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Abstract: Constantly changing electricity demand has made variability and uncertainty inherent
characteristics of both electric generation and cellular communication systems. This paper develops
an online learning algorithm as a prescheduling mechanism to manage the variability and uncertainty
to maintain cost-aware and reliable operation in cloud radio access networks (Cloud-RANs). The
proposed algorithm employs a combinatorial multi-armed bandit model and minimizes the long-
term energy cost at remote radio heads. The algorithm preschedules a set of cost-efficient energy
packages to be purchased from an ancillary energy market for the future time slots by learning both
from cooperative energy trading at previous time slots and by exploring new energy scheduling
strategies at the current time slot. The simulation results confirm a significant performance gain of
the proposed scheme in controlling the available power budgets and minimizing the overall energy
cost compared with recently proposed approaches for real-time energy resources and energy trading
in Cloud-RANs.

Keywords: cloud radio access network; combinatorial multi-armed bandit; online learning; energy
trading

1. Introduction

Denser site deployment has been contemplated as a key enabling technology that
can support the mushrooming of mobile data traffic and meet the demands of high-data-
rate communications for next-generation wireless communication networks [1]. In con-
trast, conventional base stations (BSs) consume 80% of the electricity [2], as, in the BSs,
all the radio and baseband processing functions are coordinated in the second-generation
(2G) radio access network (RAN) architecture. Subsequently, the radio and baseband
processing functions are divided into two separate nodes, i.e., remote radio head (RRH)
and baseband processing unit (BBU), in the development of the third-generation (3G) and
fourth-generation (4G) distributed radio access network (Distributed-RAN) architecture.
Nevertheless, Distributed-RAN is incompetent in dealing with tremendous growths in
data traffic to deliver high-bandwidth, low-latency, and cost-efficient services [3], and is
incapable of supporting the demands of the quality of expectation (QoE) and quality of
service (QoS) [4] for the fifth-generation (5G) of mobile communication systems. Cloud
radio access networks (Cloud-RANs) have been regarded as a promising solution, owing to
their superiority in reducing the capital expenditure (CAPEX) and operational expenditure
(OPEX) of the network operators with the centralization and cloudification of BBUs and
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their corresponding RRHs. Cloud-RANs can solve the limitations of the Distributed-RAN
architecture in terms of expanding the network scalability, simplifying network manage-
ment and maintenance, optimizing network performance, reducing energy consumption,
and enhancing spectrum efficiency [3]. In a Cloud-RAN architecture, the conventional BSs
are physically detached into two parts: BBUs, which are grouped as a cloud processing
unit (CU) for designing all coordination and energy trading strategies, and the remaining
RRHs, which are in charge of all radio frequency (RF) operations [5]. Even beamforming
is designed in the CU; RRHs consume an enormous portion of electricity to amplify and
transmit RF signals to users in order to satisfy their data-rate and energy requirements.
However, due to the large number of densely deployed RRHs, with each serving a time-
varying number of users in a highly dynamic wireless environment, the amount of energy
demanded by the wireless network operators from the energy generation (EG) plants will
be highly variable and statistically unknown over different times of the day. Equipping the
RRHs with green energy technology that harvests energy from natural sources, such as
wind and sunlight, to power next-generation mobile communication networks can signifi-
cantly contribute to the reduction of the global carbon footprint [6]. However, the uncertain
nature of renewable energy supply coupled with dynamic user energy demand necessitates
the integration of green energy supply with the conventional grid to maximally benefit the
network operator [7–15]. These random variations in electricity demand increase the OPEX
of the energy generation process because the EG plants must maintain an instantaneous
balance between the aggregate demand for electricity and the total power generated as
a whole [7]. Hence, the operators need to routinely control the operation of the wireless
network based on the well-known operating characteristics of the conventional EG plants.
Deviation from the operating points of the EG plants to provide compensating variations
in order to maintain the balance increases the total OPEX of the EG plants, which will,
in turn, reflect on the OPEX of the network operators.

The operational time frame of the grid can be generally divided into regulation, load
following, and unit commitment. During each one of these time frames, suitable reserved
energy sources are dispatched to correct the imbalance between the generation and the
demand. The EG sources reserved for load following, which are deployed on a slower
time scale than the regulating frames, are used to accommodate for causes of variability
and uncertainty, e.g., due to traffic energy demand and renewable energy generation,
during the regular operation of the grid. Although the ramping and energy needed to
follow the variations and uncertainties can be supplied by the ancillary energy markets,
the insufficient ramping capability of the base low-cast conventional power plants can
significantly inflate the price of the energy dispatched by expensive peaking EG units with
fast ramp rates. Using conventional regulation units to compensate for uncertain abrupt
ramps in energy demand is among the most expensive services. Hence, efficient control
mechanisms are required to be developed for the flexibility in the EG fleet in order to
maintain their cost-aware reliable operation under variability and uncertainty.

This paper focuses on designing an intelligent control mechanism for the steep ramps
in energy demand in wireless cellular networks to minimize the long-term energy cost. We
introduce an online learning approach for price-aware energy procurement at RRHs by
supplying the load-following EG reserves within advance energy trading offers based on
possible forthcoming variations and uncertainties in the energy demand. As the energy
demand varies from low to peak values during different hours, the proposed strategy is
designed to avoid paying for high peak-time energy cost by purchasing energy in advance
at a lower off-peak price to reduce the OPEX. The proposed approach anticipates the
future energy demand (surplus) at each RRH and prepares for purchasing (selling) the
energy from the hour-ahead/day-ahead market (to the grid) before the actual demand
(surplus) emerges. In this way, the EG units will have more time to regulate their electricity
generation process according to the demand with slower ramp rates and, consequently,
at lower prices.
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1.1. Related Works

The authors in [7] first investigated the energy efficiency problem in a coordinated
multipoint (CoMP) system powered by a smart gird. They formed the problem formulation
for the proposed system as a simplified two-level Stackelberg game and concluded that
such a design significantly reduces the OPEX. Equipping the end-user with renewable
energy devices and accounting for the varying electricity price, the authors in [8] developed
an energy trading algorithm to maximally benefit the network operator while satisfying
the energy demand of end-users in a grid/renewable energy hybrid network. To take
advantage of two-way energy trading with the grid and cooperative transmission, the au-
thors in [9] proposed an aggregator-aided joint communication and energy cooperation
strategy in the CoMP networks powered by both grid and renewable energy. In [10], the au-
thors designed a joint real-time energy trading and cooperative transmission mechanism
based on convex optimization techniques in a smart-grid-powered CoMP system. In [11],
the authors studied energy trading in a more general setting, including trading among a
set of storage units and the grid from the perspective of noncooperative game theory, and
they proposed an algorithm that achieves at least one Nash equilibrium point. By assum-
ing the availability of varying hourly profiles of the energy demand of base stations and
renewable generation as well as the day-ahead knowledge of hourly varying electricity
prices, the authors of [12] minimized the electricity bill in cellular base stations powered
jointly by a smart grid and locally harvested solar energy. The authors of [13] integrated
the CoMP system with a simultaneous wireless information and power transfer (SWIPT)
concept and proposed a joint energy trading and partial cooperation design based on
sparse beamforming, accounting for limited-capacity backhaul links in a green Cloud-RAN
by minimizing the instantaneous energy cost without integrating reinforcement learning.
The authors of [14] investigated the optimal power flow problem for smart micro-grids in
a distributed manner and adopted an alternating direction method of multipliers to ensure
the global optimum of the semidefinite programming (SDP) problem. It can be perceived
that an abstract idea of the combinatorial multi-armed bandit (CMAB) approach was firstly
tackled in [15] by introducing two iterative energy trading algorithms to search for a set
of cost-efficient energy packages in ascending and descending order of package sizes and
assuming invariability of wireless channel circumstances. Consequently, the study in [16]
proposed a CMAB approach for energy trading in the cellular network to support the
unpredictable wireless channel conditions to further lessen the total energy cost over a
finite time horizon.

1.2. Main Contributions

This paper’s main contributions to real-time energy resource and energy trading in
Cloud-RAN environments are summarized as follows:

• A joint energy trading and clustering technique to account for limited-capacity back-
haul links in a green Cloud-RAN with a SWIPT system was proposed in [13]. However,
their design was based on myopic optimization of semidefinite programming (SDP)
(i.e., minimizing the instantaneous energy cost for the current time only) without
any learning process for future demand provisioning. Furthermore, their proposed
design cannot cope with the time-varying system dynamics, since they considered no
temporal dynamic of the energy demand and cost over time and provided no solution
for the look-ahead energy purchase decisions.

• In contrast to [15], this paper develops a combinatorial upper confidence bound
(CUCB) algorithm as a prescheduling mechanism to maintain cost-aware reliable
operation in CRANs to handle the variability and uncertainty of both the electrical
generation and the intrinsic characteristics of the cellular communication system. This
paper predicts the best possible combination of energy packages to be purchased for
the next time slot by exploring the rewards of new combinations of energy packages
within given trials at the current time slot and exploiting the past captured informa-
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tion on rewards of super arms from the previous time slots to optimize long-term
averaged rewards.

• Differently from the system model proposed in [16], this paper considers a downlink
Cloud-RAN with SWIPT, where the RRHs concurrently transfer satisfied data beams
to information users and requested energy beams to active energy users. Furthermore,
this paper also integrates a sparse beamforming technique to iteratively remove the
cooperative links between the RRHs and the active information users based on the
renewable power budgets and front-haul link capacity limitations at the individual
RRHs. The clustering technique has been confirmed to enhance energy efficiency and
decrease the total energy cost of the RRH in pragmatic Cloud-RANs [17]. In contrast
to their CMAB approach, this paper estimates the imminent energy demands by
dynamically deciding on an optimal set of super arms by exploring all of the possible
minimal combinatorial energy packages to be purchased from the day-ahead market,
thus diminishing the risk of regret factors.

This work’s novel contribution is the development of a sequential learning algorithm
that adaptively tracks the temporal variations of energy demands and makes predictive
decisions on look-ahead energy purchases in dynamically changing environments with
unknown statistics to asymptotically minimize the time-averaged overall energy cost
in the long run. The proposed algorithm anticipates the future energy demands of the
distributed RRHs in the Cloud-RAN and schedules these demands by invoking the various
power plants well in advance so that higher energy prices at peak demand times are
curtailed. The proposed algorithm does not require any other description of usage patterns
or statistical distribution of stochastic events. It performs foresighted optimization based
on online learning during the operation. It only uses the past captured data on averaged
accumulated rewards for predicting the energy consumption at the next period based on
the proposed strategy.

1.3. Organization and Notations

The rest of this paper is structured as follows. The system model for the down-
link Cloud-RAN with SWIPT and the energy management model are introduced in the
Section 2. In Section 3, the problem of real-time collaborative energy trading at an indi-
vidual time frame is formulated and then transformed into a numerically tractable form.
The predictive energy trading strategy is proposed in Section 4. Numerical simulation
results are interpreted in Section 5. Finally, Section 6 summarizes the proposed work.

Notation 1. w, w, and W � 0, respectively, denote a scalar w, a vector w, and a positive
semidefinite matrix W. Cn×m, (.)H , tr(.), and E indicate the sets of n-by-m dimensional complex
matrices, the complex conjugate transpose operators, the trace operators, and the expected value,
respectively. ‖.‖p represents the `p-norm of a vector and ‖.‖0 denotes the number of non-zero
entries in the vector. Notice that the duration of a time frame is normalized to one and the normalized
energy unit, i.e., Js−1, is assumed in this paper. Therefore, in this paper, the terms “power” and

“energy” are mutually interchangeable.

2. System Model

Consider a downlink transmission Cloud-RAN with SWIPT from N RRHs towards
Ki information users (IUs), Ke active energy users (EUs), and K[idle]

e idle EUs, respectively,
over a shared bandwidth. Notice that the active EUs located within the energy-serving
area of an RRH can exploit the energy-carrying signals directly from that particular RRH.
In contrast, the idle EUs located outside any energy-serving area of the RRHs can only
scavenge energy from the ambient radio frequency signals for self-sustainability [13]. Each
RRH is equipped with M antennas, and the individual IUs and EUs have one single antenna.
Based on perfect knowledge of channel state information (CSI), the CU coordinates all
the resource management and energy trading strategies for the RRHs and administers
all the IUs’ data to the corresponding RRHs finite-capacity front-haul links. Remark that,
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under the perfect CSI assumption, all the channel properties of the downlink Cloud-RAN
communication links, i.e., path loss, scattering, fading, shadowing, etc., are assumed to be
perfectly known at both the IU and EU terminals.

LetLb = {1, · · · , N},Li = {1, · · · , Ki},Le = {1, · · · , Ke}, andL[idle]
e = {1, · · · , K[idle]

e }
denote, respectively, the set of indexes of the RRHs, the IUs, the active EUs, and the idle
EUs. The amount of energy flow in this paper depends on the data-rate requirements by
the IUs, the wireless energy transfer requirements by the active EUs, and the harvested
energy requirements from the environment by the idle EUs, whereas the amount of data
flow depends only on the IUs. Let us divide the long-term period T into discrete time
slots, indexed as T = {1, · · · , T}, and define F = {1, · · · , F} and K = {1, · · · , K} as
the set of indexes of the frames within a time slot and the set of indexes of the learning
trials within a frame, respectively. The channel is assumed to vary across frames, but
remains invariant within each frame. This paper proposes an online learning algorithm
that iteratively alternates between designing the overall transmission strategy using convex
optimization and preparing for future energy demand from the day-/hour-ahead market
via online learning, i.e., a CMAB approach, to avoid steep ramps in the energy generation
plant and to minimize the long-term energy cost.

2.1. Energy Management Model

Similarly to [13], it is assumed that at least one renewable energy generator, i.e., solar
panel or/and wind turbine, is installed in the vicinity of each RRH. In this setup, none of
the RRHs are equipped with any frequently rechargeable storage devices. Furthermore,
bidirectional energy trading with the primary grid is enabled at the individual RRHs. Thus,
the RRHs can purchase energy in the day-/hour-ahead market during off-peak hours at a
lower price and/or in the spot market during peak hours at a higher price, and the surplus

energy can also be sold back to the grid at an agreed-upon price. Let B[spot]
n , B[ahead]

n , Sn,
and En denote, at time slot t, t ∈ T , the amount of real-time energy purchases from the
spot-market for the n-th RRH to cover an instantaneous energy shortage, the amount of
look-ahead energy purchases from the day-/hour-ahead market at the end of previous time
slot “t − 1”, the amount of surplus energy to be traded back to the primary grid, and the
amount of renewable energy generation at the n-th RRH, respectively. In addition, let P[Tx]

n

be the total transmit power and P[circ]
n be the total power consumption of the hardware

circuits at the n-th RRH. Furthermore, in any frame, the total energy consumption at the
n-th RRH, i.e., P[total]

n , is constrained as

P[total]
n = P[Tx]

n + P[circ]
n = B[spot]

n + B[ahead]
n − Sn + En. (1)

By viewing from the perspective of supply and demand, let us assume π[spot] ≥
π[ahead] ≥ π[sell] ≥ π[renew], where π[spot], π[ahead], π[sell], and π[renew] denote the price of

purchasing (selling) per unit energy of B[spot]
n , B[ahead]

n , Sn, and generating per unit energy of
En (by averaging the capital expenses and OPEX of renewable devices over their lifetime),
respectively. Then, the cumulative energy cost procured by the n-th RRH at the k-th trial,
k ∈ K of the frame f , f ∈ F at the time slot t, t ∈ T , i.e., B[total]

n (k), is given by

B[total]
n (k) = π[spot]B[spot]

n (k) + π[ahead]B[ahead]
n (k) (2)

−π[sell]Sn(k) + π[renew]En(k), ∀n ∈ Lb.

2.2. Downlink Transmission Model

Let wi = [wH
1i , · · · , wH

Ni]
H ∈ CMN×1 and ve = [vH

1e, · · · , vH
Ne]

H ∈ CMN×1 be defined,
respectively, as the set of indexes of the beamforming vector from all RRHs towards the i-th
IU, i ∈ Li and the e-th active EU, e ∈ Le, where wni ∈ CM×1 and vne ∈ CM×1 represent
the beamformer from the n-th RRH to the i-th IU and the e-th active EU, respectively. In
addition, let hi = [hH

1i , · · · , hH
Ni]

H ∈ CMN×1 denote the set of indexes of the channel vector
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between all RRHs and the i-th IU, where hni ∈ CM×1 denotes the channel vector from
the n-th RRH to the i-th IU. Accordingly, the signal collected at the i-th IU, i ∈ Li, can be
expressed as the summation of the dedicated information-carrying signal, the inter-user
interference induced by other non-devoted information beams, the interference provoked
by the energy-carrying signals assigned to all active EUs, and the additive white Gaussian
noise at the i-th IU as

yi = hH
i wis

[IU]
i + ∑

j 6=i
j∈Li

hH
i wjs

[IU]
j + ∑

e∈Le

hH
i ves[EU]

e + ni. (3)

Due to the fact that energy beams carry no information, only the data of IUs will be
delivered via the front-haul links. Without loss of generality, E(s[IU]

i ) = E(s[EU]
e ) = 1 is

assumed, and the signal-to-interference-plus-noise ratio (SINR) at the i-th IU, i ∈ Li, is
formulated as

SINR[IU]
i =

|hH
i wi|2

∑
j∈Li ,j 6=i

|hH
i wj|2 + ∑

e∈Le

|hH
i ve|2 + σ2

i
, (4)

where |hH
i wi|2 indicates the desired power received at the i-th IU and |wi|2 is the required

transmit power at the RRHs. Let us define the scheduling arrangements between the i-th
IU and the n-th RRH for partial cooperation [18], i.e.,

∥∥‖wni‖2
2

∥∥
0, as

∥∥∥‖wni‖2
2

∥∥∥
0
=

{
0, if ‖wni‖2

2 = 0,
1, if ‖wni‖2

2 6= 0,
(5)

where ‖wni‖2
2 = 0 betokens that the i-th IU is not selected to be supported by the n-th RRH

and, hence, the front-haul link between the CU and the n-th RRH is not employed for joint
data transmission to the i-th IU. Hence, the front-haul link capacity consumption of the
n-th RRH is expressed as

C[front]
n = ∑

i∈Li

∥∥∥‖wni‖2
2

∥∥∥
0
Ri, ∀n ∈ Lb, (6)

where Ri = log2(1 + SINR[IU]
i ) is the achievable data-flow rate (bit/s/Hz) for the i-th IU

and directly depends on the transmit power and the wireless channel fading condition.
The total energy received by the e-th active EU, e ∈ Le, is defined as

G[EU]
e = η

(
|gH

e ve|2 + ∑
j∈Le ,j 6=e

|gH
e vj|2 + ∑

i∈Li

|gH
e wi|2

)
, (7)

where the terms on the right-hand side of (7) represent the intended energy-carrying signal
for the e-th active EU, the inter-user interference caused by all other non-desired energy
beams, and the inter-user interference caused by information beams, respectively. Let
0 ≤ η ≤ 1 denote the conversion efficiency to convert the harvested RF energy into the
functional electrical energy form, and ge = [gH

1e, · · · , gH
Ne]

H ∈ CMN×1 indicates the set of
indexes of the channel vector between all the RRHs and the e-th active EU. The collective
energy that can be harvested from the ambiances and atmospheres by the z-th idle EU,
z ∈ L[idle]

e , is presented as

G[ET-idle]
z = η( ∑

i∈Li

|fH
z wi|2 + ∑

e∈Le

|fH
z ve|2), (8)

where fz = [fH
1z, · · · , fH

Nz]
H ∈ CMN×1 represents the set of indexes of the channel vector

between all the RRHs and the z-th idle EU.
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3. Real-Time Energy Trading on an Individual Time Frame

This paper relies on foresighted optimization based on CMAB learning to minimize the
long-term average energy cost. In accordance with (2), the total energy cost at a given trial of

a frame within a time slot is determined by four parameters, i.e., B[spot]
n , Sn, En, and B[ahead]

n .
It is assumed that the amount of renewable energy supply En is given at the beginning
of each time slot, whereas B[ahead]

n , ∀n ∈ Lb is determined in advance at the end of the
previous time slot via the proposed online learning algorithm, i.e., Algorithms 1 and 2 in
Section 4, to prepare for future demands.

3.1. Problem Formulation

Let us define P[Tx]
n = ∑

i∈Li

||wni||22 + ∑
e∈Le

||vne||22 as the total power transmitted by the

n-th RRH to its scheduled users and the degree of partial cooperation among RRHs as

P [coop] = ( ∑
i∈Li

∥∥∥‖w1i‖2
2

∥∥∥
0
+ · · ·+ ∑

i∈Li

∥∥∥‖wNi‖2
2

∥∥∥
0
)

+( ∑
e∈Le

∥∥∥‖v1e‖2
2

∥∥∥
0
+ · · ·+ ∑

e∈Le

∥∥∥‖vNe‖2
2

∥∥∥
0
).

To minimize the average energy cost, let us consider the following cooperative energy
trading model in each trial of a frame within a time slot for the given B[ahead]

n as

min
wni ,vne ,
B[spot]

n ,Sn

αP [coop] + ∑
n∈Lb

P[Tx]
n + ∑

n∈Lb

{
B[spot]

n

}
(9)

s.t. C1 : SINR[IU]
i ≥ γi, ∀i ∈ Li,

C2 : G[EU]
e ≥ P[min]

e , ∀e ∈ Le,

C3 : G[EU-idle]
z ≥ P[idle]

z ∀z ∈ L[idle]
e ,

C4 : P[Tx]
n ≤ En + B[ahead]

n + B[spot]
n − Sn − P[circ]

n

C5 : P[Tx]
n ≤ P[Tmax]

n , ∀n ∈ Lb,

C6 : C[front]
n ≤ C[limit]

n , ∀n ∈ Lb,

C7 : ∑
n∈Lb

B[ahead]
n + ∑

n∈Lb

B[spot]
n ≤ P[max]

CU − P[circ]
CU

C8 : B[spot]
n ≥ 0, , ∀n ∈ Lb,

C9 : Sn ≥ 0, ∀n ∈ Lb,

where α ≥ 0 is the maximal energy cost in the front-haul link for the degree of partial
cooperation among RRHs. C1 guarantees the minimum SINR requirements γi for the i-th
IUs. P[min]

e in C2 indicates the minimal energy demanded by the active EUs, whereas P[idle]
z

in C3 is the minimal conditions of energy harvested from the ambiance and atmospheres by
the idle EUs. C4 betokens that the individual RRHs’ power budget restrains the total trans-
mit power as per (1), while C5 emphasizes that the total transmit power is upper-limited
by the maximum transmit power permitted, i.e., P[Tmax]

n , at the n-th RRH. C6 expresses
the front-haul link capacity limitations for the individual RRHs. C7 implies the restriction
for the total power provided by the grid to the RRHs, where P[circ]

CU is the hardware circuit

power consumption and P[max]
CU is the maximum power generated by the grid at the CU [19].

C8 and C9 are the non-negative constraints set for the optimization variables.

3.2. Re-Weighted `1-Norm and Semidefinite Programming

The optimization problem in (9) is an NP-hard (nondeterministic polynomial time)
problem due to the non-convexity of the `0-norm term in the objective function and the
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constraints C1 and C6. These non-convexity terms can be reformulated by using one of
the powerful convex optimization techniques, i.e., semidefinite programming (SDP). Note
that the `1-norm approximation is commonly adopted in compressed sensing to handle
`0-norm optimization problems [20]. Then, let us consider the following property:

xHAx = tr(xxHA) = tr(AxxH). (10)

From a mathematical point of view, the property in (10) can be interpreted as the inner
vector product being equal to the trace of the outer product. If A = I, then

xHx = tr(xxH). (11)

By adding this property, denoting Hi = hihH
i , Ge = gegH

e , and Fz = fzfH
z , and

specifying the rank-one semidefinite matrices as Wi = wiwH
i and Ve = vevH

e in the
optimization problem, the constraint C1 can be reformulated as

C1 :
|hH

i wi|2

∑
j∈Li ,j 6=i

|hH
i wj|2 + ∑

e∈Le

|hH
i ve|2 + σ2

i
≥ γi, ∀i ∈ Li, (12)

C1 : tr(HiWi) ≥ γi ∑
j∈Li ,j 6=i

tr(HiWj) + γi ∑
e∈Le

tr(HiVe) + γiσ
2
i , ∀i ∈ Li. (13)

Following a procedure similar to that in [13], the intractability of the `0-norm term in
the objective function and constraint C6 is overcome by approximating by their respective
re-weighted `1-norms [20], as follows:

P [coop] ≈ ∑
i∈Li

∥∥∥[ξ1i‖w1i‖2
2]
∥∥∥

1
+ · · ·+ ∑

i∈Li

∥∥∥[ξNi‖wNi‖2
2]
∥∥∥

1
(14)

+ ∑
e∈Le

∥∥∥[κ1e‖v1e‖2
2]
∥∥∥

1
+ · · ·+ ∑

e∈Le

∥∥∥[κNe‖vNe‖2
2]
∥∥∥

1

= ∑
n∈Lb

(
∑

i∈Li

ξnitr(wiwH
i Dn) + ∑

e∈Le

κnetr(vevH
e Dn)

)
,

C[front]
n ≈ ∑

i∈Li

∥∥∥[ξni‖wni‖2
2]
∥∥∥

1
Ri = ∑

i∈Li

ξnitr(wiwH
i Dn)Ri, (15)

where Dn , diag(

(n−1)M︷ ︸︸ ︷
0, ..., 0,

M︷ ︸︸ ︷
1, ..., 1,

(N−n)M︷ ︸︸ ︷
0, ..., 0 ) � 0, ∀n ∈ Lb, is used for extracting the corre-

sponding beamformer wni. ξni and κne, respectively, are the weighting factors associated
with the n-th RRH and the i-th IU/the e-th active EU, which will be updated as per the
re-weighted `1-norm method algorithm in [13] to iteratively remove the collaborative links
between the RRHs and the IUs/active EUs in the circumstances of front-haul link capacity
limitations at the individual RRHs. Hence, the non-convex problem formulation intro-
duced in (9) can be modified to a convex optimization problem with significantly reduced
complexity [21] after relaxing the rank-one constraints of rank(Wi) = 1 and rank(Ve) ≤ 1,
as (16).

Lemma 1. The optimal solutions to the problems (16) satisfy rank(W∗i ) = 1 and rank(V∗e ) ≤ 1
with a probability of one.

Proof. The proof is straightforward by following similar steps to those in [13].

As per [22], the interior point methods for solving SDP have polynomial (quadratic)
worst-case complexity and are superb for medium- and large-scale problems, e.g., those
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bounded by O(logn), where n is the problem size. Furthermore, as the size of the optimiza-
tion problem grows large, the computational complexity tends to grow more slowly and
even remains almost constant according to [23]. Hence, with increasing size of the problem,
e.g., an increasing total number of RRHs, users, and per-RRH antennas, the number of
iterations needed to solve the optimization problem grows sub-linearly with the size of the
problem, and even tends to remain almost constant.

min
Wi ,

Ve ,Sn ,
B[spot]

n

∑
n∈Lb

(
∑

i∈Li

ξnitr(WiDn) + ∑
e∈Le

κnetr(VeDn)

)

+

(
∑

i∈Li

tr(Wi) + ∑
e∈Le

tr(Ve)

)
+ ∑

n∈Lb

{
B[spot]

n

}
s.t. C1 : tr(HiWi) ≥ γi ∑

j∈Li ,j 6=i
tr(HiWj) + (16)

γi ∑
e∈Le

tr(HiVe) + γiσ
2
i , ∀i ∈ Li,

C2 : tr(GeVe) + ∑
j∈Le ,
j 6=e

tr(GeVj) + ∑
i∈Li

tr(GeWi)

≥ P[min]
e η−1, ∀e ∈ Le,

C3 : ∑
i∈Li

tr(FzWi) + ∑
e∈Le

tr(FzVe) ≥ P[idle]
z η−1,

∀z ∈ L[idle]
e ,

C4 : ∑
i∈Li

tr(WiDn) + ∑
e∈Le

tr(VeDn) ≤ [En − Sn

+B[ahead]
n + B[spot]

n − P[circ]
n ], ∀n ∈ Lb,

C5 : ∑
i∈Li

tr(WiDn) + ∑
e∈Le

tr(VeDn) ≤ P[Tmax]
n ,

C6 : ∑
i∈Li

ξnitr(WiDn)Ri ≤ C[limit]
n , ∀n ∈ Lb,

C7 : ∑
n∈Lb

B[ahead]
n + ∑

n∈Lb

B[spot]
n ≤ P[max]

CU − P[circ]
CU

C8 : B[spot]
n ≥ 0, C9 : Sn ≥ 0, ∀n ∈ Lb,

C10 : Wi � 0, ∀i ∈ Li, C11 : Ve � 0, ∀e ∈ Le.

4. Predictive Energy Trading Strategy

The multi-armed bandit (MAB) problem is expressed as a J-arm system, with each
being associated with independent and identically distributed (i.i.d.) stochastic rewards.
The objective is to maximize the accumulated profits by observing the associated reward
of new arms during the exploration stage while simultaneously optimizing the decisions
among a set of arms based on existing knowledge at the exploitation stage in multiple
trials [24]. Let consider a combinatorial generalization of the classical MAB problem, where
a super arm consisting of a set of N base arms, N ⊂ J, is played, and the rewards of its
relevant base arms are observed individually in each trial [25].
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Figure 1. Combinatorial multi-armed bandit (CMAB) problem for predictive real-time energy trading
in a cloud radio access network (Cloud-RAN) with the sparse beamforming technique.

As illustrated in Figure 1, the problem scrutinized in this paper is categorized as a
combinatorial MAB problem, where a super arm is composed of N base arms and each base
arm corresponds to an energy package purchased for an RRH from the day-/hour-ahead
market at each trial k, k ∈ K, before the real-time energy demand. The CU adapts its
cooperative energy trading strategies to the intermittent environment in the Cloud-RAN
by dynamically forming super arms to maximize the averaged rewards accumulated over
the period T, which is equivalent to lessening the averaged energy expense in the long run.
Let J = {1, · · · , J} be defined as a set of indexes for possible energy packages offered in
the day-/hour-ahead market by the grid, and let E [total] = {E1, · · · , E J} denote all energy
packages offered by the grid in the day-/hour-ahead market, where E p = E p−1 + ∆E , p ∈
J . Furthermore, let A[set]

k = {B[ahead]
1 (k), · · · , B[ahead]

N (k)} represent a super arm, i.e., a
set of N energy packages purchased in advance for N RRHs from the day-/hour-ahead
market, at the k-th trial. Let us further define the reward for the individual arms at the
n-th RRH and the reward for the super arm at the k-th trial asR(B[ahead]

n (k)) andR(A[set]
k ),

respectively, as

R(B[ahead]
n (k)) = B[total]

n (1)− B[total]
n (k), (17)

R(A[set]
k ) = ∑

n∈Lb

R(B[ahead]
n (k)), (18)

where B[total]
n (1) and B[total]

n (k) in (17) are the total energy cost incurred by the n-th RRH

at the initial trial and the k-th trial of a frame, respectively. Furthermore, let µ
[k, f ,t]
n =

(µ
[k, f ,t]
n,1 , µ

[k, f ,t]
n,2 , · · · , µ

[k, f ,t]
n,J ) be defined as the reward vector for the n-th RRH, where µ

[k, f ,t]
n,p =

R(B[ahead]
n (k)), p ∈ J , is the reward associated to the p-th energy package in the k-th trial

of the f -th frame at the t-th time slot.
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In the following, we propose CUCB-based [25] predictive energy trading strategy,
which is shown in Figure 2 and detailed in Algorithms 1 and 2, to find the best possible
combination of energy packages to be purchased from the day-/hour-ahead market for
N RRHs for the next time slot by exploring the rewards of new combinations of energy
packages within a limited number of trials at the current time slot and exploiting the past
captured information on rewards of super arms from the previous time slots so that the
long-term averaged rewards, i.e., the total energy cost in the long run, can be optimized.




Exploration 


Stage










Exploitation 


Stage







Estimation 


Stage







Adjustment


Stage




Figure 2. Proposed predictive energy trading strategy in a Cloud-RAN.

Algorithm 1 Super Arm Exploration

1: Initialize: Total number of trials K
2: for k = 1 : K
3: Solve problem (16) for a given B[ahead]

n (k),
4: CU calculates B[total]

n (k) as per (2),R(B[ahead]
n (k)) as per (17), andR(A[set]

k ) as per (18).
5: If k = 1
6: then

B[ahead]
n (k + 1) = B[ahead]

n (k) + ∆E , n ∈ Lb.
7: else if the super arm reward of all the RRHs

R(A[set]
k ) ≤ R(A[set]

k−1),
8: then

B[ahead]
n (k + 1) = B[ahead]

n (k− 1), ∀n ∈ Lb,
9: else if the individual reward for the n-th RRH, n ∈ N

R(B[ahead]
n (k)) ≥ R(B[ahead]

n (k− 1))
and

B[ahead]
n (k) 6= E J ,

10: then B[ahead]
n (k + 1) = B[ahead]

n (k) + ∆E ,
11: else

B[ahead]
n (k + 1) = B[ahead]

n (k).
12: end If
13: Calculate the total energy cost of all the RRHs, β[k, f ,t] as

β[k, f ,t] = ∑
n∈Lb

B[total]
n (k).

14: Calculate the energy package index p at all RRHs from

p = B[ahead]
n (k)

∆E , n ∈ Lb.
15: Update

µ
[k, f ,t]
n,p = R(B[ahead]

n (k)), ∀p ∈ J , n ∈ Lb;
16: Update

A[set]
k+1 = {B[ahead]

1 (k + 1), · · · , B[ahead]
N (k + 1)};

17: end for
18: Estimated mean reward for K trials

µ̂
[ f ,t]
n,p =

∑K
k=1 µ

[k, f ,t]
n,p

K , ∀p ∈ J , n ∈ Lb.
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Algorithm 2 Main Online Learning Algorithm

1: Initialize: Time slot count: t = 0;
2: while t 6= T do
3: Increment the iteration index t = t + 1;
4: for f = 1 : F
5: if t = 1 (initial time slot)
6: then Initialize the super arm for the first trial (k = 1) as

A[set]
1 = {01, · · · , 0N},

7: else
A[set]

1 = S∗,
8: end if
9: Exploration Stage: Run Algorithm 1

10: Estimation Stage:
11: Calculate the mean reward vector for the frame

µ̂
[ f ,t]
n = (µ̂

[ f ,t]
n,1 , µ̂

[ f ,t]
n,2 , . . . , µ̂

[ f ,t]
n,J ), where

µ̂
[ f ,t]
n,p =

∑K
k=1 µ

[k, f ,t]
n,p

K , ∀p ∈ J , n ∈ Lb.
12: Adjustment Stage :
13: if Ψp (number of times the p-th arm is played) 6= 0
14: then

adjust µ̄
[ f ,t]
n,p = µ̂

[ f ,t]
n,p +

√
3lnK
2Ψp

,
15: else

µ̄
[ f ,t]
n,p = µ̂

[ f ,t]
n,p , ∀p ∈ J , n ∈ Lb.

16: end if
17: end for
18: Average adjusted mean reward vector over all frames

µ̄
[t]
n =

 ∑
f∈F

µ̄
[ f ,t]
n,1

F ,
∑

f∈F
µ̄
[ f ,t]
n,2

F , . . . ,
∑

f∈F
µ̄
[ f ,t]
n,J

F

, n ∈ Lb.

19: Exploitation Stage :
20: Average µ̄

[t]
n over accumulated number of time slots, as

µ̄n =
∑t

t′=1 µ̄
[t′ ]
n

t = [µ̄n,1, µ̄n,2, · · · , µ̄n,J ], n ∈ Lb.
21: For the next time slot: find N optimum arm indexes as

p∗n = argmax
p

(µ̄n,p), p ∈ J , ∀n ∈ Lb,

and the updated super arm as
S∗ = ∆E [p∗1 , p∗2 , · · · , p∗N ].

22: end while

Let µ̂
[ f ,t]
n = (µ̂

[ f ,t]
n,1 , µ̂

[ f ,t]
n,2 , . . . , µ̂

[ f ,t]
n,J ) and µ̄

[ f ,t]
n = (µ̄

[ f ,t]
n,1 , µ̄

[ f ,t]
n,2 , . . . , µ̄

[ f ,t]
n,J ), ∀n ∈ Lb, f ∈

F , t ∈ T denote the estimated mean reward vector and the adjusted reward vector of
individual energy packages, respectively. In the exploration stage within each frame,
Algorithm 1 explores new combinations of energy packages (super arms) for the next trial
based on the rewards obtained at the current and the previous trials. Once a given number

of K trials are completed, the mean rewards for individual energy packages, i.e., µ̂
[ f ,t]
n ,

in each frame are estimated. The estimated mean rewards are, first, adjusted and averaged
over a total number of F frames of a time slot as per step 18, then averaged again over the
total number of past time slots as per step 20 [26], and, finally, used to update the super
arm S∗, i.e., the optimal set of energy packages purchased from the day-ahead market,
to be exploited in the next time slot, as detailed in Algorithm 2.

The proposed learning-based algorithm can be considered as a mixed online learning
and convex optimization problem with linear matrix inequality constraints. The optimiza-
tion problem is solved once per learning trial. Therefore, the complexity of the resulting
algorithm is mainly due to the number of iterations required for solving a convex optimiza-
tion problem that has polynomial worst-case complexity [22] and whose total number of
learning trials depends on the dynamic range of variations in the environment.
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5. Simulation Results

A downlink Cloud-RAN consisting of three adjacent RRHs with SWIPT towards six
single-antenna IUs and six single-antenna EUs was considered in this paper. The proposed
Cloud-RAN operated under the channel bandwidth of 20 MHz. All of the RRHs were
installed with eight antennas and placed 500 m away from each other. The performance
of the proposed scheme was assessed with K = 10 trials per frame, F = 10 frames
per time slot, T = 60 time slots, and a total number of J = 20 energy packages with
∆E = 100 mW, i.e., E [total]

t = {100, 200, · · · , 2000}mW. The renewable energy generation
values at the individual RRHs were E1 = 1.5, E2 = 0.2, and E3 = 0.05 W, respectively, at a
price of π[renew] = 0.02 GBP/W. It was assumed that π[ahead] = 0.07, π[spot] = 0.15, and
π[sell] = 0.05 GBP/W. A correlated channel model, hni = R1/2hw, was adopted [17,27],
where hw ∈ CM×1 are zero-mean circularly symmetric complex Gaussian random variables
with unit variance, R ∈ CM×M is the spatial covariance matrix, and its (m, n)-th element

is given by GaLpσ2
Fe−0.5 (σs ln 10)2

100 ej 2πδ
λ [(n−m)sinθ]e−2[ πδσ

λ (n−m)cosθ]
2

, where Ga = 15 dBi denotes
the antenna gain, Lp(dB) = 125.2 + 36.3log10(d) represents the path loss model over a
distance of d km, σ2

F is the variance of the complex Gaussian fading coefficient, σs = 8 dB
is the log-normal shadowing standard deviation, σ = 2◦ is the angular offset standard
deviation, and θ is the estimated angle of departure. The simulation parameters were
assumed, unless otherwise stated, to be P[circ]

CU = 40 dBm, P[max]
CU = 50 dBm, P[circ]

n = 30

dBm, P[Tmax]
n = 46 dBm, C[limit]

n = 30 bits/s/Hz, P[min]
e = −60 dBm, P[idle]

z = −90 dBm [18],
and η = 0.5, respectively. The simulation results were accomplished via CVX [28] using
an Intel i7-3770 CPU at 3.4GHz with 8 GB RAM, and the running time for each learning
trial was approximately seven seconds without use of parallelization. Our proposed
online learning strategy was compared against a baseline design that had no ahead-of-time
energy preparation and the non-learning based design in [13], which always assumes that
a fixed set of energy packages is prepared from the day-/hour-ahead market, i.e., A[set] =

{B[ahead]
1 = B[ahead]

2 = B[ahead]
3 } = 700 mW. For fair comparison, identical constraints were

applied to all the strategies.
Note that the convergence speed of the proposed online learning strategy to achieve

its steady-state is based on the total number of learning trials, which also depends on the
dynamic range of variations in the environment. Due to the limitations of our simulation
tool, we downsized the total number of learning trials and the other simulation parameters
according to the scale of our problem size. In a practical scenario, with a large number of
users, the resulting amount of look-ahead energy purchased from the day-/hour-ahead
market will be increased proportionally, which may increase the number of arms or increase
the difference between two adjacent arms, and may also increase the number of learning
trials needed to speed up the convergence. Therefore, the practical enlarged scenario
does not affect the scalability of the proposed algorithm, as it may only increase the
computational burden.

Figure 3a compares the normalized total energy cost over discrete time slots for dif-
ferent strategies at γ = 15 dB. It can be observed that, at its steady-state, the proposed
strategy achieves performance gains of 43 percent and 11 percent, respectively, as com-
pared with the baseline scheme and the design in [13], since their designs provide no
adaption to the dynamic wireless channel conditions in Cloud-RANs. Figure 3b shows the
normalized total energy cost of our proposed strategy at γ = 20 dB. One may observe that
the performance of the proposed strategy slightly degrades with increasing target SINR,
i.e., from γ = 15 dB to γ = 20 dB. Figure 3c represents the normalized total energy cost of
our proposed strategy at γ = 20 dB in a more complex scenario, where it is assumed that
the number of per-RRH antennas is six and the renewable energy generation at individual
RRHs ranges from [0.5 2.5], [0.3 1.5], and [0.1 1.0] W, respectively.
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(a)

(b)

(c)

Figure 3. Normalized total energy cost at (a) γ = 15, (b) γ = 20, and (c) γ = 20 dB with random
variations in renewable generation.
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It is clear from the Figure 3c that the performance of the proposed strategy was
slightly degraded compared to Figure 3b, which was simulated in a simpler scenario.
However, as the time-slot index increases, the performance of our proposed strategy
indicates considerable smaller variations in total energy cost and much better average
performance compared to that of [13] under the same system setup. This validates the
ability of our proposed algorithm to adapt to more realistic wireless networks.
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Figure 4. Illustration of super arm decisions according to the proposed strategy: (a) super arms
chosen in the individual trials at the fifth time slot; (b) look-ahead energy purchase decisions (i.e.,
final super arm) for individual time slots.

Figure 4 presents in detail the procedure of a super arm being selected in accordance
with Algorithms 1 and 2. Figure 4a illustrates the procedure of a super arm, i.e., an optimal
set of energy packages purchased for a set of RRHs from the day-/hour-ahead market, in
different trials at the fifth time slot. In each trial, a new combination of energy packages is



Sensors 2021, 21, 2308 2323 of 2325

explored on the basis of the individual and the averaged accumulated rewards obtained
from the current and the previous trials, as per Algorithm 1. Figure 4b demonstrates the
optimal super arm that was selected at the t-th time slot to be exploited as the starting
point at the (t + 1)-th time slot, as per Algorithm 2. It can be observed that from the 15th
time slot onwards, nearly identical super arms that associate with the highest rewards for
the RRHs are selected, which demonstrates the convergence of the proposed algorithm for
the given simulation.

The normalized accumulated reward and regret at each time slot for different strategies
are shown in Figure 5. The normalized accumulated reward at time slot t, denoted byR[acc]

t ,
is calculated by averaging the difference of the total energy cost at the t-th time slot and the

initial time slot over all frames, i.e.,R[acc]
t =

∑
f∈F

(β[k, f ,1]−β[k, f ,t])

F . In contrast, the regret of the
strategies is defined as the difference in the accumulated reward between always playing
the optimal super arm and playing the super arm according to the proposed strategy at
the t-th time slot, i.e., Qt = R[acc]

opt −R
[acc]
t , where R[acc]

opt is the accumulated reward after
the convergence. Figure 5 confirms that a significant performance gap exists between the
proposed strategy and the baseline scheme, as well as the design in [13]. One can conclude
that, although the regret of the proposed strategy has the worst performance at the initial
time slot, it declines rapidly with the continuous learning process until convergence due to
the fact that the proposed strategy learns from the past captured behavior of cooperative
energy trading and adapts to the dynamic wireless environment.

Figure 5. Normalized accumulated reward/regret for different strategies.

6. Conclusions

This paper proposes a predictive cooperative energy trading mechanism based on a
CMAB model in a green Cloud-RAN with SWIPT, which adapts to the temporal variations
of energy demands in a statistically unknown changing environment and improves its
performance gain over time, with the objective of minimizing the time-averaged overall
energy cost in the long run. The proposed strategy anticipates future energy demand and
supplies the instantaneous energy demand at the current time slot with energy prepared
in advance based on existing knowledge of uncertain wireless system dynamics at the
previous time slots. The presented simulation results confirmed a reduction of the long-
term running cost. Our proposed scheme outperforms a baseline scheme that purchases no
ahead-of-time energy packages and a recently proposed non-learning-based design that
assumes fixed energy purchases from the day-ahead market.
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Abbreviations
The following abbreviations are used in this manuscript:

Lb Index of the number N of BSs.
Li Index of the number Ki of information users.
Le Index of the number Ke of active energy users (EUs).
L[idle]

e Index of the number K[idle]
e of idle EUs.

P[Tx]
n Total transmit power at the n-th RRH.

P[circ]
n Hardware circuit power consumption at the n-th RRH.

P[circ]
CU Hardware circuit power consumption at the CU.

P[Tmax]
n Maximum transmit power allowance of the n-th RRH.

P[max]
CU Maximum power provision by the grid at the CU.
T Index of the number T of time slots.
F Index of the number F of frames within a time slot.
K Index of the number K of trials within a frame.

B[ahead]
n Amount of energy purchased from the day-ahead

market (Arm).

B[spot]
n Amount of energy to be purchased from the spot-market.

Sn Amount of excessive energy to be sold back to the grid.
En Amount of renewable energy generation at the n-th RRH.

B[total]
n (k) Total energy cost of the n-th RRH at the k-th trial.
E [total] = {E1, · · · , E J} All energy packages (arms) offered by the grid in the

day-ahead market.

µ
[k, f ,t]
n,p = R(B[ahead]

n (k)) Reward associated with arm B[ahead]
n at the k-th trial of the

f -th frame at the t-th time slot.

A[set]
k = {B[ahead]

1 (k), · · · , B[ahead]
N (k)} N energy packages purchased a day ahead at the k-th trial

(super arm).

R(A[set]
k ) Reward for the super arm A[set]

k at the k-th trial.

µ
[k, f ,t]
n = (µ

[k, f ,t]
n,1 , µ

[k, f ,t]
n,2 , · · · , µ

[k, f ,t]
n,J ) Reward vector for the n-th RRH

µ̂
[ f ,t]
n = (µ̂

[ f ,t]
n,1 , µ̂

[ f ,t]
n,2 , . . . , µ̂

[ f ,t]
n,J ) Estimated mean reward vector

µ̄
[ f ,t]
n = (µ̄

[ f ,t]
n,1 , µ̄

[ f ,t]
n,2 , . . . , µ̄

[ f ,t]
n,J ) Adjusted reward vector of individual arms

R[acc]
t Accumulated reward at time slot t.
Qt Regret at time slot t.
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