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Abstract: For accurate object vehicle estimation using radar, there are two fundamental problems:
measurement uncertainties in calculating an object’s position with a virtual polygon box and latency
due to commercial radar tracking algorithms. We present a data-driven object vehicle estimation
scheme to solve measurement uncertainty and latency problems in radar systems. A radar accuracy
model and latency coordination are proposed to reduce the tracking error. We first design data-driven
radar accuracy models to improve the accuracy of estimation determined by the object vehicle’s
position. The proposed model solves the measurement uncertainty problem within a feasible set for
error covariance. The latency coordination is developed by analyzing the position error according to
the relative velocity. The position error by latency is stored in a feasible set for relative velocity, and
the solution is calculated from the given relative velocity. Removing the measurement uncertainty
and latency of the radar system allows for a weighted interpolation to be applied to estimate the
position of the object vehicle. Our method is tested by a scenario-based estimation experiment to
validate the usefulness of the proposed data-driven object vehicle estimation scheme. We confirm
that the proposed estimation method produces improved performance over the conventional radar
estimation and previous methods.

Keywords: object vehicle estimation; radar accuracy; data-driven; radar latency; weighted interpola-
tion; autonomous vehicle

1. Introduction

Autonomous driving technologies such as collision risk decision, path planning with
collision avoidance, lane change systems, and advanced driver assistance systems (ADASs)
are attracting attention [1–4]. These research areas are becoming critical not only for
research but also to bring autonomous vehicles to public roads. To improve active safety
systems for autonomous driving, it is necessary to accurately estimate the relative position
of surrounding vehicles [5,6]. Object vehicle estimation research incorporates various types
of sensors, such as radio detecting and ranging (radar), light detection and ranging (LiDAR),
and cameras. Among the various sensors, radar is a reliable vehicle sensor that measures
the motion of surrounding vehicles. Its advantages lie in its commercial availability and
robustness against environmental variation. Radar sensors have been applied in ADASs
functions such as blind-spot detection (BSD) and adaptive cruise control (ACC).

However, radar has intrinsic measurement uncertainties in calculating an object vehi-
cle’s position and velocity as it uses a virtual polygon box with only partial information [7–9].
To address this limitation, various filters have been applied to improve radar accuracy.
In radar applications, the Kalman filter (KF) and the interacting multiple model (IMM)
were compared in [10]. A particle filter [11] and an unscented Kalman filter (UKF) [12]
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for nonlinear systems have been proposed for target tracking using a radar sensor. For
reasonable object tracking of a radar system, it has been found that the multiple model
approach provides better filtering performance than a single model [13]. Radar tracking
performance is improved through IMM [14] and convex interpolation [15] by using dif-
ferent radar accuracies depending on the object vehicle position [16]. In [9], the authors
proposed an IMM algorithm using extended Kalman filters (EKF) for multi-target state
estimation. In [17], the performances of the IMM and Viterbi algorithm were investigated
and compared through radar tracking and detection. A self-adapting variable structure
multiple model (VS-IMM) estimation approach combined with an assignment algorithm
was presented in [18] for tracking ground targets with constrained motion. Motion un-
certainties due to variable dynamic driving situations were handled using the VS-IMM.
In [19], the authors presented a data-driven object tracking approach by training a deep
neural network to learn situation-dependent sensor measurement models.

Another approach to accurate object tracking using radar adds sensors such as a
camera and LiDAR. Research fusing radar and camera sensors is described in [20]. In [21],
the authors used visual recognition information to improve tracking model selection, data
association, and movement classification. An algorithm to estimate the location, size, pose,
and motion information of a threat vehicle was implemented by fusing the information
from a stereo-camera and from millimeter-wave radar sensors in [22]. In [23], the authors
proposed a fusion architecture using radar, LiDAR, and camera for accurate detection and
classification of moving objects. In [24], heuristic fusion with adaptive gating and track to
track fusion were applied to a forwarding vehicle tracking system using camera and radar
sensors, and the two algorithms were compared. In [25], the authors presented an EKF that
reflects the distance characteristics of LiDAR and radar sensors. In [26], the fusion of radar
and camera sensor data with a neural network was studied to improve object detection
accuracy. In [27], the object was identified and detected using vision and radar sensor data,
and YOLOv3 architecture. However, the sensor fusion approach requires a larger number
of sensors. Although the estimation performance can be improved through multi-sensor
applications, it increases the vehicle’s cost. In addition, latency occurs due to the increase
in computational cost for sensor fusion [28].

As stated above, by applying a filter without an additional sensor, accurate tracking is
possible without increasing the cost. However, radar latency (processing delay) increases
with the use of a filter [16,29,30]. This latency increases further depending on the tracking
algorithm used (e.g., point cloud clustering, segmentation, single sensor tracking, multi-
lateration, classification, and filtering) in vehicle applications [7,14,31,32]. In this regard,
the radar sensor was evaluated for the effect of processing latency on the efficiency of
detecting, acquiring, and tracking a target [29]. In [33], the authors noted that it is impor-
tant for delays in the measurement (i.e., the time elapsed since a physical event occurs
until it is output to the application) and accurate data on the position of other vehicles
in future driver assistance systems. In [34], the authors proposed a classification method
based on deep neural networks using automotive radar sensors in consideration of latency.
Eventually, this processing latency causes a tracking error depending on the relative speed
in autonomous driving applications. Therefore, a person who designing an upper-level
application should consider processing latency when developing object vehicle estimation
for driving safety.

The objective of this paper is to propose an object vehicle estimation scheme to improve
radar accuracy. The scheme develops a data-driven object vehicle estimation scheme that
can consider radar accuracy within a feasible set to solve the measurement uncertainty and
latency problems. To resolve these problems, we first develop radar accuracy models by
comparing the radar and ground truth data divided in each zone. Each zone’s models are
selected depending on where the object vehicle is located. We then solve the radar latency
problem according to the relative velocity. The position error for the relative velocity data
sets is stored in each vertex, and we find the solution in the feasible set for these data
sets. By using the developed radar accuracy models with latency coordination, weighted
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interpolation is applied to estimate the object vehicle. This approach will allow the radar
accuracy models to remove the measurement uncertainty and latency within the feasible
set. We verify the utility of the proposed method through scenario-based experiments.
The contribution of this paper is the developmetn of an accurate object vehicle estimation
scheme that solves the radar measurement uncertainty and latency problems.

The remainder of this paper is organized as follows. Section 2 describes two problems
to improve object vehicle estimation accuracy. The data-driven radar accuracy modeling
with an occupancy zone is described in Section 3. In Section 4, weighted interpolation
is applied to object estimation by considering error characteristics and latency. Section 5
describes the analysis and results by applying the proposed method to vehicle applications
and mentions future work. Section 6 presents concluding remarks.

2. Problem Statement

The problem we are interested in is object vehicle estimation by considering a radar’s
measurement uncertainty and latency, as shown in Figure 1. There are two fundamental
problems in accurate object vehicle estimation: measurement uncertainties in calculating
an object’s position with a virtual polygon box and latency due to the tracking algorithm
of a commercial radar. To resolve these problems, we develop a data-driven object vehicle
estimation scheme using a radar accuracy modeling method with weighted interpolation.
The radar accuracy modeling is designed using an error model between the radar and the
ground truth data, and taking into account the relative speed. We are also interested in
demonstrating the utility of our method through experiments.

Ego vehicle

x

y

Interpolated point on object vehicle surface by radar

Real center point of vehicle rectangle (ground truth)
Center point of vehicle rectangle by radar

Object vehicle rectangle by radar 

Relative distance between radar and interpolated point 

Interpolated point on object vehicle surface (ground truth)

Straight line connecting the radar and center point  

Obj #1

Lateral 
position error

Longitudinal
position error

Radar

Object vehicle rectangle (ground truth) 

Measurement uncertainty

Latency

Velocity vector

Longitudinal
position error

Relative velocity vector between ego and object vehicle

Obj #2

Point cloud by radar

Figure 1. Example of object vehicle estimation by radar: the measurement uncertainty occurs due
to insufficient point cloud and classification errors. This error occurs because the radar estimation
algorithm (e.g., point cloud clustering, segmentation, single sensor tracking, multilateration, clas-
sification, and filtering) can only estimate an object vehicle’s size with a virtual polygon box with
partial information [7,8,14,35]. Furthermore, the latency that causes position errors occurs due to the
tracking algorithm of a commercial radar. The error caused by the latency becomes larger depending
on the relative velocity.
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These problems are almost undetectable and unknown to those who develop high-
level applications such as ADASs. Therefore, we propose a scheme modeling these unde-
tectable and unknown error characteristics as noise characteristics based on each divided
zone and design a data-driven object estimation scheme. In addition, we propose a method
to reduce errors that occur in radar algorithms by developing data-driven latency coordi-
nation. We use the relative position and velocity, which are the only available data to the
person designing an upper-level application.

3. Data-Driven Radar Accuracy Modeling

To improve radar accuracy, we first developed a model. Previous research analyzing
radar accuracy [14,15] found that the error characteristics differ according to the mounting
angle and detection area of the radar observing the object [16]. Since the radar error
differs depending on the angle and the detection area, it is difficult to obtain an error
characteristic solution for a radar’s detection area. Therefore, we model these unknown
error characteristics so that an error has the same value in each of the divided representative
detection zones because the part of the object vehicle detected by the radar is similar to
other object vehicles in the same detection area. In other words, each radar unit has a
representative model for each zone. The measurement uncertainty of radar can be reduced
by using an occupancy zone with the error characteristics. However, there is an error
according to the object vehicle’s velocity due to the radar’s latency (the results of the
analysis of the experimental data are shown in Section 4). This is caused by the object
tracking algorithm of commercial radars [14,29]. This is a problem for anyone designing
high-level applications for radar.

Therefore, we constructed an example of occupancy zones, as shown in Figure 2,
taking into account the detectable area of the radar, where {X, Y} is the global coordinate
frame, {x,y} is the ego vehicle coordinate frame, and ṙ is the relative vehicle speed. The
example of a divided occupancy zone configuration is divided by the x-axis (considering
a multiple of the overall vehicle length), the y-axis (considering lane spacing), and the
z-axis (considering experimental data analysis) based on the vehicle coordinate frame.
Here, the z-axis is divided by data sets for each relative speed. The center point of each
divided black quadrangle zone becomes each vertex of the red quadrangle (feasible set
for error covariance). Then, the error characteristics analyzed in each zone are stored
in each vertex. The radar accuracy in each divided occupancy zone detected by radar
sensors is analyzed by comparing radar sensor data with ground truth (GT), as shown in
Figure 1. An interpolated point on the object vehicle surface is calculated by a straight line
connecting the ego vehicle’s radar and the center point of the virtual polygon box of the
object vehicle. Here, the real center point (ground truth) is calculated from the differential
global positioning system (DGPS) mount point. Then, we can obtain the longitudinal and
lateral position errors by comparing the interpolated point and the center point.

The model for object vehicle estimation can be expressed as a discrete-time state-
space model assuming that the vehicle is moving with constant relative velocity in the
longitudinal and lateral directions, respectively [36]. With the state xk =

[
rx ry ṙx ṙy

]T ,
the state-space model is defined as

xk+1 = Φxk +(m,n,s)wk,

yk = Cxk +(m,n,s)vk
(1)

where

Φ =


1 Tc 0 0
0 1 0 0
0 0 1 Tc
0 0 0 1

,

(m,n,s)wk ∼ N (0,(m,n,s)Qk),

(m,n,s)vk ∼ N (0,(m,n,s)Rk)

(2)
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with
m ∈ [1, 2, · · · , M], n ∈ [1, 2, · · · , N], s ∈ [1, 2, · · · , S] (3)

where yk is the output variables at the measurement instant k, (m,n,s)wk is the system noise,
(m,n,s)vk is the radar measurement accuracy, C is the identity matrix, rx is the longitudinal
relative distance, ry is the lateral relative distance, ṙx is the longitudinal relative velocity, ṙy
is the lateral relative velocity, m is the longitudinal relative positional zone index, n is the
lateral relative positional zone index, s is the zone index for relative velocity, M is the zone
number of the X-axis, N is the zone number of the Y-axis, and S is the zone number of the
Z-axis.
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Figure 2. Example of a divided occupancy zone configuration: the occupancy zone is created by taking into account the
detectable area of the radar, which is divided by the x-axis and y-axis based on the vehicle coordinate frame. The z-axis is
divided by data sets for relative velocity. The center point of each divided black quadrangle zone becomes each vertex of
the red quadrangle (feasible set for error covariance). Then, the error characteristics analyzed in each zone are stored in
each vertex.

Assumption 1. Radar measurement accuracy (m,n,s)vk has a zero-mean white Gaussian distri-
bution property in each zone [37]. The radar measurement accuracy covariance (m,n,s)Rk is a
value determined by the characteristics of the sensor. The radar measurement accuracy covariance
(m,n,s)Rk in each zone is set based on the error characteristics. The radar sensor is calibrated at each
zone, such that the mean value of the position error becomes zero. Therefore, the zero-mean radar
error becomes

e =
[
rx, ry, ṙx, ṙy

]T
RADAR −

[
rx, ry, ṙx, ṙy

]T
GT

(4)

and its covariance is
E
[
eeT] ∼ N (0,(m,n,s)Rk) (5)

where subscript GT represents the ground truth data and subscript RADAR represents the calibrated
radar data. Since it is not easy to obtain radar accuracy covariance values according to driving
situations, we experimentally applied covariance values based on the method presented in [38].
In this regard, the experimental analysis results with the calibrated radar accuracy are shown in
Section 4.

Remark 1. By adjusting the system noise covariance (m,n,s)Qk through the KF in which the previ-
ously set radar measurement accuracy covariance (m,n,s)Rk is used, estimation errors approaching
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the minimum value in each zone are obtained [39]. Then, we set the system noise covariance
(m,n,s)Qk for each zone.

4. Object Tracking with Weighted Interpolation
4.1. Estimation with Error Characteristic

The weighted interpolation in the occupancy zone is applied to state estimation by
considering the error characteristics. The weighted interpolation method is used to solve
the ambiguity problem of moving from a zone to another zone caused by dividing the
occupancy zone. To apply weighted interpolation, we create a feasible set fc denoted by
a red quadrangle relative to the center point of each black quadrangle zone in Figure 2.
The center point of each zone is the vertex of the feasible set fc for error covariance, and
fc takes into account the lane width. The data-driven covariance R∗ calculated in the
previous section is stored at each zone’s vertex. This process is carried out offline using
data analyzed in advance.

In online computation, the object vehicle positions x and y, and relative speed ṙ are
given by the radar sensor. Then, the data-driven covariance stored at the vertex is applied
to state estimation. The three-dimensional parameter vector Pc =

[
x y ṙ

]T ∈ R3 can be
represented in the polytopic form [15,40,41]:

Pc = Vcξc (6)

where
ξc =

[
ξc,1 · · · ξc,8

]T ∈ R8 (7)

denotes a weighted interpolation parameter vector satisfying ∑8
q=1 ξc,q = 1, ξc,q ≥ 0, and

Vc =
[
Pc,1 · · · Pc,8

]
∈ R3×8 (8)

denotes each zone’s vertices. When selecting the each zone’s vertices Vc, we chose the
eight vertices closest to the given x, y, and ṙ measured by the radar in the feasible set fc, as
shown in Figure 2. Then, we can get

ξc,q =
Lc,sum/Lc,q

∑8
i=1(Lc,sum/Lc,i)

, q = 1, · · · , 8 (9)

where Lc,sum = ∑8
i=1 Lc,i in which Lc is the Euclidean distance between each vertex and the

given point (x, y, ṙ) measured by the radar. Using the interpolation parameters with the
parameter vector at eight vertices, we can find an approximate data-driven covariance Ro

from the precomputed data-driven covariance R∗(Vc) calculated from Assumption 1 at
each vertex. The approximate data-driven covariance Ro is expressed as follows:

Ro =
[
R∗(Pc,1) · · · R∗(Pc,8)

]
ξc. (10)

From the KF using Ro, we can obtain the estimated object vehicle position x̂ and
ŷ [39,42]. This approach satisfies the computational complexity because it does not con-
sider all the zones’ vertices. Here, we describe covariance related to the position for the
object vehicle estimation; the covariance related to the velocity can be referred to [14] in a
similar way.

4.2. Latency Coordination

To solve the aforementioned latency problem, weighted interpolation is applied to
the state estimation similar to the previous subsection. As stated above, a radar’s latency
varies depending on the relative velocity. The velocity region is divided, and the average
position error by latency that occurred in each velocity set is stored in each vertex. Detailed
data analysis is provided in Section 4.
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The object vehicle longitudinal relative velocity ṙx and lateral relative velocity ṙy are
given by the radar sensor. Then, the position error average E∗l by latency in each velocity
region stored at the vertex is applied to the state estimation. Two-dimensional parameter
vector Pl =

[
ṙx ṙy

]T ∈ R2 can be represented in the polytopic form:

Pl = Vlζl (11)

where
ζl =

[
ζl,1 ζl,2

]T ∈ R2 (12)

denotes the weighted interpolation parameter vector satisfying ∑2
p=1 ζl,p = 1, ζl,p ≥ 0, and

Vl =
[
Pl,1 Pl,2

]
∈ R2×2 (13)

denotes the vertices. When selecting two vertices from the given relative velocities ṙx and
ṙy measured by the radar, we chose two vertices that matched the relative velocity data set
from the viable set fl . Then, we can get

ζl,p =
Ll,sum/Ll,p

∑2
j=1(Ll,sum/Ll,j)

, p = 1, 2 (14)

where Ll,sum = ∑2
j=1 Ll,j in which Ll is the Euclidean distance between each vertex and

the given relative velocities point (ṙx, ṙy) measured by the radar. Using the interpolation
parameters given the parameter vector for the relative velocity at two vertices, we can find
an approximate position error from the interpolation between the precomputed average
position error E∗l (Vl) ∈ R2×2 at each vertex. The approximate position error Eo

l ∈ R2 is
expressed as follows

Eo
l =

[
E∗l (Pl,1) E∗l (Pl,2)

]
ζl . (15)

Using the precomputed position error average E∗l (Vl) at each vertex, we can calculate

the approximate position error Eo
l =

[
xo yo]T for a given relative velocity ṙx and ṙy. The

approximate position error Eo
l , and x̂ and ŷ calculated by KF in the previous subsection are

directly involved in the determination of estimated approximate position x̂o and ŷo:

x̂o = x̂− xo, ŷo = ŷ− yo. (16)

Then, estimated approximate position x̂o and ŷo are applied to object vehicle tracking.

5. Application

We experimentally validated how useful the proposed data-driven weighted interpo-
lation algorithm is when applied to object vehicle estimation of an autonomous vehicle.

5.1. Experimental Setup

For the experimental setup shown in Figure 3, the ego and object vehicles used were
Genesis DH and Tucson IX from Hyundai, as shown in Figure 4, respectively. The rear left,
and rear right view radars connected by a master and slave system with radar local control
area network (CAN) were located on both sides of the rear of the ego vehicle and were
rotated 23 degrees outward.
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Figure 3. Hardware configuration of the experimental setup.

(a)

(b)

Figure 4. Vehicles used for experiment: (a) ego vehicle: Genesis DH from Hyundai and (b) object
vehicle: Tucson IX from Hyundai.

The radar used 24 GHz BSD from Mando-Hella Electronics Corp., in Incheon, South
Korea, the update sampling rate was 50 ms, and the distance detect range was up to 70 m.
The ground truth data were collected at an update period of 10 ms using DGPS from
OxTS (RT-2002, RT-Range, global navigation satellite system (GNSS) antenna, RT-XLAN,
and RT-Base) with its real-time kinematic (RTK) positioning service (1σ = 0.01 m). We
collected the object vehicle’s ground truth data through the RT-Range and RT-XLAN Wi-Fi.
Radar and DGPS data were collected through MicroAutoBox from dSPACE, analyzed with
Vector’s CANoe with VN1630, and evaluated using MATLAB/Simulink. These data were
given by the ego and object vehicle driven manually on a high-speed circuit in the Korea
Automobile Testing & Research Institute (KATRI) in South Korea, as shown in Figure 5.
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Figure 5. Test road: Korea Automobile Testing & Research Institute (KATRI).

5.2. Radar Accuracy Analysis

The radar accuracy was analyzed by the occupancy zone, as shown in Figure 6. The
radar accuracy was analyzed by comparing the DGPS and radar data in each divided
occupancy zone. Each zone shows the probability density function contour of the normal
distribution based on DGPS, and blue (10 ≤ ṙ ≤ 30 km/h), black (−10 ≤ ṙ < 10 km/h),
and red (−30 ≤ ṙ < −10 km/h) colors were plotted for each speed data set. It was
found that the radar accuracy was different depending on the relative distance and speed.
The error was increased as the relative distance and relative velocity between the ego
vehicle and the object vehicle increased. Depending on the relative distance, measurement
uncertainties by radar occurred [14,16]. We collected data through various real driving
situations. The radar accuracy analysis was based on a total of 193,324 samples In this
regard, the longitudinal relative velocity between the two vehicles was about −30 to
30 km/h.

Remark 2. If the amount of sampled calibrated sensor data increases, the distribution of the
measurement noise becomes the Gaussian distribution, as shown in Figure 6. Therefore, the system
has better performance with more calibrated sensor data. Here is a reference if the measurement
noise is not Gaussian [43].

The longitudinal position error, which increases with relative velocity, was due to the
latency of the radar, as shown in Figure 7. The average position error E∗l of each velocity
data set was analyzed as follows:

(i) The average position error of the data set (−30 ≤ ṙx < −20 km/h) is 1.968 m.

(ii) The average position error of the data set (−20 ≤ ṙx < −10 km/h) is 0.709 m.

(iii) The average position error of the data set (−10 ≤ ṙx < 10 km/h) is 0.018 m.

(iv) The average position error of the data set (10 ≤ ṙx < 20 km/h) is −0.511 m.

(v) The average position error of the data set (20 ≤ ṙx ≤ 30 km/h) is −1.793 m.

The calculated position error average by latency was stored at each vertex of the
velocity regions. Based on the analysis results, the position error and covariance values of
each zone’s error were obtained for the filter design.
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Figure 6. Data-driven radar accuracy analysis in the divided occupancy zone: each zone shows the probability density function contour (1 σ, 2 σ, and 3 σ) of the normal distribution for
radar’s position error based on differential global positioning system (DGPS). Contour lines are shown in blue, black, and red for each speed data set.
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Figure 7. Histogram of the radar relative distance error depending on the vehicle speed.

The point to note here is that Figures 6 and 7 showed different results from what
is generally understood, and therefore, careful attention is required. The radar’s point
cloud data is accurate in the longitudinal direction and inaccurate in the lateral direction.
This is certain in radar’s row data. However, providing a cloud data point to users
makes it difficult for upper-level users to use radar data. Therefore, commercial radar
represents an object as one tracking point data through an estimation algorithm (e.g.,
point cloud clustering, segmentation, single sensor tracking, multilateration, classification,
and filtering) [7,8,14,35]. Therefore, there is latency (processing delay). The greater the
difference in speed between the ego vehicle and the object vehicle, the greater the latency,
and in a vehicle application with a velocity in the longitudinal direction, it causes a
longitudinal error. As a result of this, unlike the general idea that the relative longitudinal
distance of the radar is more accurate than the relative lateral distance, the experimental
data with DGPS shows that the longitudinal direction is more inaccurate than the lateral
direction. This means that, as the relative speed increases, the longitudinal error increases.
Therefore, anyone designing an upper-level application needs to increase the radar accuracy.
This is why we used object vehicle estimation with radar accuracy modeling.

Remark 3. The latency of the relative lateral velocity is insignificant so it is not considered [44]. It
can be calculated similarly to the method calculating the position error by latency.

5.3. Scenario-Based Experimental Result

An object vehicle tracking scenario is constructed using data-driven object vehicle
estimation with a radar sensor. For a comparative study of object vehicle tracking, we
collected radar data while the object vehicle was driving in the detectable area of the rear
left radar of the ego vehicle. As stated above, we determined the error characteristics in the
occupancy zone by analyzing radar accuracy. Then, the approximate object estimation data
were obtained by the data-driven weighted interpolation process using error characteristics
data. When using weighted interpolation, the interpolation parameter vector was designed
to satisfy 0 < ε ≤ ξc,q and 0 < ε ≤ ζl,p for numerical stability, where ε and ε are small
values. The proposed process improves the estimation performance of the commercial
radar and the previously studied interpolation method [15].
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The comparative results of the tracking performance are shown in Figure 8. The
proposed weighted interpolation scheme improved the object vehicle tracking performance
by reducing the estimation error. The scenario-based relative movement of object tracking
was plotted in the top view. The proposed weighted interpolation scheme’s performance
was similar to that of DGPS. On the other hand, object tracking using a commercial radar
had a larger tracking error than the proposed method due to measurement uncertainty and
radar latency. Compared to DGPS, the root mean square error (RMSE) of the commercial
radar and the proposed method are 3.04 m and 1.29 m in the longitudinal position and
0.57 m and 0.32 m in the lateral position, respectively. When estimated with a commercial
radar, there is a longitudinal position error of about −5 m and a lateral position error of
about −1.5 m between −43 m and −38 m. This is because the latency significantly affects
the longitudinal position error. This error is also affected by the measurement uncertainty
and relative acceleration. The influence of relative acceleration will be described in detail
in the next paragraph. In addition, there is a lateral position error of about 1 m between
−17 m and −15 m. This error is due to the influence of measurement uncertainty. In
this regard, Figure 9 shows object tracking in the 3D view, including the relative velocity.
The object vehicle changed lanes while increasing speed to overtake the ego vehicle. The
proposed method outperforms the conventional radar estimation method and the previous
interpolation method [15]. This is because the relative speed was not considered in the
previous interpolation method. In this regard, the position error is covered in more detail
in the next subsection, with Figures 10–14. The proposed weighted interpolation scheme
reflects the average position error and covariance for the relative speed, even when there
is speed variation. We observed that the proposed weighted interpolation scheme is
robust against speed variation and that it outperforms the tracking performance of the
commercial radar.

Figure 8. Scenario-based relative movement of object estimation from the top view: when estimated with a commercial
radar, the longitudinal and lateral position errors (between −37 and −33 m) and lateral position error (between −17 and
−15 m) occurred due to latency and measurement uncertainty.

Figure 9. Scenario-based relative movement of object estimation with relative speed in a 3D view.
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Acceleration area 
(Radar)

Acceleration area 
(Proposed method)

Acceleration area 
(Interpolation [15])

Figure 10. Scenario-based relative movement for relative longitudinal distance and relative speed replotted from Figure 9:
there is an acceleration area because the object vehicle changes lanes with increasing speed to overtake the ego vehicle.
After that, the relative speed decreases.

Longitudinal 
acceleration (Radar)

Longitudinal acceleration 
(Proposed method)

Longitudinal acceleration
(Interpolation [15])

Figure 11. Longitudinal distance error for scenario-based object estimation: the proposed method outperforms the
conventional radar estimation method and the previous interpolation method. However, there is a longitudinal error in all
methods due to latency for longitudinal acceleration in the acceleration area.

Lateral acceleration
(Radar)

Lateral acceleration
(Proposed method)

Lateral acceleration
(Interpolation [15])

Figure 12. Lateral distance error for scenario-based object estimation: the proposed method outperforms the conventional
radar estimation method and the previous interpolation method. When measured with radar, the lateral position error is
heavily influenced by the measurement uncertainty. However, there is a lateral position error in all methods due to latency
for lateral acceleration via the lane change motion of the object vehicle.
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Figure 13. Histogram of the longitudinal distance error for scenario-based object estimation: using
the weighted interpolation method improves the estimation performance statistically. However, there
is a longitudinal error due to latency for longitudinal acceleration in the acceleration area.

Figure 14. Histogram of the lateral distance error for scenario-based object estimation: using the
weighted interpolation method improves the estimation performance statistically. However, there
is a lateral position error due to latency for lateral acceleration via the lane change motion of the
object vehicle.

5.4. Performance Analysis with Limitation

The proposed method outperforms the conventional radar estimation method and the
previously researched interpolation method [15]. The performance for the scenario-based
experimental result is shown in Figures 10–14. Figure 10 represents the relative longitudinal
distance (x-axis) and relative velocity (y-axis) from Figure 9. There are acceleration areas
(relative speed increase area) for radar, the previously researched interpolation method, and
the proposed method. Figures 11 and 12 show the longitudinal and lateral position errors
in terms of the x-axis position. The proposed method has a smaller position error than the
conventional radar estimation method and the previous interpolation method compared to
DGPS. Previously researched interpolation methods introduce measurement uncertainty
and latency errors for speed. This is because speed is not considered. When measured
with radar, the lateral position error is heavily influenced by the measurement uncertainty.
Figures 13 and 14 show histograms of the relative position error for longitudinal and lateral,
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respectively. By using the proposed method, longitudinal errors due to latency and lateral
errors due to measurement uncertainty are reduced.

However, there is a lateral position error in all methods due to latency for lateral
acceleration via the lane change motion of the object vehicle. The estimation performance is
improved by using the weighted interpolation method, but there is a limitation to the pro-
posed method. The limitation arises because radar accuracy modeling is used only as the
constant relative velocity model (2) and because relative acceleration is not considered. The
longitudinal position error increases in the acceleration area, as shown in Figures 11 and 13.
This is confirmed to be the effect of latency on relative acceleration. The position error
was reduced outside of the acceleration area due to the proposed method. Since the object
vehicle’s lane change in the acceleration area is also performed, the lateral position error in-
creases as the relative lateral acceleration increases, as shown in Figures 12 and 14. We have
confirmed that the position error occurs in radar, the previously researched interpolation
method, and the proposed method due to the influence of relative acceleration.

As future work, research should be conducted to reduce the effects of relative acceler-
ation. The effect of relative acceleration can be reduced by using the relative acceleration
model. In this regard, we will further consider the acceleration model using multiple mod-
els and expect to improve the collision risk performance using accurate radar estimation.

6. Conclusions

This paper proposed a data-driven object vehicle estimation scheme to solve the radar
system accuracy problem. For object estimation considering the radar accuracy, we first
developed an accuracy model that considers the different error characteristics depending
on the zone. The accuracy model was used to solve the measurement uncertainty of
radar. We also developed latency coordination for the radar system by analyzing the
position error depending on the relative velocity. The developed accuracy modeling and
latency coordination methods were applied to object vehicle estimation using weighted
interpolation. The utility of the proposed method was validated through a scenario-based
estimation experiment. The proposed data-driven object vehicle estimation outperformed
the commercial radar algorithm and the previously researched interpolation method. The
proposed method is expected to improve object vehicle estimation accuracy. Future work
is expected to use an additional acceleration model as multiple models to reduce the effect
of relative acceleration. This achievement is critical for autonomous driving technology
for developing a high-level controller for functions such as collision risk decision, path
planning with collision avoidance, and lane change system.
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