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Abstract: In this paper, a novel signal processing algorithm for mitigating the radar blind speed
problem of moving target indication (MTI) for frequency modulated continuous wave (FMCW) multi-
target tracking radars is proposed. A two-phase staggered pulse repetition interval (PRI) solution is
introduced to the FMCW radar system. It is implemented as a time-varying MTI filter using twice the
hardware resources as compared to a uniform PRI MTI filter. The two-phase staggered PRI FMCW
waveform is still periodic with a little more than twice the period of the uniform PRI radar. We
also propose a slow time signal integration scheme for the radar detector using the post-fast Fourier
transformation Doppler tracking loop. This scheme introduces 4.77 dB of extra signal processing gain
to the signal before the radar detector compared with the original uniform PRI FMCW radar. The
validation of the algorithm is done on the field programmable logic array in the loop test bed, which
accurately models and emulates the target movement, line of sight propagation and radar signal
processing. A simulation run of tracking 16 s of the target movement near or at the radar blind speed
shows that the total degradation from the raw post-fast Fourier transformation received signal to
noise ratio is about 2 dB. With a 20 dB post-processing signal to noise ratio of the proposed algorithm
for the moving target at around a 20 km range and with about a −3.5 dB m2 radar cross section at
a 1.5 GHz carrier frequency, the tracking errors of the two-dimensional angles with a 4× 4 digital
phased array are less than 0.2 degree. The range tracking error is about 28 m.

Keywords: staggered PRI; slow time integration; FMCW; digital beamforming; radar electronic warfare

1. Introduction

Advanced radar sensors that feature multiple functions, multiple modes, multi-
ple channels, multiple waveforms and multiple targets have been researched in recent
decades [1–3]. These advanced radars are also equipped with “smart” processors that
adapt to the sensing environments and sensing requirements. In recent years, this tech-
nology trend of advanced radars has been realized primarily because of the combination
of advanced signal processing, advanced radio frequency (RF) and integrated circuit
technology and artificial intelligence. In this paper, we focus on some advanced signal
processing techniques.

Frequency modulated continuous wave (FMCW) radar has been widely used for both
defense and civilian applications [1,4,5]. In this paper, we focus on target tracking radars
that can continuously track the movement of the intended targets. The final goal of our
research is to build a ground-based experimental FMCW phased array tracking radar
that can track fast-moving aerial targets at a 10 ∼ 40 km range and use it for radar and
electronic warfare technique studies. The radar is designed for L band (1–2 GHz) with a
narrow bandwidth and potentially frequency hopping capability if the radio frequency
front-end permits.
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For FMCW, the radar frequency sweeps with time. Particularly, linear FMCW uses
linear frequency sweeping slopes. Well-known linear FMCW waveforms include sawtooth
FMCW and triangular FMCW. Using a triangular FMCW waveform is the focus of this paper.
The advantages of the triangular FMCW waveform lie in three aspects. First, the peak-to-
average power ratio of the waveform is much lower than the time domain modulated pulse
waveforms. Second, the continuous transmission provides high signal processing gain that
can be leveraged by fast Fourier transformation (FFT). Thirdly, it includes upbeat sweeps
and downbeat sweeps, which makes it easier to estimate the range and Doppler values at
the same time as the sawtooth waveform. One of the design challenges for the FMCW radar
is coping with power leakage from the transmitter (TX) to receiver (RX). Another challenge
is how to combine FMCW with the phased array technology.

Frequency modulation of the transmitted waveform can be done in the digital domain
or in the analog domain. Traditionally, automotive radars and harbor surveillance radars
use analog frequency modulation in the transmitter [6–17]. Digital frequency modulation
at the transmitter is a new trend that provides better signal fidelity than analog frequency
modulation, because in digital frequency modulation there is almost no sweep nonlinearity
that can be introduced by the analog domain modulation. Sweep nonlinearity degrades
the range resolution of FMCW radar. Analysis of sweep nonlinearity has been seen in [18].
In this paper, we focus on digital frequency modulation.

Phased array technology has been used in modern radars for many decades. From
passive electronically scanned array (PESA) to active electronically scanned array (AESA),
the radar transmitter employs much higher total transmit power and can detect targets at a
much longer range using AESA than using PESA [19]. Digital phased array (DPA) is an
advanced receiver technique. This scheme uses a per-antenna analog-to-digital converter
(ADC). With DPA, modern radars can perform multiple functions, e.g., search function
and track function, and track multiple targets [5]. In this paper, our focus is AESA with
DPA techniques.

At the receiver of the radar with DPA, four-dimensional (4D) FFT processing can
be done to estimate the range, the two-dimensional (2D) angles and the Doppler of the
targets [12,20]. The 4D FFT processing is an open loop processing technique. After the 4D
FFT, the system requires a track formulation module to form the tracking trajectories of
different targets [21–23]. In some cases, the open loop tracking radar system performs the
dual function of both searching and tracking. The closed loop tracking schemes, which
are seen in [24–27], require initial input parameters, such as the initial range, the initial 2D
angles and the initial Doppler of an intended target, to establish a track. After establishing
the track, the closed loop tracking radar relies on its signal processing to track the target.
In [27], an FMCW target-tracking radar is proposed and closed loop tracking of the target
range and angles is applied to this system. This FMCW radar uses a constant false alarm
rate (CFAR) detector [28,29] and 2D monopulse angle tracking [30,31].

To combat the strong stationary clutter signals, a moving target indication (MTI) filter
is used to cancel the clutter signal [25,32–35]. When the system uses a uniform pulse
repetition interval (PRI), the system experiences significant signal to noise ratio (SNR)
drops in the radar blind speed zone [25]. In the FMCW context, PRI also refers to the period
of the waveform. In [27], we also observe the blind speed phenomenon with the triangular
FMCW waveform and MTI.

To solve the radar blind speed issue, radar PRI staggering [36,37] and carrier frequency
hopping are both effective. In this paper, we focus on the staggered PRI solution which
has more than one timing phase in each PRI. Here, timing phases, or simply phases, mean
the time intervals of different durations of waveform segments but not signal phases. In
the context of pulse-Doppler radar, it is straightforward to implement the staggered PRI
scheme. The radar simply transmits a short pulse followed by a variable-duration silence
time in each PRI. For FMCW radars, implementation of staggered PRI transmission can
have many different methods [38–40]. On the other hand, since staggered PRI schemes still
suffer certain SNR drops in the radar blind speed zone, extra processing gain from slow
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time signal integration, e.g., [41], is desirable. However, implementing many staggering
phases for the staggered PRI schemes makes the radar signal period long. With a long
radar signal period, high processing gain from slow time signal integration is not easy to
achieve. This is because we need to implement a fine Doppler grid for FFT processing in
the Doppler domain, and have clean angle estimation results, because angle estimation
errors can degrade the quality of the FFT processing in the Doppler domain. In this paper,
we propose a two-phase staggered (TPS) PRI MTI (TPS-PRI-MTI) scheme that is different
from the prior art. The two phases are two different timing intervals of two consecutive
FMCW periods. The other main novelty of this paper is that we combine the staggered PRI
scheme and the slow time signal integration scheme, which can achieve an extra processing
gain of 4.77 dB in the blind speed region in the Doppler domain. The proposed algorithm
improves the tracking performance of the algorithm in [27] in the radar blind speed zone.
It can be seamlessly integrated with the range extrapolation method proposed in [27] to
further improve the target tracking performance.

This paper is organized as follows. In Section 2, the FMCW radar transmitter is
presented and the novel TPS triangular FMCW waveform is proposed. Section 3 presents the
receiver system processing architecture and algorithms. In Section 4, the field programmable
gate array (FPGA)-based simulation test bed that can speed up computer-based simulation
is introduced, the simulation results are presented and some discussion about the results is
also given. Finally, in Section 5, some conclusions about our design are presented.

2. The FMCW Radar Transmitter

In this section, initially, the FMCW radar system overview is given in Section 2.1.
Then the AESA transmitter design is discussed in Section 2.2. After that, the chirp function
used to form the FMCW waveform is introduced in Section 2.3. The novel TPS triangular
FMCW waveform is proposed in Section 2.3. Lastly, the digital modulation technique for
generating the TPS triangular FMCW waveform is discussed in Section 2.4.

2.1. The FMCW Radar System Overview

The high-level FMCW radar system diagram is shown in Figure 1. The TX is an AESA.
Each TX element is connected to its own power amplifier, an up-conversion RF chain and a
digital-to-analog converter (DAC). The RX has a DPA. Each RX array element feeds the
received signal into a low-noise amplifier (LNA) followed by a down-conversion RF chain
and an analog-to-digital converter (ADC). The TX and the RX have separate antenna panels,
which give sufficient TX and RX separation distance to avoid saturation of the LNAs of
all RX chains. The calibration of the gain and phase imbalance of the AESA and DPA is
important, but outside the scope of this paper. We just assume perfect gain and phase
calibration of the AESA and DPA.

When modeling the radar system and the line-of-sight propagation effects, we model
the “virtual RF” (this term is just used to contrast the baseband of the radar) signals at
the TX and the RX in the oversampling domain using the same approach as in [27]. The
oversampling factor is two. The TX RF chain and the RX RF chain are abstracted as low-pass
filters. We represent both the TX RF chain and the RX RF chain by finite impulse response
(FIR) half-band filters [42]. The orders of the half-band filters are shown in Section 4.2. We
also model the receiver noise as additive white Gaussian noise (AWGN). The noise power
density with a noise figure is also shown in Section 4.2.
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Figure 1. The active electronically scanned array (AESA) transmitter and the digital phased array (DPA) receiver with
separate transmitter (TX) and receiver (RX) antenna panels. Both the TX and RX antenna panels have four-by-four element
phase arrays. The RX and TX antenna phase centers are plotted as blue and red dots, respectively. The distance between the
TX and the RX phase centers is dTR. The origin of the radar coordinate system is located at the RX phase center.

The TX-to-RX leakage problem in the FMCW radar system has been addressed in [27].
The solution is to use bi-static radar instead of mono-static radar for the FMCW waveform.
The TX and the RX antennas are separated by certain distances to guarantee that each
LNA for each receive antenna is not saturated. Then, after analog-to-digital conversion,
we filter out the direct current (DC) in the digital domain for each RX chain of each RX
antenna. The near-DC spurs caused by amplitude modulation of the TX-to-RX leakage
signal can be effectively mitigated by the MTI filter. The design problem of integrating
the triangular FMCW waveform with the DPA receiver has also been resolved in [27]. The
solution is to use 2D digital monopulse angle tracking after the FFTs. In this paper, the
receiver architecture proposed in Section 3.1 includes the solutions to both problems.

2.2. The AESA Radar Transmitter

The coordinate system in the modeling and simulation of the FMCW tracking and
measurement system is presented in Figure 2. The panels of both the TX phased array and
the RX phased array are in the XZ-plane. The RX phase reference center is at the origin of
the radar coordinate system (the origins of both the Cartesian coordinate and the spherical
coordinate). The three-dimensional Cartesian coordinate tuple along the x, y and z axes is
denoted by (x, y, z). The corresponding spherical coordinates are denoted by (φ, θ, Rrx),
which is also known as azimuth angle (Az) (in radians), elevation angle (El) (in radians)
and range (Rrx) (in meters). The distance between the TX phase center and the RX phase
center is denoted by dTR. The distance between the TX phase center and the point (x, y, z)
is denoted by Rtx. The angle numbers used for both TX and RX beamforming are defined
as in Equation (1).

[a(0), a(1)] = [cos(φ) sin(θ), cos(θ)]. (1)
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Figure 2. The TX and RX antenna array panels and the target (Rrx and Rtx are much bigger than dTR

in the real system).

The coordinate systems of the TX antenna panel for TX beamforming and the RX
panel for RX beamforming have different origins. The TX coordinate system’s origin is
located at the TX phase center. The RX coordinate system’s origin is located at the RX phase
center. The beamforming process for RX follows the description in Section 2.5 of [27]. The
TX beamforming process is the same. However, the TX beamforming angle numbers atx(0)
and atx(1) are defined with respect to the Az and El in the TX spherical coordinates. Since
dTR is small compared to Rrx and Rtx, atx(0) ≈ a(0) and atx(1) ≈ a(1).

For a moving target that is of interest in our tracking radar, we feed initial parameters
of the moving target to the radar. These initial parameters are estimates of the initial
range, the initial angles in azimuth and elevation and the initial normalized Doppler
(normalized by the baseband sampling frequency fB). They are assumed to be obtained by
a target acquisition radar. The estimates do not need to be perfect, however, the estimation
errors cause degradation to the post-processing signal to noise ratio (SNR). These initial
parameters are denoted by Rinit (initial range parameter), ainit(0) (the initial azimuth
angle number parameter), ainit(1) (the initial elevation angle number parameter) and
Dinitdop (the initial normalized Doppler parameter).

The initial angles are used to set up the initial AESA beamformer in TX and the initial
DPA beamformer in RX. For the AESA, these initial angle numbers are quantized to the
nearest points in a grid. The TX AESA beamformer uses the angle grid points to form its
beamformer. The uniform grid quantizes the initial angle number pair (ainit(0), ainit(1))
to the nearest grid point, as shown in Figure 3. We want to keep the TX beamforming
angle numbers constant within one PRI as much as possible to minimize the skin return
signal variation for stationary clutters. Since the TX beam follows the target movement, the
resolution of the quantization grid needs to be greater than the maximal changes of a(0) and
a(1) of the target within one PRI. On the other hand, since the target moves continuously,
switching the TX beam from a quantization point in the grid to a nearest neighbor of the
point is inevitable. This causes variation of the skin return signal in amplitude and phase
for even stationary clutters. This effect is not desirable for the MTI filter. Therefore, we
must give an upper bound to the resolution of the grid as well. In our simulations, we set
the resolution to 2−7 for the radar parameters and found that the simulation performance
is acceptable. However, this resolution is not the optimized value.
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Figure 3. An example of the TX AESA angle number quantization grid. The grid resolution is defined
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estimated angle number pair for the target is quantized to the nearest grid point. Note that the true
target angle numbers satisfy a(0)2 + a(1)2 < 1.

The outputs of the receiver of the tracking radar are range R, angle numbers a(0) and
a(1), normalized Doppler Ddop and target velocities along the x, y and z axes. Once the
tracking is established (normally after a given amount of time on the order of 100 PRIs
after feeding the initial parameters if the SNR is sufficient), the AESA uses the angle
numbers a(0) and a(1) output by the radar receiver to form its beamformer. This AESA
beamforming procedure also utilizes the angle number quantization grid. Using an AESA
quantization grid ensures that the AESA does not need to change the TX beamforming
angle continuously and benefits the multiple target tracking since a TX beam centered at
the grid point may cover multiple targets.

The tracking radar employs multiple target tracking with only one carrier frequency.
The receiver architecture will be depicted in Section 3. The AESA can form multiple beams
if the quantized a(0)s and a(1)s of different moving targets show different quantization
values. In this case, it requires a TX-power-back-off for each beam and reduces the effective
isotropic radiation power (EIRP) of each beam. In the worst case, the TX-power-back-off in
linear scale is inversely proportional to the square of the number of tracked targets.

2.3. TPS Triangular FMCW Waveform

The simple linear FMCW waveform in the baseband has the following mathematical
form in the time domain:

gsimple(t) = e2π jbt2
(2)

where t is the time in seconds, b is the chirp rate and j =
√
−1. Note that the instantaneous

frequency of the chirp function is 2bt, where the frequency sweep slope is 2b. When b is
positive, the instantaneous frequency is increasing with time t. This is called upbeat. When
b is negative, the instantaneous frequency is decreasing with time t. This is called downbeat.

The TPS triangular FMCW waveform has an instantaneous frequency f (t) of the
following form:

f (t) =


fc + 2bu·(mod(mod(t, T0 + T1), Tu + Td)− 0.5Tu), fortheupbeats
fc + 2bd·(mod(Tu + Td −mod(t, T0 + T1), Tu + Td)− 0.5Td), forthedownbeats
fc − bd·Td, forthefrequencyholdperiods

(3)
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where the notations are summarized in Table 1 and we assume bu·Tu = bd·Td. The
frequency of the waveform is also illustrated in Figure 4.

Table 1. Notations of the TPS triangular FMCW waveform.

Notation Definition

fc The carrier frequency. No frequency hopping assumed.
Tu The upbeat time duration.
Td The downbeat time duration.
T0 The phase 0 duration of the TPS triangular FMCW waveform.
T1 The phase 1 duration of the TPS triangular FMCW waveform.
bu The constant upbeat chirp rate.
bd The constant downbeat chirp rate.
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The relation between the instantaneous frequency and the actual waveform is the fol-
lowing

g(t) = e2π j
∫ t

0 f (τ)dτ (4)

The proposed waveform has two time phases, i.e., phase 0 and phase 1. Phase 0 has a
duration of T0 and consists of a triangular frequency sweep (the upbeat and the downbeat)
and a frequency hold period. Note that the upbeat and downbeat can have different chirp
rates but the same frequency sweep range. Similarly, phase 1 has a duration of T1 and
consists of an identical triangular frequency sweep and a frequency hold period with a
longer duration than the hold time of phase 0. This waveform is periodic with a period of
T = T0 + T1, which is the PRI of the FMCW radar. Essentially, it performs non-uniform
sampling of the Doppler signature of the moving target [37]. There can be many different
implementations of the non-uniform sampling scheme for the FMCW waveform. For
example, the hold periods can be replaced by arbitrary functions. The proposed one is
simple but very practical for implementation.

2.4. Generating TPS Triangular FMCW Waveform Using Digital Modulation

The chirp bandwidth BW = 2buTu = 2bdTd (BW is the two-sided bandwidth). The
baseband sampling rate is fB = 1

TB
, where TB is the baseband sampling interval. Based on

the Nyquist sampling theorem (the sampling rate must be greater than twice the one-sided
bandwidth), fB ≥ BW. In our simulations, we choose BW = 0.8 fB. Let Nu be the number
of samples in the upbeat, Nd be the number of samples in the downbeat, N0 be the number
of samples during phase 0 and N1 be the number of samples during phase 1. Additionally,
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Nu and Nd are both integer multiples of 2. The discrete version of the chirp frequency f [k]
in the baseband and chirp waveform g[k] are given as follows:

f [k] =


2buTB·(mod(mod(k, N0 + N1), Nu + Nd)− 0.5Nu), fortheupbeats
2bdTB·(mod(Nu + Nd −mod(k, N0 + N1), Nu + Nd)− 0.5Nd), forthedownbeats
−bdTB·Nd, forthefrequencyholdperiods

(5)

g[k] = e2π jTB ∑k
l=0 f [l] (6)

where k is the discrete time index.
We assume that the transmitter and the receiver are powered up at the same time. For

the radar received signal model, please refer to Section 2.3 of [27]. At the receiver, the FFT
processing selects FFT windows centered at k1 = 2

3 Nu + n(N0 + N1) for the upbeat signal
and at k2 = 2

3 Nd + Nu + n(N0 + N1) for the downbeat signal, where integer n represents
the nth PRI and starts from 0. Additionally, Nu and Nd are both integer multiples of 3. This
choice of FFT windows can be found in [27].

Based on [18], the radar range resolution has the following lower bound:

∆R =
c

2BW
(7)

where c is the speed of light. In our design, the FFT window duration is smaller than Tu
and Td. The actual range resolutions for the upbeat and downbeat are denoted by ∆Rupbeat
and ∆Rdownbeat, respectively:

∆Rupbeat =
c·τ1

2
=

c fB
4buNFFT

(8)

∆Rdownbeat =
c·τ2

2
=

c fB
4bdNFFT

(9)

where τ1 is the time to sweep the frequency range of fB
NFFT

in the upbeat sweep, τ2 is the

time to sweep the frequency range of fB
NFFT

in the downbeat sweep and NFFT is the FFT size.
In the simulations, bu and bd are equal, therefore, ∆Rupbeat and ∆Rdownbeat are equal as well.
Therefore, instead of using actual range resolutions for the upbeat and the downbeat, we
just mention the actual range resolution for this design in the Results section.

3. Digital Phased Array Receiver

In this section, the proposed DPA receiver is elaborated. We describe the receiver
architecture in Section 3.1. The per-antenna staggered PRI MTI filter implementation is
presented in Section 3.2. The slow time integration module is proposed in Section 3.3. The
Doppler estimation module is described in Section 3.4.

3.1. Receiver Diagram

The proposed receiver uses digital phased array beamforming and multiple target
tracking. It is shown in Figure 5. For each target, there is a dedicated tracker. To optimize
the hardware resources, the common processor for all trackers is established. Compared
with the architecture in [27], this receiver has some differences. First, the common processor
for all trackers uses per-antenna FFT. As mentioned in [27], when the number of receive
antennas is large, using per-antenna FFT makes hardware implementation complex. In this
paper, we focus on the scenario where the number of receive antennas is no more than 32.
Second, the per-antenna MTI filter uses the TPS-PRI-FMCW waveform. Third, the slow
time integration (the “Slow-time int” block in Figure 5) is introduced after the Doppler
de-rotation in the frequency domain. Though Doppler de-rotation can be done in the time
domain better than in the frequency domain, it provides time domain processing (done by
the common processor) coupled with the frequency domain target tracking operations. Due
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to this reason, the Doppler de-rotation (the “Dop derot” block in Figure 5) is done in the
frequency domain to separate each target tracker from the common processor. Fourth, we
introduce a Doppler estimation module. This module takes the signal after the monopulse
combining, the tone location of the CFAR detector and the initial normalized Doppler value
as inputs, and outputs the Doppler estimate used for Doppler de-rotation.
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tracking error signals for a(0) and a(1). Please refer to [27] for some of the mathematical details of these blocks.

The Doppler tracking loop (from “Dop derot” to “Slow-time int” to “DBF” to “add”
then to “Doppler estimation”) shares the signal Xmono with the monopulse angle tracking
loop (from “DBF” to “form error signals” then to “PI controllers”), as shown in Figure 5.
The DBF module is common to both the Doppler tracking loop and the monopulse angle
tracking loop. Therefore, there is a coupling effect between these two loops: the smaller the
angle number estimation errors, the smaller the Doppler estimation error and vice versa.

3.2. Per-RX Antenna Staggered PRI MTI Filter Implementation

The staggered PRI MTI filter is implemented as two parallel MTI filters. The filter
coefficients are both [−0.5, 1, −0.5]. The output signals of the two parallel MTI filters are
switched by the control signal that indicates the signal phases. This implementation is
shown in Figure 6. Bare metal is used for the parameter choice of T0, T1 and TB, where TB
is the duration of a baseband sample and TB = 1

fB
(fB is the baseband sampling rate). It is

different from the method used in [34] where two variable delay signal buffers are used.
The advantage of this implementation is that it can make the operating frequency higher
than that when using variable delay signal buffers because it only consists of fixed delays,
fixed gains, additions and a switch module. The disadvantages are doubling the usage of
hardware resources and no flexibility in changing the delays after implementation.
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3.3. Slow Time Signal Integration Module

In theory, FFT is a parallel operation with a vector input and a vector output. For
real-time DSP processing, the input to the FFT processing is first de-serialized into a vector.
Then FFT processing is performed in a vector format. Lastly, the output frequency domain
signal of FFT is serialized. This is shown in Figure 5.

The signal Xm,i, f f t denotes the signal right after FFT for the (m,i)th RX antenna element.
The TPS-PRI-FMCW waveform is periodic in T = T0 + T1. The output signal of the FFT
processing retains the periodicity of the input time domain signal. The slow time integration
module leverages the periodicity property of the transmitted signal to coherently add the
signals at every fB·T samples (the number of samples in one PRI) after the FFT processing.
The slow time integration module is simply denoted as:

Xm,i,slti[p, n] =
1
K

K−1

∑
q=0

Xm,i, f f t[p, n− q] (10)

where n is the nth T period, K is the number of coherently added signals and p is the index
of the post-FFT signal within the nth period, where p = 0, 1 . . . , fBT.

If the residual normalized Doppler frequency after the Doppler estimation and de-
rotation is zero, the number of coherently added signals can be large. However, the initial
normalized Doppler estimates for the tracking radar are not perfect, where the estimation
error is denoted by eD. Note that the normalized Doppler error, which is unitless, can be
translated to the Doppler error (ed) in Hz by ed = eD fB.

On the other hand, both T0 and T1 contain two FFT windows. Additionally, the FFT
size determines the FFT processing gain. Therefore, the number of coherently added signals
K in fact should satisfy K < 0.25

fB ·T·eD
+ 1 to avoid signal power cancellation. This simply

means that |2π(K− 1) fBTeD| < π
2 , where 2π(K− 1) fBTeD denotes the maximum signal

phase rotation introduced by the residual Doppler error over a time interval of (K− 1) fBT
and |·| stands for the absolute value. To avoid signal power cancellation, we need to keep
the maximum signal phase rotation within π

2 . In Section 4, K is chosen to be 3 and this
gives 4.77 dB of extra processing gain.

3.4. Doppler Estimation Module

The Doppler estimation module uses the signal after monopulse combining Xmono[p, n],
the CFAR detector output and the initial normalized Doppler parameter as the inputs. The
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block diagram is shown in Figure 7. The instantaneous Doppler estimation value can be
estimated as:

Ddop[n] =
∠
(
Xmono[Itone, n]·Xmono[Itone, n− 1]∗

)
2π fBT

(11)

where (·)∗ stands for conjugate operation, Itone is the tone index corresponding to where
the CFAR detector output is Boolean value true and ∠(·) denotes evaluating the angle (in
radians) of the quantity in the brackets. Equation (11) simply calculates the differential
phase of Xmono at the tone location between the nth PRI and the (n− 1)th PRI, then nor-
malizes the value by T, fB and 2π. The accumulator after evaluating Ddop[n] is the classical
proportional–integral (PI) controller (please refer to Figure 17 of [27] for an implementation
of a proportional–integral (PI) controller), which takes the instantaneous Doppler estima-
tion value Ddop[n] and the initial Doppler parameter Dinitdop as the inputs and outputs
the estimated Doppler value Ddop[n].
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The monopulse tracking of the two-dimensional angles has tracking errors. These
errors also propagate in the Doppler tracking loop. This error propagation effect also affects
the slow time integration performance and reduces the maximum number of coherently
added signals in the slow time signal integration module.

4. Results and Discussion

In this section, we describe the FPGA-in-the-loop simulation setup, the simulation
parameters, the simulation results and some discussion about the simulation results. The
FPGA-in-the-loop simulation setup is a faster signal processing test bed than the pure
computer-based simulation.

4.1. The FPGA-in-the-Loop Simulation Test Bed

The tracking radar system and the proposed algorithm are implemented in Math-
Works’ Simulink software. All the modules are carefully modeled in a 32-bit fixed point
format. With the FPGA-in-the-loop capability of Simulink, this implementation is pro-
grammed on a Xilinx FPGA board (Xilinx Virtex Ultrascale + VCU 118 FPGA) and is
interfaced with the computer that runs Simulink. Without the FPGA board, Simulink can
simulate the radar transmitter, the line-of-sight RF propagation and the radar receiver in
both floating points and fixed points. However, the simulation speed is usually slow. With
the FPGA-in-the-loop configuration, as shown in Figure 8, the simulation speed can be
improved significantly.
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the joint test action group. (b) the zoom-in plot of the Xilinx VCU 118 FPGA block in (a), where a
high-level block diagram of the implementation is shown.

The target propagation and clutter propagation models are simulated at fs = 2 fB. The
TX waveform is generated in the discrete time of sampling rate fB according to Equations
(5) and (6). The signal is upsampled by a factor of 2 to the oversampling rate domain of
sampling rate fs. Then the signal is filtered by the TX half-band filter to reject the frequency
domain signal image caused by the upsampling operation. The radar receiver uses the RX
half-band filtering as an anti-aliasing filter and downsampling by a factor of 2, as illustrated
in Figure 5, as the initial receiver signal processing operations.

Given the FPGA resource limitation, we only implemented one target tracker for the
multi-target tracking platform. The RF propagation module simulates a moving target and
a stationary clutter that is close to the initial location of the moving target. The simulation
parameter setup will be discussed in Section 4.2.

The inputs to the FPGA simulation are the target parameters, e.g., initial coordinates,
initial velocities and accelerations for target modeling generated by the System Tool Kit
(STK) software and the initial radar parameters as described in Section 2.2. The constants,
like the carrier frequency, the speed of light, the radar PRI, etc., are directly used by the
FPGA and are not considered as inputs. The outputs of the FPGA simulation are true
values of the target, i.e., the target range, target velocities, target Doppler and target angels,
and the radar estimates, i.e., the target range estimates, target velocity estimates, target
Doppler estimates and target angle estimates. The inputs and outputs are all updated every
0.01 s of real time.

With STK, a target movement trajectory is created. The target velocities in the radar
reference coordinates, i.e., the x, y and z axes, and target coordinates in the x, y and z axes
over time and the target RCS over time, are generated by STK. The time granularity of
these data sets is 0.01 s. These data sets are fed to Simulink, then Simulink passes the
data to the FPGA via the joint test action group (JTAG) interface at a 100 Hz rate. The
simulations of radar signal processing and line-of-sight RF propagation are done on the
FPGA. The outputs of the FPGA contain the true values and the radar estimated values
of the two-dimensional angle numbers, the target range, the normalized Doppler value
and the target velocities in the radar reference coordinates. The outputs of the FPGA are
also sampled at a rate of 100 Hz, then they are passed to Simulink and are displayed on
the display scopes of Simulink. With the FPGA-in-the-loop, we run 16 s of real-time data
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within 2.5 h of simulation time. This is more than 10 times the speed compared to the pure
Simulink-based computer simulation.

The FPGA-in-the-loop implementation uses the hardware description language (HDL)
coder design methodology of MathWorks Inc. [43]. We can run the pure computer-based
fixed point Simulink model (denoted by run A) and the FPGA-in-the-loop implementation
(denoted by run B) concurrently. The outputs of the true values and the estimated values
of the angle numbers, the range, the normalized Doppler and the velocities from both runs
are compared against each other. We ran 2.5 s of real-time data for run A and run B. The
results of run A and run B are identical. Getting the results of run A is computer based.
Run A is slow and it is only used for result comparison between run A and run B. With the
confidence that the results of run B are identical to run A, we can run longer real-time data
for run B. In the later simulation of run B (Section 4.3), we run 16 s of real time data and
show simulation results there.

4.2. The Simulation Parameters

We show the simulation parameters in Table 2. Both the TX AESA and the RX DPA
use a 4× 4 rectangular phased array, as illustrated in Figure 1. Based on the simulation
parameters, the actual range resolution of the radar is 113.9 m using Equations (8) and (9).
In addition, we illustrate the target RCS vs. time in Figure 9. Additionally, Chebyshev
windows of length 1024 are applied before the FFT operations. The window function gives
60 dB sidelobe suppression and causes an SNR loss of 1.8134 dB.

Table 2. The simulation parameters.

Variable Name. Value Definition

Mtx 4 Number of TX antenna elements on the x axis.
Ntx 4 Number of TX antenna elements on the z axis.
Mrx 4 Number of RX antenna elements on the x axis.
Nrx 4 Number of RX antenna elements on the z axis

dTR 3 m The distance between the transmitter and the receiver phase
reference centers.

hc
0 exp(2π j·rand) Phases of the channel of the target skin return, j =

√
−1 and rand is

the uniform random number generator.
aa0 1.3476 radians The initial azimuth angle of the moving target.
taa0 1.3439 radians The initial value of the azimuth tracking angle.
ae0 1.5096 radians The initial elevation angle of the moving target.
tae0 1.5010 radians The initial value of the elevation tracking angle.
Rrx,0 18, 205.2 m The initial distance between the radar receiver and the target.
Rinit 18, 255.2 m The initial range parameter for the tracking radar initialization

ainit(0) cos(taa0)· sin(tae0) The initial a(0) for the tracking radar initialization
ainit(1) cos(tae0) The initial a(1) for the tracking radar initialization
Dinitdop variable The initial Doppler parameter for the tracking radar initialization

σ0 −4.065 dBm2 Initial RCS of the target.
hc

1 exp(2π j·rand) Phases of the channel of the clutter skin return.
aa1 π

2 The azimuth angle of the clutter.
ae1 π

2 The elevation angle of the clutter.
Rrx,1 17, 705.2 m The distance between the radar receiver and the clutter.

σ1 20 dBm2 RCS of the clutter.
fc 1.5 GHz The carrier frequency of the radar.
fB 3.125 MHz The baseband sampling rate.

BW 2.5 MHz The FMCW radar bandwidth.
fs 2 fB Oversampling rate.

v [−183,−113,−18] m/s
Initial target velocities towards the radar on x, y, z axes when the

velocities are positive. Negative velocities show that the target
moves away from the radar.

accel [0,0,0,] m/s2 Velocity acceleration of the target towards the radar on x, y, z axes.
T 2.6112× 10−3 s The waveform period.
T0 1.24608× 10−3 s The phase 0 duration.
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Table 2. Cont.

Variable Name. Value Definition

1.36512× 10−3 s The phase 1 duration.
Tu 6.2208× 10−4 s The upbeat duration.
Td 6.2208× 10−4 s The downbeat duration.
bu 2.0094× 109 Hz/s The upbeat chirp rate.
bd 2.0094× 109 Hz/s The downbeat chirp rate.
N0 3894 The number of samples in phase 0 at fB sampling rate.
N1 4266 The number of samples in phase 1 at fB sampling rate.
Nu 1944 The number of samples in the upbeat at fB sampling rate.
Nd 1944 The number of samples in the downbeat at fB sampling rate.

GtR,t 6 dBi The TX antenna gain for the target of each TX antenna element.
GtR,c 6 dBi The TX antenna gain for the clutter of each TX antenna element.
GrR,t 6 dBi The RX antenna gain for the target of each RX antenna element.
GrR,c 6 dBi The RX antenna gain for the clutter of each RX antenna element.
dc/λ 0.5 The ratio of antenna spacing and wavelength.

Pt 67 dBm The transmit power of each TX antenna element.

noise f l −166 dBm/Hz The noise floor at 290 kelvin temperature and including the noise
figure of 8 dB.

HBFordtx 64 Half-band filter order after TX up-sampling and before each DAC
at the transmitter.

HBFordrx 32 Half-band filter order before RX down-sampling and after each
ADC at the receiver.

lagord 8 Lagrange filter order in the oversampling domain.

lpwr −25.04 dBm
TX to RX leakage power between each TX antenna and each RX
antenna. We assume that the isolation between each TX antenna

and each RX antenna is 92.04 dB.
NFFT 1024 Number of FFT points.

Iavg0 0
Range IIR smoothing filter order, the filter response looks like
0.25

1−0.75z−1 , where z-transform is with respect to the sampling rate of
100 Hz.

cD,0 0.005 The Doppler estimation module accumulator/PI controller gain 0.
cD,1

1
256 The Doppler estimation module accumulator/PI controller gain 1.

K 3 The number of coherently added signals in the slow time
integration module.

Ngrid 256 The number of uniform quantization steps for the [−1, 1] range for
the AESA angle number quantization grid.Sensors 2021, 21, x FOR PEER REVIEW 15 of 23 
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Given these simulation parameters, we assume the initial Doppler parameter has an
absolute error that satisfies |ed| < 50 Hz and the absolute error is about 13% of 1/T. We
can derive that the number of coherently added signals in the slow time signal integration
module should approximately satisfy K < 2.91. We choose because K = 3 gives more
gain than K = 2 at a 50 Hz initial Doppler error.

4.3. Simulation Results

We first show the staggered PRI MTI filter gain vs. Doppler speed in Figure 10. With
the uniform PRI MTI filter, the SNR drops near any integer multiples of the blind speed (the
blind speed is about 80.4 m/s) are significant. The first null of the uniform PRI MTI filter
nulls the clutter signal. This property is retained by the proposed TPS-PRI-MTI design. The
nulls of the proposed design at other blind speed points are significantly reduced. Near
the second blind speed point (twice the blind speed), the loss is 4.948 dB. Our simulation
scenario happens in the second blind speed zone. The velocities in the x, y and z axes
are −183, −113 and −18 m/s, respectively, corresponding to −151.5 m/s Doppler speed at
time 0. The target moves into the second blind speed zone at −160.8 m/s at a later time.
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We illustrate the post-FFT SNR vs. time in Figure 11. The green curve shows the raw
post-FFT SNR (SNRraw) defined in Equation (12).

SNRraw = Pt,Total + GAESA + GDPA + σt + 10· log10

(
λ2

(4π)3R2
tx R2

rx

)
− noise f l

−10· log10( fB) + GFFT − LChebywin.
(12)

This calculation of the raw post-FFT SNR uses the radar range equation based on the
range and RCS, per-element TX antenna gain and RX antenna gain, the AESA total power
(Pt,Total) of 79.04 dBm (Pt,Total = Pt + 10· log10(Ntx Mtx)), the AESA antenna gain (GAESA)
of 18.04 dBi (GAESA = GtR,t + 10· log10(Ntx Mtx)), the DPA gain (GDPA) of 18.04 dBi
(GDPA = GrR,t + 10· log10(Nrx Mrx)), FFT processing gain ( GFFT) of 30.1 dB and the
Chebyshev window SNR loss (LChebywin) of 1.81 dB. The quantity σt stands for the target
RCS in dB.
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mainlobe gain of 12.04 dBi and 4× 4 DPA mainlobe gain of 12.04 dBi.

The blue curve shows the post-FFT SNR of the proposed algorithm. It considers the
summation of the raw post-FFT SNR, the MTI filter noise enhancement of 1.76 dB, the
proposed staggered PRI MTI filter gain shown in Figure 10 and the slow time integration
gain of 4.77 dB. The red curve shows the post-FFT SNR of the uniform PRI MTI filter. It
considers the summation of the raw post-FFT SNR, the MTI filter noise enhancement of
1.76 dB, the uniform PRI MTI filter gain and the slow time integration gain of 7.78 dB
(since in this case, the PRI of uniform PRI MTI scheme (using only one-phase PRI instead
of two) is about half of the PRI of the proposed scheme). Clearly, the proposed algorithm
gives a much higher post-FFT SNR than the uniform PRI scheme. The post-FFT SNR of the
proposed algorithm is about 2 dB lower than the raw post-FFT SNR at time 0.03 s. In Figure
11, near 14 s, the SNR of the proposed algorithm even outperforms the raw post-FFT SNR
due to the changes of the proposed MTI filter gain over time. Note that in this simulation
setup, the target range increases over time because the target moves away from the radar.
This causes an SNR decrease over time and offsets the RCS increase over time.

The post-FFT desired tone energies without noise and with noise when the initial
Doppler parameter for the tracking radar is equal to the true Doppler value are shown in
Figures 12 and 13, respectively. Without noise, the tone energy of the target is about 5000.
The calculated tone energy based on the 12.04 dBi of both the AESA antenna gain and the
DPA antenna gain is about 5649.8. The difference is 0.53 dB and is mainly because the
actual AESA and DPA beamforming gain are both 0.25 dBi lower than 12.04 dBi when
the beamforming angles in azimuth and elevation are (1.3476, 1.5096) radians instead of(

π
2 , π

2
)

radians. From Figures 12 and 13, with noise, the tone energy shows a much bigger
fluctuation than without noise.
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We also illustrate the effects of a non-ideal initial Doppler parameter (as an initial input
to the tracking radar) in Figures 14 and 15. Without noise, the tone energy of the target
with 55.7 Hz of the Doppler estimation error is almost 2.7 dB lower than the tone energy of
the target with no Doppler estimation error. This roughly matches the de-coherence loss of
2.6 dB directly computed from the slow time integration with the Doppler estimation error.
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(−55.7 Hz) at about 0.04 s real time. This result is generated by computer simulation, not by FPGA simulation.

Target tracking of 16 s of real-time data with the presence of a 20 dBm2 stationary
clutter in the proximity of the target is simulated on the FPGA-in-the-loop test bed. Because
the 4× 4 AESA and 4× 4 DPA produce wide beamwidths, the difference between the
beamforming gains of the clutter skin return and the target skin return is no more than
3 dB. The target signal suppression is mostly from the MTI filter. The angle tracking results
are plotted in Figure 16. The range tracking results are shown in Figure 17. The Doppler
tracking results are shown in Figure 18. The velocity tracking results are shown in Figure 19.
At about 20 dB post-FFT SNR, as shown in Figure 11, the tracking estimates of the target
angle numbers, the target range and the target Doppler value all match well with the true
values of the target angle numbers, the target range and the target Doppler. There are
Doppler error ramping-ups (about 5× 10−6 in error magnitude) during the target tracking.
This is likely due to the coupling of the Doppler tracking loop and the monopulse angle
tracking loop, as shown in Figure 5.
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Figure 17. The range tracking performance over time.

One note is that the FPGA initializes all internal states and all the outputs to zeros at
time 0, when the FPGA is powered up. We cannot force the initial values of the FPGA to
take any other values. It takes 0.02 s of real time to initialize the FPGA internal states to the
desired initial values since the time granularity for parameter updates is 0.01 s. After the
internal states are initialized at 0.02 s, the true values of the target are outputted. However,
it still takes time to update the radar estimates from all zeros due to signal processing delay.
For example, the range estimation uses the order 0 IIR filter smoothing operated at a 100 Hz
sampling rate. The filter has the form of 0.25

1−0.75z−1 . After 0.02 s, it takes additional transient
time (more than 0.04 s) to drive the range estimate from zero to the stable value. For the
Doppler tracking, the tracking happens after the range tracking converges. We freeze the
Doppler estimate to the initial Doppler value Dinitdop in the first 0.6 s of real time. When
we calculate the tracking errors, we ignore the transient behavior, and only focus on the
stable outputs.
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The measured root mean square tracking errors are shown in Table 3. The angle
tracking errors are less than 0.004 radians, corresponding to about 0.2 degrees. The range
tracing error is about 28 m. The closed loop Doppler tracking gives a small residual RMS
error of 6.6 Hz. The tracking errors are mainly caused by the AWGN noise. For the angle
and Doppler tracking, the residual tracking errors caused by the non-ideal responses of
the tracking filters or PI controllers are negligible compared to the errors caused by the
AWGN noise in this parameter setup. For the range tracking, we observe that the maximal
range tracking error is about half of the actual range resolution. The range tracking error is
mainly caused by the actual range resolution. The velocity errors are derived from both the
angle tracking errors and the range tracking error.
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Table 3. Measured RMS tracking errors.

Item Value

a(0) 3.8× 10−3 radians
a(1) 3.6× 10−3 radians

R (range) 28.06 m
Ddop (the normalized Doppler value) 2.1× 10−6 (6.6 Hz)

4.4. Discussion

This paper proposes a two-phase staggered PRI triangular FMCW signal and the
bare-metal staggered PRI MTI filter to address the radar blind speed problem. This solution
is more effective than using a uniform PRI FMCW waveform and relying on the range
extrapolation solution in [27] because there is a major post-FFT SNR improvement of the
proposed solution in the blind speed zone compared with the uniform PRI waveform. The
combination of the staggered PRI solution and the range extrapolation can be useful for the
scenarios where the staggered PRI cannot remedy the SNR loss in the blind speed zones,
for example, in the first blind speed zone.

The introduction of a Doppler tracking loop makes slow time integration possible.
However, it has more stringent requirements for the initial Doppler estimation than not
employing the Doppler tracking loop because the initial Doppler estimation error reduces
the post-processing SNR (the initial Doppler estimation can be done by search radars).
In the worst case of high Doppler estimation error, the target tracking process cannot
be started.

The multi-target tracking aspect is covered by this paper. Multi-target tracking with
AESA is possible only when the multiple targets share the same TX beam or when simul-
taneous multi-beam TX beamforming is supported. The multi-beam TX beamforming
reduces the EIRP of each beam. A careful study of the AESA beam scheduling can be found
in [44,45] and is outside the scope of our paper.

The digital signal processing part of the radar design is reported in this paper. We are
working on the RF system and the antenna system using mainly off-the-shelf devices. The
next step is to integrate the FPGA design into the RF and antenna systems and design and
implement the calibration algorithms for the whole system.

5. Conclusions

A simple yet effective two-phase staggered PRI FMCW signal and the corresponding
receiver MTI filter are proposed for the first time in this paper. The TPS-PRI scheme has a
smaller period than the staggered PRI schemes with more than two phases. This enables
a new design that has slow time signal integration and a Doppler tracking loop in the
frequency domain to boost the post-FFT SNR. The combined TPS triangular FMCW solution
and the slow time signal integration algorithm gives only a 2 dB SNR loss compared to the
raw post-FFT SNR. We deploy this combined algorithm on the FPGA-in-the-loop radar
test bed. This test bed achieves more than 10 times the simulation speed compared with
the pure computer-based simulation. The simulation results of 16 s of real-time radar
tracking show that the RMS angle tracking error, the RMS range tracking error and the
RMS Doppler tracking error are about 0.2 degrees, 28 m and 6.6 Hz, respectively, at 20 dB
post-FFT SNR.
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