in Phase 2.
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Figure 13. An example of convex hull vertices searching for irregular region.

Phase 2:

(1) Traverse the leftmost grid Li of each row. If the leftmost grid Li−1 and Li+1 of the
upper and lower two rows are both on the left of Li, or either is on the left of Li, and
the other is in the same column as Li;

(2) Traverse the rightmost grid Ri of each row. If the rightmost grid Ri−1 and Ri+1 of the
upper and lower two rows are both on the right of Ri, or either is on the right of Ri,
and the other is in the same column as Ri;

(3) Traverse the top grid Ti of each column. If the top grid Ti−1 and Ti+1 of the left and
right two columns are both on the top of Ti, or either is on the top of Ti, and the other
is in the same row as Ti;

(4) Traverse the bottom grid Bi of each column. If the bottom grid Bi−1 and Bi+1 of the
left and right two columns are both on the below of Bi, or either is on the below of Ti,
and the other is in the same row as Bi.

Compared with the result of the first phase, 14 occupied grids such as F2, H2, D3, H3,
B4, I5, C7, H7, F8, H8, C9, D9 and I9 were further removed in the second stage, as shown
in Figure 13c. Subsequently, the Graham scanning method [35] was used to search the
convex hull vertices of obstacles in the remaining occupied grids. The search results are
represented in green grids in Figure 13d.

After finishing the search of convex hull vertices, it is necessary to connect the vertices
with straight lines to form an envelope. Since a binary image is a discrete representation of
two-dimensional space, we use Bresenham’s line algorithm [36] to search grids that can
approximately represent a straight line in binary-image. The envelopes of obstacles are
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shown in Figure 14a. There are some gaps between the envelope and the boundary of the
obstacle. If these gaps are not filled, the skeleton of these gaps will also be extracted in the
subsequent skeleton extraction process, which reduces the efficiency of skeleton extraction
for binary-image. Therefore, we use a hole-filling algorithm based on contours to fill these
gaps [37]. Figure 14b shows the results of gap filling, which is also the end result of convex
hull transform. Then we can obtain a smooth skeleton of navigable regions, as shown in
Figure 14c.
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Figure 14. Smooth skeleton extraction for binary-image. (a) The red closed curves represent the envelopes of the obstacles;
(b) result of convex hull transform; (c) extracted smooth skeletons after convex hull transform of obstacles.

There may be several unconnected navigable regions in OGM, among which only
the skeleton of the navigable region where the UGV is currently located is the desired
skeleton. In order to reduce the computational load, it is necessary to find out the skele-
ton corresponding to the current position of the UGV. The basic idea of this process is
transforming the skeleton search problem into a data classification problem by using the
k-nearest neighbor (kNN) algorithm [38]. The position data of all skeleton points of each
skeleton was regarded as a sample set, and the position of the UGV was regarded as the
data to be classified. The correlation between the data to be classified and the sample is
judged by calculating the distance between them. Euclidean distance was used to measure
the distance between the test data and all the training samples, which is defined as:

D(x, y) =

(
m

∑
i=1
|xi − yi|2

) 1
2

, (20)

where D(x, y) represents distance between point x and y, and m = 2 in two-dimensional
space. The searching result of the desired skeleton is shown in Figure 15. The red square
indicates the position of the UGV in the diagram.
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3.3.3. Optimization of Skeleton Shape

The Zhang–Suen algorithm is a thinning method based on the grassfire transform. It
can be described as “setting fire” to the borders of an image region to yield descriptors
such as the region’s skeleton or medial axis. However, any point can only travel in a
maximum of 8 directions in a discrete two-dimensional space, so it is hard to simulate
arbitrary burning direction. Therefore, when the skeleton is extracted from the region with
irregular shape, it is likely to generate a skeleton branch that is biased towards the obstacle.
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In this paper, a skeleton shape optimization method based on gradient descent is proposed
to solve the above problem.

First of all, the skeleton is divided into two parts: trunk and branch. The segment
connecting two fork points in the skeleton is defined as the trunk. The segment connecting
a fork point and an endpoint is defined as the branch. It can be seen that the precondition
of skeleton decomposition is to find the fork points and endpoints accurately, and the
corresponding discriminant conditions are as follows:

• The definition of the foreground pixel P1 and its eight neighborhoods in Section 3.3.1
is followed.

• M(P1) = P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9;
• Iterate through all the pixels in the foreground;
• Mark the pixel with M(P1) = 1 as the endpoint;
• Mark the pixel with M(P1) = 3 or M(P1) = 4 as fork point.

The searching result of fork points and endpoints is shown in Figure 16a, and blue
and red circles indicate fork points and endpoints respectively. For efficiency, we only deal
with the skeleton branch ahead of the UGV. The result of skeleton decomposition is shown
in Figure 16b,c.
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In order to apply the gradient descent algorithm, we constructed a distance field of
the OGM utilizing distance transform method [39]. The distance transformation of the
OGM is to calculate the minimum distance from each non-occupied grid to the grid of
obstacle boundary. When there are m isolated obstacles in the OGM, the distance field can
be expressed as follows:

Fd(k) = min(d(k, S[i])), i = 1, 2, · · · , m, (21)

where Fd(k) is the value of the distance field; d(, ) is Euclidean distance calculation function;
k is an arbitrary non-occupied grid; S is collection of obstacle boundary grids. An example
of constructed distance field is shown in Figure 17.
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Gradient descent is a first-order iterative optimization algorithm for finding a local
minimum of a differentiable function. The idea is to take repeated steps in the opposite
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direction of the gradient (or approximate gradient) of the function at the current point,
because this is the direction of steepest descent. Through each iteration, the function to
be optimized is gradually reduced, so as to solve the minimum value of the function. The
iterative translation process of skeleton points based on gradient descent can be described
by the formula:

xi,k+1 = xi,k − akg(xi,k), (22)

where xi,k is the position of the i-th skeleton point obtained after the k-th iteration; g(xi,k)
is the gradient magnitude of the i-th skeleton point at position xi,k; ak is the iteration step
length.

Because the distance field of OGM is a discrete two-dimensional plane, we utilize
horizontal and vertical convolution to calculate the horizontal and vertical gradient values
of each position respectively, and then the gradient magnitude can be obtained by using
Equation (23).

g(xi,k) =

√
|Sx|2 +

∣∣Sy
∣∣2, (23)

where horizontal gradient value Sx and vertical gradient value Sy are calculated by Equa-
tions (24) and (25) respectively.

Sx = f (i + 1, j + 1) + 2 f (i + 1, j) + f (i + 1, j− 1)− f (i− 1, j + 1)− 2 f (i− 1, j)− f (i− 1, j− 1), (24)

Sy = f (i + 1, j + 1) + 2 f (i, j + 1) + f (i− 1, j + 1)− f (i− 1, j− 1)− 2 f (i, j− 1)− f (i + 1, j− 1), (25)

The termination condition of iteration of the gradient descent algorithm is defined as:
Let g(xi,k) and g(xi,k−1) be the gradient magnitude of skeleton point xi for two consecutive
iterations, and ε be the difference threshold of the gradient magnitude, when meet condition∣∣g(xi,k)− g(xi,k−1)

∣∣ < ε, the iteration ends. As shown in Figure 18, the green points are the
original skeleton branches, and the blue points are the new distribution of the skeleton
points after the translation.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 29 
 

 

𝑔൫𝑥௜,௞൯ = ට|𝑆௫|ଶ + ห𝑆௬หଶ , (23) 

where horizontal gradient value 𝑆௫ and vertical gradient value 𝑆௬ are calculated by 
Equations (24) and (25) respectively. 𝑆௫ = 𝑓(𝑖 + 1, 𝑗 + 1) + 2𝑓(𝑖 + 1, 𝑗) + 𝑓(𝑖 + 1, 𝑗 − 1) − 𝑓(𝑖 − 1, 𝑗 + 1) − 2𝑓(𝑖 − 1, 𝑗) − 𝑓(𝑖 − 1, 𝑗 − 1) , (24)

𝑆௬ = 𝑓(𝑖 + 1, 𝑗 + 1) + 2𝑓(𝑖, 𝑗 + 1) + 𝑓(𝑖 − 1, 𝑗 + 1) − 𝑓(𝑖 − 1, 𝑗 − 1) − 2𝑓(𝑖, 𝑗 − 1) − 𝑓(𝑖 + 1, 𝑗 − 1) , (25)

The termination condition of iteration of the gradient descent algorithm is defined 
as: Let 𝑔൫𝑥௜,௞൯ and 𝑔൫𝑥௜,௞ିଵ൯ be the gradient magnitude of skeleton point 𝑥௜  for two 
consecutive iterations, and 𝜀 be the difference threshold of the gradient magnitude, 
when meet condition ห𝑔൫𝑥௜,௞൯ − 𝑔൫𝑥௜,௞ିଵ൯ห < 𝜀, the iteration ends. As shown in Figure 18, 
the green points are the original skeleton branches, and the blue points are the new dis-
tribution of the skeleton points after the translation. 

 
Figure 18. The result of skeleton shape optimization. 

3.3.4. Candidate Guidance Point Generation 
After the translation by the gradient descent method, the topological connection 

between the skeleton points is destroyed, so it is necessary to construct a new skeleton 
bend based on the current spatial distribution of the skeleton points. In this paper, we use 
cubic polynomial to fit the skeleton points. As can be seen from Figure 19, the skeleton 
branches obtained by fitting are close to the midline position of the navigable area. 

 
Figure 19. The result of skeleton shape optimization. 

Taking the end point of the new skeleton branch (red points in Figure 19) as the ex-
pected target position of UGV, and taking the tangent direction of the curve at this posi-
tion as the expected heading, multiple candidate guidance points containing position and 
heading information can be obtained. The candidate guidance point can be defined as 
follows: 𝑥௜,௧ = 𝑥௜,௡ , (26)𝑦௜,௧ = 𝑦௜,௡ ,  (27)

Figure 18. The result of skeleton shape optimization.

3.3.4. Candidate Guidance Point Generation

After the translation by the gradient descent method, the topological connection
between the skeleton points is destroyed, so it is necessary to construct a new skeleton
bend based on the current spatial distribution of the skeleton points. In this paper, we use
cubic polynomial to fit the skeleton points. As can be seen from Figure 19, the skeleton
branches obtained by fitting are close to the midline position of the navigable area.
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Taking the end point of the new skeleton branch (red points in Figure 19) as the
expected target position of UGV, and taking the tangent direction of the curve at this
position as the expected heading, multiple candidate guidance points containing position
and heading information can be obtained. The candidate guidance point can be defined as
follows:

xi,t = xi,n, (26)

yi,t = yi,n, (27)

θ = arctan
(

∂ fi
∂x

(xi,n, yi,n)

)
, (28)

where (xi,t, yi,t) and θ represent position and heading of candidate guidance point, (xi,n, yi,n)
is the end point of the skeleton branch, fi(x, y) is the curve function of i-th skeleton branch.

4. Human-Machine Cooperation-Based UGV Teleoperation

When the candidate guidance point is generated by the environment perception sys-
tem, the operator needs to select the appropriate guidance point through the teleoperation
system as the tracking target of UGV autonomous maneuvering. This human–machine
cooperative control mode based on guidance information interaction transforms the opera-
tor’s high-frequency driving control behavior into low-frequency decision behavior, which
further decouples the operator and UGV, thus reducing the sensitivity of the control loop
to delay. This section will give a detailed introduction to the human–machine interaction
process in collaborative control.

4.1. Human–Machine Interaction Mechanism Design

Human–machine cooperative control based on guidance information interaction
realizes a hierarchical cooperation control through the information interaction among
operator, teleoperation system and the UGV. In this process, first of all, candidate guidance
points need to be superimposed in the UGV feedback video. In order to make the candidate
guidance points overlay the dynamic image always on a fixed position in the scene, first of
all, we need to convert the relative position of the guidance point in the vehicle coordinate
system to the absolute position in the global coordinate system. Then, based on the
transformation relationship between the global coordinate system and the image coordinate
system, the candidate guidance points are superimposed to each frame of the video. In
addition, for the intuitive and efficient human-machine interaction, this paper chooses the
touch screen as the human interface device of the teleoperation system. The basic process
of human–machine interaction is shown in Figure 20.
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The interaction mechanism of human-machine system is as follows:

1. The autonomous control system generates candidate guidance points periodically
and sends them to the teleoperation system.

2. The teleoperation system overlays the candidate guidance points with the video
images and displays them.
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3. The operator selects a candidate point as the guidance point of the UGV according to
the control intention.

4. The teleoperation system sends the selected guidance point back to the UGV, and
the autonomous control system takes the guidance point as the input to generate the
desired trajectory line based on the kinematics constraints of the UGV.

5. During trajectory tracking, if the operator selects a new guidance point, the UGV will
immediately generate trajectory based on the new guidance point.

6. When the UGV is close to the current guidance point, if the operator has not yet
provided a new guidance point, the autonomous control system will select a candidate
guidance point as the tracking target point by itself according to the principle of
minimum trajectory curvature.

7. If no new guidance point is available, the UGV will stop automatically.

4.2. Trajectory Generation Based On Kinematic Constraints

When the UGV is running at a high speed, the scene in the video changes rapidly,
leading to the position of the guide point on the screen moving rapidly, which makes the
operator fail to select the guide point. In addition, it is not helpful for the operator to know
the future driving trend of the UGV only by marking several candidate guidance points
on the video image. Therefore, a more effective way to display guidance information is to
superimpose several candidate trajectories on the video image, as shown in Figure 21.
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The advantage of using trajectory superposition is that the pixel region corresponding
to the entire trajectory can respond to the operator’s click operation, thus enlarging the
response region of touch operation from a small pixel region to a banded pixel region. The
operator does not have to carefully click on a location on the screen, which greatly improves
the success rate of the operation. Another benefit is that, by observing the predicted driving
trajectory, the operator can intuitively know the locations in the scene where the UGV
will probably pass in the next period of time, which is conducive to the operator to make
forward-looking and safe decisions.

In order to make the superimposed trajectory line conform to the actual driving state of
the UGV, a candidate trajectory line is generated based on the motion differential constraint
of the UGV.

.
x = v× cos(θ), (29)
.
y = v× sin(θ), (30)

.
θ = v× tan(δ)

L
, (31)

where (x, y) is the current position of the UGV, θ is the heading angle, v is the speed,
L is the wheelbase, and δ is the front wheel angle. According to the reference [40], the
curve satisfying the above differential equations of motion can be described by polynomial
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parametric equation of degree n (n ≥ 3). Therefore, the position of the UGV can be
expressed as follows:

x = x(u), u ∈ [0, 1], (32)

y = y(u), u ∈ [0, 1], (33)

where x(u) and y(u) represent polynomial parametric equations of x and y coordinates, u
is dimensionless parameter, (x(0), y(0)) and (x(1), y(1)) represent the coordinates of the
starting and end positions. The parametric equation transforms the problem of solving
the trajectory curve into the problem of solving the coefficient of the parametric equation.
According to the current posture (xS, yS, δS, θS,) and the target posture (xE, yE, δE, θE,),
the following boundary conditions can be obtained:

x(0) = xS, x(1) = xE, (34)

y(0) = yS, y(1) = yE, (35)

δ(0) = δS, δ(1) = δE, (36)[ .
x(0)
.
y(0)

]
√

x2(0) + y2(0)
=

[
cos θS
sin θS

]
, (37)

[ .
x(1)
.
y(1)

]
√

x2(1) + y2(1)
=

[
cos θE
sin θE

]
. (38)

The above boundary conditions can determine the unique solution of the cubic poly-
nomial parametric equation. In order to make the trajectory curve have more degrees of
freedom and reduce the impact strength on the curve, the polynomial parametric equations
of degree 5 was selected to model the trajectory curve, which are given as follows:

x(u) = x0 + x1u + x2u2 + x3u3 + x4u4 + x5u5, (39)

y(u) = y0 + y1u + y2u2 + y3u3 + y4u4 + y5u5. (40)

To solve the coefficients of the indefinite equations, we add additional adjustable
parameters (ε1, ε2, ε3, ε4) so as to convert Equations (39) and (40) to explicit equations of
coefficients versus adjustable parameters [40], and the optimal solution can be determined.

In order to keep the length of the curve short while the change rate of the maximum
curvature is as small as possible, the objective function of the optimization solution is
defined as:

min
(

max
(∣∣ .

κ
∣∣)× k + s

)
, (41)

where κ denotes the curvature of the curve, s is the curve length, and k is the weighting
coefficient. Figure 22 shows the trajectory curves calculated according to the same starting
position and heading and different ending position and heading.
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5. Experiments

In this section, the performance of the suggested human-machine cooperative control
method is investigated under various in unstructured environments.

5.1. Test System

The test system is composed of wheeled UGV, teleoperation system and wireless
communication system.

5.1.1. Wheeled Unmanned Ground Vehicle (UGV)

The UGV used in the experiment was modified from a wheel off-road vehicle with a
length of 5.1 m and a width of 1.97 m. The navigation control system of the UGV consisted
of environment perception sensors and an on-board computer, as shown in Figure 23.
Environment perception sensors included a Velodyne HDL-64E lidar, a real-time kinematic
(RTK) GPS system, and a fiber-optic inertial navigation system (INS). The vertical and
horizontal views of the lidar were 26.8◦ and 360◦. We could obtain 1.3 million points per
second with a range accuracy of +/−2 cm. The INS had the horizontal position accuracy
of 0.02 m~0.05 m and the altitude position accuracy of 0.02 m~0.08 m, and the horizontal
attitude accuracy was within 0.01◦. The on-board computer is a ruggedized machine
(Intel Core i7-8550U 1.8 GHz, Intel HD Graphics 620, 512G Solid State Drive GeForce 8800
Ultra video, and 4 GB memory) with the 64-bit Linux operating system (Ubuntu 18.04). It
implemented intelligent decision making and control, and ensured real-time operation of
software such as local path planning and tracking control.
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5.1.2. Teleoperation System

The teleoperation system was housed in a mobile control shelter which provided
sufficient space, power, and environmental control for the operator, as shown in Figure 24.
The operator received video and state feedback data on display terminal and issued driving
commands through UGV controller and touch screens. The teleoperation computer had the
same hardware configuration as the navigation control computer. A multi-screen display
system was applied to display the wide-field-of-view video and graphical user interface.
The Logitech G27 driving device was used for manual driving.
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5.1.3. Wireless Communication System

The wireless communication system between the teleoperation system and the UGV
was carried by a mobile ad hoc network (MANET) [41]. The MANET was a collection of
wireless mobile nodes dynamically forming a temporary network without the use of any
existing network infrastructure or centralized administration. The frequency band of the
communication system was 560~678 MHz, which could provide the data bandwidth of
8 Mbps, and the link transmission delay was less than 20 ms. In flat terrain environment,
the maximum communication distance could reach 10 km. For ease of implementation,
teleoperation commands and feedback information travelled over the same network.

5.2. Experimental Design

We conducted a human-in-the-loop field experiment on a semi-desert region in north-
west China. The experiment was carried out in the daytime without rain or snow. Three
closed experimental routes were designed in an unstructured environment, each of which
was about 4.96 km, 2.4 km and 3.4 km in length, including typical environmental elements
such as straight, curve, pit and mound, and the starting point and the end point were
the same, as shown in Figure 25. There were signs at the fork and endpoint to inform
participants where to make a turn and when to stop. In order to ensure the safety of
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the experiment, the maximum speed of the UGV was limited to 55 km/h, 55 km/h and
40 km/h, respectively, depending on the road conditions of the three routes.
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Four operators were selected as the subjects to carry out experiments in three test
routes. Among the operators, there were three males and one female, aged between 23
and 30, and all of them had UGV remote control driving experience. They were asked to
driving the UGV inside the road as far as possible. Before the experiment, the operator
was allowed to practice freely in the experimental site for a while to fully adapt to the test
system. It also allowed the operator to preview the full course of the test route using a
digital map. The operator had no direct eye contact with the UGV in the field. For each
experiment route, the operator used the remote control mode (manual driving) and the
cooperative control mode to control the UGV running counterclockwise along the test
route respectively, and recorded the motion information of each lap. Subjects drew lots to
determine the experimental order. While one subject was experimenting, the other subjects
were not allowed to look. A 5-min break was given between the modes. If there was a
serious accident such as the UGV falling into a pit or crashing into a mound, the experiment
would be judged a failure. It would be judged according to its actual mileage to evaluate
the completion rate of this task.

5.3. Experimental Result

We evaluated the performance of the proposed cooperative control method from two
aspects: maneuvering task performance and handling stability.

5.3.1. Maneuvering Task Performance

The task completion rate and average speed are usually used to evaluate the maneu-
vering task performance of a UGV [28,42]. The task completion rate reflects the extent to
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which the UGV completes a particular task under the operator’s control, which can be
defined as follows:

Task Completion Rate =
Length o f Driven Route

Task Route Length
× 100%. (42)

During the experiment, four operators used two teleoperation modes to complete all
three routes safely, and the completion rate of the task reached 100%.

The average speed represents the completion efficiency of the maneuver task. The
higher the average speed, the greater the maneuverability of the UGV in the task environ-
ment, and the shorter the time to complete the task. Figure 26 shows the driving speed and
acceleration in different test routes based on remote control mode and human–machine
cooperative control mode from one of the subjects. As can be seen from the chart, both
modes can achieve a similar maximum speed, but the speed control stability of the former
is better than that of the latter.
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chart, both modes can achieve a similar maximum speed, but the speed control stability 
of the former is better than that of the latter. 
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Figure 26. Driving speed and acceleration variation in three test routes based on remote control mode and hu-
man-machine cooperative control mode from one of the subjects. 

Figure 26. Driving speed and acceleration variation in three test routes based on remote control mode and human-machine
cooperative control mode from one of the subjects.

Table 1 shows the average driving speed of each subject in remote control and human–
machine cooperative control mode in three routes. By comparing the mean values of aver-
age speed between these two modes in each test route, we can see that human–machine
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cooperative control mode has advantages for UGV teleoperation in an unstructured envi-
ronment.

Table 1. Average driving speed of each subject in remote control and human–machine cooperative control mode in three
routes.

Subject
Average Speed of Route 1

[m/s]
Average Speed of Route 2

[m/s]
Average Speed of Route 3

[m/s]

R. C. H. C. C. R. C. H. C. C. R. C. H. C. C.

1 5.70 6.96 7.98 8.34 8.66 9.17
2 6.38 5.94 5.67 6.83 7.02 7.89
3 5.93 6.33 7.58 6.17 9.61 10.36
4 5.24 5.78 8.86 9.84 7.37 7.61

Mean Value 5.81 6.25 7.52 7.80 8.17 8.76

R. C., Remote Control; H. M. C., Human–machine Cooperative Control.

5.3.2. Handling Stability

In the field of vehicle engineering, yaw rate and sideslip angle are important indicators
to measure the handling stability of a vehicle [43]. The yaw rate γ, heading ϕ, velocity
components vx and vy in global coordinates can be measured by the onboard INS. Based
on the Ackerman bicycle model, the sideslip angle β is calculated by Equation (43) [44]:

β = θ − ϕ, (43)

where θ is the direction angle of velocity, which is defined as:

θ = tan−1 vy

vx
, (44)

In this experiment, we used the mean absolute deviation (MAD) of yaw rate and
sideslip angle to evaluate the handling stability of UGV. The MAD of a dataset is the
average distance between each data point and the mean. It gives us an idea about the
variability in a dataset. The MAD of a dataset {x1, x2, · · · , xn} is defined as:

D =
1
n

n

∑
i=1
|xi −m(X)|, (45)

where m(X) is the mean of dataset X. Tables 2 and 3 show the MAD of yaw rate and
sideslip angle respectively.

Table 2. Mean absolute deviation (MAD) of yaw rate of each subject in remote control and human–machine cooperative
control mode in three routes.

Subject
MAD of Yaw Rate in Route 1

[◦/s]
MAD of Yaw Rate in Route 2

[◦/s]
MAD of Yaw Rate in Route 3

[◦/s]

R. C. H. C. C. R. C. H. C. C. R. C. H. C. C.

1 0.97 0.79 2.68 2.78 1.52 0.96
2 1.10 0.90 2.30 3.48 1.84 1.21
3 1.13 0.69 2.38 2.59 1.62 0.91
4 0.95 0.67 3.61 2.92 1.38 1.00

Mean Value 1.04 0.76 2.74 2.94 1.59 1.02
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Table 3. MAD of sideslip angle of each subject in remote control and human-machine cooperative control mode in three
routes.

Subject
MAD of Sideslip Angle

in Route 1 [◦]
MAD of Sideslip Angle

in Route 2 [◦]
MAD of Sideslip Angle

in Route 3 [◦]

R. C. H. C. C. R. C. H. C. C. R. C. H. C. C.

1 0.25 0.16 0.45 0.37 0.33 0.21
2 0.24 0.21 0.51 0.40 0.41 0.19
3 0.20 0.14 0.54 0.36 0.29 0.26
4 0.18 0.15 0.33 0.43 0.37 0.24

Mean Value 0.22 0.17 0.46 0.42 0.35 0.23

5.4. Experiment Analysis

The purpose of the experiment was to verify the usability of the proposed human–
machine cooperative control method in multiple unstructured environments. The four
operators all completed the maneuvering tasks of the three test routes safely by using the
cooperative control method.

Through the comprehensive analysis of the speed data and task routes, it can be seen
that both modes can achieve a similar maximum speed on the straight section of each
route. But due to the delay in the control loop, the handling stability of the remote control
mode decreases when the UGV is driving at high speed, which makes it difficult for the
operator to maintain the high-speed driving state for a long time. To ensure driving safety,
the operator will take the initiative to reduce the driving speed even under good road
conditions. Moreover, due to the limited visual field of the video image, the operator
will also slow down in the remote control mode during sharp turns or continuous curves
to ensure the UGV can pass safely. For task routes with more curves, this will lead to
longer task completion time. It can also be seen from Figure 26 that the fluctuation of
the acceleration curve in the remote control mode is significantly greater than that in the
cooperative control mode.

In the human–machine cooperative control mode, the control command generated by
the teleoperation system is the guidance point that is spatially ahead of the current UGV
position. The desired path is generated by the navigation control system according to the
guidance point, then the UGV can drive along the path at the optimal speed and course
under precise control. Compared with the operator’s direct control, the control accuracy
and frequency of the autonomous control system to the UGV chassis are higher, so it can
continuously maintain a higher speed, and pass the curve section more smoothly.

6. Conclusions

This paper focuses on guidance point generation-based cooperative UGV teleoperation
in an unstructured environment. The key novelty of this method is that the guidance points
used for navigation can be generated with only the local perception information of UGV. In
order to extract smooth skeletons of navigable regions, the OGM was generated utilizing a
probabilistic grid state description method, and converted into binary images to construct
the convex hull of the obstacle area. An improved thinning algorithm is designed to
extract single-pixel skeleton, and find out the target skeleton related to the position of
UGV utilizing the kNN algorithm. By using the decreasing gradient algorithm the target
skeleton is modified in order to obtain the appropriate candidate guidance points. For
visually presenting the driving trend of the UGV and convenient touch screen operation, we
transformed guidance point selection into trajectory selection by generating the predicted
trajectory correlative to candidate guidance points based on the differential equation of
motion. Experimental results show that the cooperative control mode is suitable for UGV
teleoperation in off-road environments.

The advantage of the proposed method is that the operator only needs to select the
guiding point consistent with its control intention as the target point of UGV trajectory track-
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ing to realize the teleoperation. Compared with the traditional remote-control method, this
human–machine cooperative control mode transforms the operator’s high-frequency con-
trol behavior (e.g., steering, accelerating and braking actions) into low-frequency decision-
making behavior, which further decouples the operator from the UGV, thus reducing the
workload of the operator and the sensitivity of the control loop to delay.

In the remote control mode, all motion control commands are input by the operator.
This means that the operator needs to train for a while to adapt to the handling characteris-
tics and delay effects of the UGV. When the controlled vehicle changes, the operator also
needs to be retrained. In comparison, the human–machine cooperative control method is
weakly correlative with the vehicle type. The operator is not concerned with the motion
control of the vehicle. By using this method, the operator can obtain acceptable teleopera-
tion ability after a few elements of training. Therefore, we believe that this method should
have broad application prospects.

The limitation of the method proposed in this paper lies in the fact that the grid
occupied state is not considered when generating the trajectory line, and there is a risk
of collision with obstacles in extreme cases. Therefore, the trajectory cluster-generating
method will be studied in following research. The safe trajectory will be selected from the
trajectory cluster for UGV tracking.

Since the onboard camera of the UGV does not have night vision ability, images
taken in the night environment cannot be used for the operator to make decisions, so
current research is only based on the daytime environment. In following research work,
we will choose a camera with low illumination imaging ability to carry out the research on
human–machine cooperative teleoperation in the night environment.
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