
sensors

Article

EDISON: An Edge-Native Method and Architecture for
Distributed Interpolation

Lauri Lovén 1,* , Tero Lähderanta 2 , Leena Ruha 2,3 , Ella Peltonen 1 , Ilkka Launonen 2 ,
Mikko J. Sillanpää 2 , Jukka Riekki 1 and Susanna Pirttikangas 1

����������
�������

Citation: Lovén, L.; Lähderanta, T.;

Ruha, L.; Peltonen, E.; Launonen, I.;

Sillanpää, M.J.; Riekki, J.; Pirttikangas,

S. EDISON: An Edge-Native Method

and Architecture for Distributed

Interpolation. Sensors 2021, 21, 2279.

https://doi.org/10.3390/s21072279

Academic Editor: Marco Picone

Received: 28 February 2021

Accepted: 22 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Ubiquitous Computing, University of Oulu, FI-90014 Oulu, Finland; ella.peltonen@oulu.fi (E.P);
jukka.riekki@oulu.fi (J.R.); susanna.pirttikangas@oulu.fi (S.P.)

2 Research Unit of Mathematical Sciences, University of Oulu, FI-90014 Oulu, Finland;
tero.lahderanta@oulu.fi (T.L.); leena.ruha@luke.fi (L.R.); ilkka.launonen@oulu.fi (I.L.);
mikko.sillanpaa@oulu.fi (M.J.S.)

3 Natural Resources Institute Finland, FI-90014 Oulu, Finland
* Correspondence: lauri.loven@oulu.fi

Abstract: Spatio-temporal interpolation provides estimates of observations in unobserved locations
and time slots. In smart cities, interpolation helps to provide a fine-grained contextual and situational
understanding of the urban environment, in terms of both short-term (e.g., weather, air quality,
traffic) or long term (e.g., crime, demographics) spatio-temporal phenomena. Various initiatives
improve spatio-temporal interpolation results by including additional data sources such as vehicle-
fitted sensors, mobile phones, or micro weather stations of, for example, smart homes. However,
the underlying computing paradigm in such initiatives is predominantly centralized, with all data
collected and analyzed in the cloud. This solution is not scalable, as when the spatial and temporal
density of sensor data grows, the required transmission bandwidth and computational capacity
become unfeasible. To address the scaling problem, we propose EDISON: algorithms for distributed
learning and inference, and an edge-native architecture for distributing spatio-temporal interpolation
models, their computations, and the observed data vertically and horizontally between device, edge
and cloud layers. We demonstrate EDISON functionality in a controlled, simulated spatio-temporal
setup with 1 M artificial data points. While the main motivation of EDISON is the distribution of the
heavy computations, the results show that EDISON also provides an improvement over alternative
approaches, reaching at best a 10% smaller RMSE than a global interpolation and 6% smaller RMSE
than a baseline distributed approach.

Keywords: edgeAI; edge computing; interpolation; distributed AI; distributed computing; kriging

1. Introduction

More than half of the world’s population lives in cities and by 2050, this number
is predicted to increase to nearly 70% [1]. Increased numbers of people populating ever
smaller areas of land increases the need for development of information and communi-
cation technologies, to support access and reliability of networking services in the urban
environment. This societal and technological development plays an essential role in the
development of smart cities, aiming to improve efficiency, sustainability and resilience of
both the city itself but also urban networking infrastructure [2].

City-scale sensing technologies and data-driven solutions can also be seen as an
enabler for novel smart applications [3,4]. These applications and services can support
e.g., sustainability of the building blocks, enlarge business opportunities, and improve
the development of urban services across domains and stakeholders. Keeping up and
further improving sustainability [5] has already affected many of the aspiring smart cities,
which are full of sensor-equipped technologies [2,6], such as water and electric meters,
and sensors measuring traffic and weather. Patterns, anomalies and events identified in the
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data provide novel insights and help to prepare for unforeseen scenarios in city planning.
However, several challenges related to the networking architecture itself need to be tackled
before these benefits can be fully realized.

From a data point of view, the ever evolving massive scale of the city-driven data [3]
requires novel data preprocessing and management technologies on a scale not seen before.
The data sources include, e.g., various sensing devices, smart traffic and vehicles, spatial
data, user-contributed content, and data available from authorities, businesses, private
citizens, and various different services [7]. The heterogeneity of sensors and the wildly
varying urban data sources require advanced modeling and analytics technologies suitable
for understanding city activities. Because there are people both generating the data and
using it [6], security and privacy must be guaranteed as well. Whatever the solutions to
tackle these challenges, they need to offer a feasible trade-off between cost and quality
to justify the investment, especially for municipalities which are the master operator for
different urban computing activities and platforms [8].

Moreover, computational and networking capabilities need to match the increasing
needs of services and applications available. City-scale sensor networks and data alone
do not usually provide the computational capabilities for further intelligent operations,
especially if the main target is to understand the whole contextual and situational picture of
the urban environment. In addition, connectivity of the data providers, especially moving
objects such as vehicles and carry-on smart devices, may be intermittent and at times low
in bandwidth [9]. At the same time, understanding the situational and contextual picture
of what is happening in the city requires, in some use cases, real-time data processing [10]
in terms of milliseconds to seconds to adjust for e.g., use of emergency services and smart
traffic operations.

These challenges of (1) large-scale data, (2) heterogeneous data providers, (3) mobile
and low-capability devices as an integral part of the system, and (4) real-time requirements
of many urban services, can make traditional cloud-based solutions infeasible. The edge
computing paradigm is nowadays suggested to become a key driver to solve these urban
computing challenges [11–15], expanding from a single site to smart city scale [16,17].
Application request can be generated at a distance, e.g., in a cloud, but the actual data
processing occurs at the edge. Particular benefits are seen in (1) in-network processing
of massive-scale heterogeneous data from different domain sources, deemed unrealistic
for cloud platforms [18], (2) the low latency provided by edge [12,19], crucial for smart
safety, emergency, and health scenarios, and (3) location-awareness and edge computing
architectures simplifying, respectively, city network structure and information flow [9,19].

However, no edge architecture is yet ready to become city-scale from the current
“IoT-scale”, managing the operations of a single home, building, or factory. Even with
the latest edge computing platforms, a number of challenges must be solved. These are
especially the proper data analytics capabilities and results delivery, currently discussed
under the topic of intelligent edge or EdgeAI [20]. In this development, not only running
distributed machine leaning or artificial intelligence algorithms on the edge platform
is important [21,22], but also collecting, storing, pre-processing, integrating, and fusing
the heterogeneous data from various urban sources. Further, large-scale urban areas set
physical geographical challenges [11] with various participating devices from stationary
buildings to moving vehicles, buses, taxes, and driving-assisted or self-driving cars.

These challenges we have outlined are, of course, impossible to solve in a single
scientific article. In our previous work, we have proposed a distributed architectural
approach based on the EdgeAI paradigm [20] and tested these preliminary EdgeAI methods
with road-weather forecasting using distributed sensor fusion and linear mixed models [23].
With our interest in physical geographical areas, we now study environmental sensing,
sensor data modeling, and spatio-temporal interpolation of the data to unobserved regions
at a city scale. We focus especially on two of the challenges named above, namely, large-
scale data produced by mobile and low-capability devices, briefly touching a potential
approach for real-time support in the Discussion section (Section 5). Indeed, Gaussian
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Process regression, a popular method for non-linear regression and interpolation of spatially
and temporally irregular observations, has computational complexity relative to the N3,
where N is the number of observations [24]. It is clear that such a method is untenable in
the data-rich environments of smart cities.

We have provided an early vision for combining multiple data sources to a city-scale
computing environment by using edge computing capabilities, an architecture and related
analysis methods we call EDISON [25]. The early vision described some of the challenges as
well as their possible solutions in edge-native spatio-temporal interpolation, and outlined
a potential approach, but lacked a description of the methods and algorithms required,
a rigorous evaluation, and an edge-native architecture with communication links between
the devices. In this paper, we elaborate the EDISON approach, describing the architecture
as well as the methods and algorithms in detail, and provide an extensive evaluation in a
simulated and controlled environment. Further, contrary to our other previous work that
utilized real-life data to showcase the feasibility and applicability of the calibration method
employed by EDISON [23], we now focus on evaluating EDISON distributed learning and
inference methods with controlled, simulated data to present a viable alternative in the
area of city-scale data-driven edge computing.

In this work, we look at large-scale environmental sensor networks and the models
used to analyze their data. In particular, we concentrate on interpolation models which
extend the observations of a sparse sensor network to those areas and points in time where
no observations are available. Section 2 first looks into the state of the art on the subject.
In Section 3 we outline EDISON, a novel, edge-native interpolation architecture, and detail
the related methods, while Section 4 presents a simulated example with a preliminary
prototype model based on EDISON. Finally, in Section 5 we discuss the results, while
Section 6 concludes the study. The contributions of this paper can be summarised as
the following:

1. We present an edge-native, distributed interpolation architecture for the smart city
networking environment, characterized by spatio-temporal nature and large-scale
communications.

2. We present a distributed learning and inference method for our architecture, to make
edge-native interpolations with spatio-temporally distributed data.

3. We evaluate our solution with a controlled environment of simulations, enforcing the
natural phenomena observed in our previous work [23].

2. Related Work

Edge computing. The terminology and the definitions of concepts in edge computing
are not fully agreed upon. For example, proponents of the fog computing model consider
fog to be a continuum of computing resources along the path from devices to the cloud,
and identify edge computing with the devices and their users [26]. On the other hand,
edge computing proponents consider edge to comprise resources for communication, com-
putation, control and storage, in close proximity to the devices and end-users, with those
resources ranging from light devices to small-scale edge data centers [15]. In this article,
we follow the terminology of the edge computing proponents, and consider a three-layer
model with a remote cloud, local edge computing servers, and finally the devices.

City-scale computing. The highlighted challenges of city-scale computing can coarsely
be summarised as (1) large-scale data quantity and how to process it efficiently [3], (2) het-
erogeneous data providers in terms of data quality, source (varying from private citizens
to vehicles and industrial applications), and sampling frequency [6,7], (3) mobile and
low-capacity devices as a part of the system, especially private carry-on devices and
vehicles [10,27], and (4) real-time requirements to produce efficient recommendations,
situational awareness, and other big-picture services and applications [10]. Some platforms
are suggested for city-scale computation activities, including both “traditional” elastic
cloud services [28] and data lakes [29].
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Further, Internet of Things (IoT) devices, sensors, and different carry-on devices
producing data are often limited in computational and transmission capabilities [30].
The current, heavily cloud-based solutions require data aggregation and processing in a
remote computational environment, imposing several challenges such as high networking
load and latency, high transmission costs, and loss of privacy [16,21,22]. For example,
when real-time decision-making is required, such as with autonomous vehicles, high
latency for centralized sensor data collection and real-time feedback are untenable. Thus,
instantaneous cloud-based operation seems not to be practical at least with real-time
contextual data. It is suggested that bringing computations closer to the participating
devices in the edge computing model tackles the cloud challenges [20,31].

Edge computing for smart cities. Today, the current research trend agrees that when-
ever cloud-only architectures are not feasible anymore, edge computing paradigm needs to
emerge into the city-scale environment. For instance, Hossain et al. [32] present an edge
computing framework for situation awareness in an IoT-based smart city. Their first exper-
iments consider latency and situation awareness when raw IoT data is processed at the
edge devices, with a multi-layer architecture. However, they utilize the edge only for data
processing, demanding the cloud services for the final combination of the data and running
learning models. This is, by our understanding, not meeting the real-time requirements
when not only processing but also the delivery of results should be considered in a timely
manner. On contrary, Barthélemy et al. [10] utilize a local computational board of a camera
to fulfill real-time requirements in a local context, but the applicability over a widely spread
system (and other verticals) is still left as an open question.

Cicirelli et al. [11] present an agent-based, distributed platform for managing a net-
work of computing nodes, spread within a city. Computation is conducted at the edge as
well as the cloud, which handles computationally demanding tasks. Their proposed plat-
form focuses on the dynamic deployment of new computing nodes and software agents
for addressing geographical challenges, allowing a certain level of mobility for the agents
(e.g., people with carry-on devices or vehicles). However, while their work focuses on the
design and overall edge-cloud architecture, we aim in this paper to propose an edge-native
architecture as well as a distributed method for efficiently tackling spatio-temporal challenges.

Taleb et al. [12] propose a Multi-Access Edge Computing (MEC) based architecture
where services follow the users, with increased mobility causes service migration between
the edge operators along the way. However, with regard to the geographical and spatio-
temporal challenges, it is not clear that such a hop between operators can always take place
in a resource-efficient manner. Buildings and geographical features of the terrain can either
decrease the quality of the connection or block it entirely, and spatio-temporally rapid,
fast-moving other devices in the same environment can cause unexpected load for service
providers and edge services. Thus, we use as a de facto starting point for our work the
situation where edge clients and nodes of different capabilities roam freely in a geographi-
cally diverse environment. This perspective is also considered by Giardano et al. [13]—but
with limited evaluation of parameters affecting or affected by the movement between edge
servers—and our previous work where we considered a real-life use case highlighting the
phenomena [23]. In this work, we analyze such an environment through a simulation study.

City-scale sensing and data analytics. Smart cities rely on IoT, big data, cyber-
physical systems, and edge-cloud computing continuum technologies [28,33] to provide
data not only for novel applications but also other key functionalities of the enlarging
urban spaces, such as increasing urban sustainability [2]. However, sensor data collection
is rarely enough to provide timely feedback, decision support and situational awareness.
Rather, multi-phased data processing is required. Pre-processing, cleaning, data fusion,
and interpolation techniques can need to be widely considered before even the first steps
of ML/AI learning phases can be run. Considering these pre-pocessing steps alone—add
to the actual model building and evaluation—makes analyzing the huge amount of urban
data both challenging and time-consuming.
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Smart city applications use different processing approaches, e.g., batch and stream
processing, supported by various big data architectures. Such solutions, however, are
still usually cloud-based (see e.g. [34]) or only partially supported by edge computing
environment [32]. Some studies do concentrate on data analysis on the edge-based or
edge-cloud continuum platforms [35], but give on only limited focus on the distribution of
interpolation and analytics models crucial for the pre-processing steps and data distribution
into the system.

Interpolation. There is a long history of interpolation based on Gaussian process
(GP) regression [24]. A fundamental problem, however, is the method’s computational
complexity, relative to N3 in processing time and N2 in memory capacity, where N is the
number of observations [24,36,37]. A few recent studies address this issue.

Some studies concentrate on the methodology of clustered Kriging. Park and Ap-
ley [38] present a method for patching together locally fitted spatial GP models by aug-
menting the data with pseudo-observations at the boundaries of the local models, such
that the Kriging model remains formally a GP. Yasojima et al. [39] propose a heuristic
approach using clustering, genetic algorithms and KNN for automatic estimation of var-
iogram parameters in Kriging. van Stein et al. [36] propose a method for reducing the
computational complexity of Kriging by partitioning the data set into smaller clusters with
multiple Kriging models, and then applying approximative Kriging algorithms.

Further, Hernández-Peñaloza and Beferull-Lozano [40] present a distributed iterative
Kriging algorithm for spatial interpolation in a wireless sensor network, where Kriging
variance is reduced with iterative addition of new nodes to a cluster. The algorithm pro-
posed by Chowdappa et al. [41] forms clusters of a wireless sensor network by minimizing
Kriging variance and then estimates the semivariogram and interpolates locally in each
cluster. Finally, Amato et al. [37] propose a spatiotemporal interpolation method, based on
neural networks and centralized processing.

However, Yasojima et al. [39] do not aim to distribute the heavy computations related
to GP regression, Hernández-Peñaloza and Beferull-Lozano [40] and Chowdappa et al. [41]
only consider spatial interpolation, while Amato et al. [37] only consider fixed (i.e., non-
mobile) sensors. Further, none of the above studies consider an edge-native architecture to
mitigate the distribution of computations and reduce the burden on the core networks.

Edge-native distributed learning. A number of recent surveys (see e.g., [22,42–45]) re-
view edge-native machine learning and EdgeAI approaches. While most approaches focus
on distributed learning of neural networks (see e.g., federated distillation by Jeong et al. [46],
a variant of Google’s federated learning [47] approach), there are currently no neural
network-based approaches for interpolation which can cope with mobile sensors [37].
Further, we have found no approaches which consider spatial covariance structures of the
data in the distribution of learning.

3. EDISON

In this paper, we propose EDISON: a set of algorithms and an edge-native architecture
for distributing spatio-temporal interpolation models, their computations, and the observed
data vertically and horizontally between device, edge, and cloud layers. On the device
layer, mobile and fixed sensors collect data, while IoT gateways provide connectivity and
local data storage for the mobile sensors. The edge layer has edge servers (ES), placed
at the fixed sensor locations, providing local computational capacity. Finally, the cloud
provides centralized large-scale compute. An overview of the architecture is illustrated
in Figure 1.
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Device

Mobile sensor

Edge

Cloud

IoT gateway

Edge server

Vehicle

AP

Fixed sensor

Figure 1. Overview of EDISON. The device layer comprises fixed sensors as well as mobile sensors
mounted on vehicles. IoT gateways provide connectivity, store mobile sensor observations, and pro-
vide local computational capabilities. The edge layer enhances the fixed sensors with connectivity
and further computational capacity. Cloud provides coordination and centralized processing.

EDISON assumes a small number of fixed sensors, e.g., radio weather sensors (RWS),
and a massive fleet of mobile sensors mounted on vehicles. The mobile sensors use a short-
distance wireless connection (e.g., Bluetooth Low Energy) to connect to an IoT gateway
with a Wi-Fi uplink. Each fixed sensor is equipped with an edge server for local processing,
as well as a Wi-Fi access point (AP), accepting connections from the IoT gateways on the
vehicles, with sufficient range to cover vehicles passing by. The APs are assumed to be
connected to a WAN with Internet connectivity.

The sensors are assumed to have, over a period of time, collected a spatio-temporal
training set of the observed variables, and transmitted it to a centralized cloud server.
The phenomenon predicted is assumed to be spatially distributed with relatively indepen-
dent local data generating processes.

EDISON’s operation comprises three distinct states, outlined below:

1. Calibration

(a) CLOUD: Estimate calibration parameters for mobile sensors. Calibrate the collected
sensor training set.

(b) CLOUD: Transmit estimate calibration parameters to edge servers.
(c) EDGE SERVERS: Transmit calibration parameters to IoT gateways passing by.
(d) IOT GATEWAYS: Transmit calibration parameters to mobile sensors.
(e) MOBILE SENSORS: Apply calibration.

2. Distributed learning

(a) CLOUD: Partition the training set into subsets of observations around each edge server.
Aim for subsets whose observations are maximally independent of the observations in
other subsets.

(b) CLOUD: Send the partitioned training set to all edge servers, rasterized to reduce
transmission burden.

(c) EDGE SERVERS: Fit a local, spatio-temporal interpolation model for the observations
in the edge server’s subset of the training set.

3. Distributed inference

(a) MOBILE SENSORS: Send all observations immediately to the IoT gateway in the vehicle.
(b) IOT GATEWAY: Store observations. Send stored observations to an edge server when

passing by.
(c) FIXED SENSORS: Send all observations immediately to edge servers.
(d) EDGE SERVERS: Every time interval, find the right edge server (i.e., the right cluster)

for each new mobile observation from IoT gateways that have passed by.
(e) EDGE SERVERS: Send new mobile observations to selected edge servers.
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(f) EDGE SERVERS: Every time interval, apply the local interpolation model with the data
collected by the sensors.

The calibration and distributed learning states are employed only once, in the beginning of
the operation. Having completed those states, the distributed inference state is the standard mode
of operation (Figure 2). Calibrating the mobile sensors with a linear mixed-effects model and a
rendezvous calibration model, based on the data provided by the fixed sensors, was proposed in
our earlier study [23]. In this paper, we study the EDISON distributed learning and inference states.
These are further detailed in the following subsections. The symbols used are listed in Table 1.

Calibration Distr. 
Learning

Distr.
Inference

Figure 2. EDISON operational states. Calibration and distributed learning are employed once, in the
beginning of operation, after which distributed inference is the standard operative state.

Table 1. Symbols in EDISON algorithms and equations.

Symbol Range Description

N ∈ N the number of observations in the training set
L ∈ N the number of observations for inference
M ∈ N size of neighbourhood (i.e., n. of obs.) around each observation
K ∈ N number of fixed sensors/clusters
neigbourhoodi observations in the neighbourhood around observation i
O ∈ N the number of raster cells on the map
xo, o ∈ [1, . . . , O] ∈ R2 coordinates of the center of raster cell o
fl , l ∈ [1, . . . , K] ∈ R2 location of fixed sensor l
Q ∈ N; the dimension of the interpolation model parameters
θi, i ∈ [1, . . . , N] ∈ RQ interpolation model parameters of the ngbh. around observation i
θo, o ∈ [1, . . . , O] ∈ RQ mean of the interpolation model parameters at raster cell o
θl , l ∈ [1, . . . , K] ∈ RQ mean of the interpolation model parameters at fl
yij ∈ [0, 1] membership of observation i to cluster j
λ ∈ [0, 1] tradeoff between proximity and similarity in clustering
d ∈ N size of neighbourhood for knn
z the interpolation by the cluster model
d(·, ·) ∈ [0, ∞] distance between two locations
{·} set

3.1. Distributed Learning

Distributed learning comprises two distinct phases, namely, (1) spatial partitioning of
training set, taking place in the cloud; and (2) local interpolation model training, taking
place on the edge servers. Figure 3 provides an overview of the process.
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1. Clustering

2. Transmit
clustered

data3. Build 
local 

model

2. 

2. 

3.

3.

3.

Figure 3. EDISON distributed learning. Cloud partitions the training set, the partitioned data is
transmitted to the edge layer, and edge servers train local interpolation models.

Spatial partitioning of training set aims to divide the training set such that each
edge server has an optimal subset of the observations, one subset for each edge server.
Optimality here is based on the following intuitive and partially conflicting objectives:

• Independence: each subset should be as independent as possible from the others.
• Spatial connectedness: each resulting subset should be a spatially connected set

of points.

Independence aims to maximize the overall quality of all the interpolation models,
built by the edge server dedicated for each subset. Indeed, if the subsets of the training
set are independent, the local models, trained with those subsets, can provide accurate
interpolations with local data only. Independence thus aims for the quality of the local
models individually, aiming for a partition that follows the spatial boundaries between
the underlying data generating processes. Finally, spatial connectedness further drives the
homogeneity of the subset while also making it easy to find clusters for new observations
in the inference state.

EDISON aims for maximal independence and connectedness by emphasizing prox-
imity and similarity. Proximity derives from Tobler’s first law of geography, which states
that everything is related to everything else, but near things are more related than distant
things [48]. Similarity aims for the observations in a subset to vary in a similar pattern.

Algorithm 1 describes the distributed learning process formally. Similarity is based
on the parameters of an interpolation model, fitted in the cloud for each observation with
data in the spatial neighbourhood of that observation. Partitioning, conducted with a
multidimensional clustering algorithm, aims to maximize the proximity and similarity
of the training set subsets, based on the spatial coordinates of the observations and the
parameters of the neighbourhood model for each observation.

The observations are rasterized on a grid of desired granularity before passing the
raster for clustering. Setting the granularity, rasterization has two benefits. First, it re-
duces the computational complexity of the clustering, which is potentially computationally
demanding with very large data sets, and second, it reduces the downstream data trans-
mission burden when sending the clustered observations back to the edge servers.
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Algorithm 1: Distributed learning
input : observations i ∈ [1, . . . , N], M, O, K, { fl}l∈[1,K], raster, {xo}o∈[1,...,O], d(·, ·),
output : clustered observations
CLOUD:

for each observation i ∈ [1, . . . , N] do
neighbourhoodi ← M observations nearest to i;
θi ← fit interpolation model for neighbourhoodi ;

end
for each raster cell o ∈ 1, . . . O do

θo ←mean of θi in o;
end
for each fixed sensor l ∈ 1, . . . , K do

θl ←mean of θi at fl ;
end
clustered observations← find clusters({ fl , θl}l∈[1,...,K], {x0, θ0}o∈[1,...,O]);
transmit clustered observations to edge servers ;

EDGE SERVER: on each edge server l ∈ [1, . . . , K]:
θl ← fit interpolation model for observations in cluster l

3.2. Clustering

We propose a multidimensional spatial clustering method for EDISON. We base the
method on our previous work on the PACK algorithm [49–51] modifying it for applicability
in the EDISON environment. In more detail, PACK considers clustering an optimization
problem, where the objective function for EDISON takes the following form:

argmin
ylo

K

∑
l=1

O

∑
o=1

d({ fl , θl}, {xo, θo})ylo

with the following constraints:

1. ylo ∈ [0, 1] ∀l, o
2. ∑K

l=1 ylo = 1 ∀i

The constraints ensure a raster cell may belong to exactly one cluster (see [49,50]).
The edge server locations fl are constants, set to the locations of the fixed sensors.

We further apply a distance function

d({xi, θi}, {xj, θj}) = λ
2

∑
a=1
|xia − xja|3︸ ︷︷ ︸

proximity

+ (1− λ)
Q

∑
b=1

(θib − θjb)
2

︸ ︷︷ ︸
similarity

,

where λ incorporates the trade-off between proximity and similarity in the clustering [50].
The proximity part is here cubed to ensure it dominates over long distances, keeping
the clusters compact. | · | denotes the absolute value, required to keep the proximity
part non-negative.

3.3. Distributed Inference

In the distributed inference state each edge server provides interpolations based on
newly observed data and their locally trained models. Sensors transmit their observations
to the edge server either directly, in case of fixed servers, or by way of the IoT gateway when
passing by an access point, in case of the mobile ones. The edge servers, upon receiving
new data from the mobile IoT gateways, partition the set of new observations according to
the subsets of the training set found in the distributed learning state, and transmit those
partitions to their designated edge servers (Figure 4).
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1. Transmit
observations

2. Find the 
right ES for 
each new 

observation

3.

3. Transmit 
partitioned 

data

4. Predict
with data 
for this ES

1. 
1. 

3.

Figure 4. EDISON distributed inference. Edge servers partition newly-observed data, transmit the
partitions to their designated edge servers, and use the local new data for interpolation.

Algorithm 2 details the inference process, which comprises two distinct parts, process-
ing in parallel. In the first part, the edge servers employ the k-nearest neighbours (knn)
algorithm [52] to decide which edge server will be sent which new observation, and then
transmit the observations over WAN to their designated edge servers. In the second part,
the edge servers use the local models and the new local data, sent by the sensors and the
other edge servers, to provide the interpolations.

Algorithm 2: Distributed inference
EDGE SERVER: on each edge server:

input : new mobile observations i∗, clustered observations, distance function d
clustered new observations← knn(i∗, clustered observations, d) ;
transmit(new observations for cluster l to edge server l)

EDGE SERVER: on each edge server:
input : new observations i∗

interpolate with new observations i∗, θp ;

4. Evaluation

We evaluate EDISON with simulated data to highlight the different complex spatio-
temporal dependencies. The evaluation process involves the following steps:

1. Generate artificial ground truth data comprising complex spatio-temporal depen-
dency structures.

2. Simulate sensor data.

(a) Simulate static sensor locations.
(b) Simulate mobile sensor trajectories.
(c) Collect observations from the static sensor locations and along the mobile

sensor trajectories.

3. Run EDISON.

(a) Split the observations into training and test sets.
(b) Conduct EDISON distributed learning on the training set.
(c) Conduct EDISON distributed inference on the test set.

4. Calculate results.

(a) Compare EDISON results to ground truth with RMSE.
(b) Compare reference results to ground truth with RMSE.

Each step is described in detail in the subsections below.
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4.1. Data Generation

We simulate a data-generating process, and a number of sensors observing it, on a
rectangular 100 × 100 raster for 100 time-steps, comprising a total of 1 M data points.
The data-generating process comprises four side-by-side spatio-temporal Gaussian point
processes [24], independently affecting equal areas of a common map. Each process has a
separable covariance structure Σ = Σs ⊗ Σt, where ⊗ is the Kronecker product. The spatial
component Σs is further set to follow the Matern covariance function, and the temporal
component Σt the exponential covariance function. Finally, adding some Gaussian noise to
the outcomes of the processes, we have

Yt,p = ap +Xt,p + ε, Xt,p ∼ GP(0, Σp), εp,t ∼ N(0, 0.52),

where Xt,p designates the spatial frames, one for each time step t ∈ [1, T] and process
p ∈ {1, 2, 3, 4}, ap is a process specific intercept, and ε designates Gaussian noise with a
standard deviation of 0.5. The spatial and temporal covariance matrices are generated with
the R package fields [53].

Generating the data with a purpose-built R function, we further observe that for a
linear combination Z = LX of uncorrelated, normally distributed observations X ∈ RN ,
X ∼ N (0, IN), where L is a Cholesky factor of Σ (i.e., Σ = LLT is a Cholesky decomposition)
and IN an identity matrix of size N, we have for the covariance of Z

Cov(Z) = E(ZZT) = E
(
(LX)(LX)T

)
= LE(XXT)LT = LLT = Σ,

where E is the expectation, and the penultimate equality derives from the non-correlation
of the observations X. It thus suffices to generate uncorrelated, Gaussian observations X
(with, e.g., the R stat::rnorm function), and multiply those with a Cholesky factor (with,
e.g., the R base::chol function) of Σ.

The structure of side-by-side data generating processes reflects an urban environment
where neighboring microclimates may vary considerably due to differences in, e.g., veg-
etation, heat sources, or construction materials and density [54]. We thus set a slightly
different intercept ap as well as covariance parameters for each of the four Gaussian pro-
cesses (Table 2). The temporal covariance components all have range and phi parameters
set as 1.0.

It could be argued that the ground truth, generated on a raster of 100 × 100 with
100 time frames, is too sparse to properly reflect a smart city environment. However,
assuming a structure of (relatively) independent, side-by-side data generating processes,
the 100 × 100 raster can be considered a randomly selected (and thus representative) region
within the smart city, suitable for performance evaluation. Further, since we want to
compare the results to a global interpolation, whose computational complexity is relative
to N3 [24], a raster of significantly finer granularity would be prohibitively heavy in
computational burden. Furthermore, generating spatio-temporally correlated observations
requires the Cholesky factorization of very large matrices (due to the Kronecker product),
which is also not computationally feasible with finer granularity.

Table 2. Data generating process parameters for the spatial covariance components.

Region ap Component Cov. Funct. Range Smoothness phi

1 12 Spatial Matern 1 1.7 0.5
2 11 Spatial Matern 9 0.7 2
3 15 Spatial Matern 6 0.6 1.5
4 14 Spatial Matern 0.5 1.7 0.1
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4.2. Sensor Simulation

The simulated sensor network has 10 fixed sensors and a varying number of mobile
sensors (Figure 5). The fixed sensors are located randomly across the area, while the mobile
sensors start at random locations, at random timesteps, and follow a random walk trajectory
with a step-lengt of 2 for 50 timesteps. Excess timesteps beyond the 100th are discarded.
The fixed sensors provide observations every 2 timesteps, while the mobile sensors provide
observations on every time step. Upon the termination of their trajectory, the mobile
sensors are assumed to return to the nearest edge server to transmit their collected data.
The mobile sensor trajectories are generated with the R package trajectories [55].

Figure 5. Simulated sensor trajectories. We marked 250 mobile sensor trajectories in blue, with the
shade implying the time step. Fixed sensors marked in dark red.

4.3. EDISON

We split the data set 0.8:0.2 along the time axis, respectively, in a training set, used
for EDISON distributed learning, and a test set, used for interpolation and comparison
with the ground truth. We use Gaussian Process regression [24] for, respectively, fitting the
pointwise spatiotemporal interpolation models and interpolating the new observations
over the unobserved timeslots and locations. Fitting the Gaussian Process regression model
assumes, here, only an intercept a in the deterministic component: Yt = a +Xt + ε.

As the θi, that is, the similarity parameter for data point variation, we use the one-
dimensional (i.e., Q = 1) variogram parameter sill (see e.g., [41]), estimated for each
observation in a neighbourhood of k = 80 closest points. The pointwise variography
and the subsequent clustering and partitioning are shown in Figure 6. The clustering
parameter λ, capturing the tradeoff between the proximity and similarity of each point, is
set to 0.001. Spatiotemporal variography and Kriging [24] employ the R gstat [56,57] and
spacetime [58,59] packages.
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Figure 6. EDISON partitioning of data. The sill values of the pointwise variograms (left panel)
clearly identify the boundaries between the four data-generating processes. Subsequent clustering
(middle panel) finds those boundaries reasonably well. In the inference state, new observations can
be partitioned among the clusters (right panel).

4.4. Results

We use the root mean square error (RMSE) to measure the quality of the interpolations
in relation to the ground truth. We compare EDISON RMSE to that of some other possible
approaches, listed below:

• global: unclustered interpolation over the whole map
• oracle: interpolation with pre-knowledge of the borders between the four data-

generating processes
• baseline: each observation is assigned to the closest edge server
• E2: EDISON algorithm whose proximity part of the distance function (i.e., the spatial

distance part) is squared, d({xi, θi}, {xj, θj}) = λ ∑2
a=1(xia− xja)

2 +(1−λ)∑Q
b=1(θib−

θjb)
2, instead of cubed (see Section 3.2)

The simulated ground truth, the observations, and the interpolations for oracle, base-
line and EDISON can be seen in Figure 7, while a comparison of the RMSE values for
EDISON, oracle, baseline and global for a varying number of mobile sensors are found in
Table 3 and Figure 8. In short, EDISON outperforms the compared approaches. The results
are further discussed in the following section.

Table 3. RMSEs of EDISON and the alternatives. Best results in each column highlighted in green.

Approach Mobile Sensors
150 250 300

Global 1.30 1.19 1.14
Baseline 1.24 1.14 1.11
E2 1.25 1.15 1.14
EDISON (this study) 1.17 1.12 1.10
Improvement over global 10% 6% 4%
Improvement over baseline 6% 2% 1%
Improvement over E2 6% 3% 4%
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Figure 7. Ground truth, observations, and interpolations. The interpolations are conducted with
oracle clustering, EDISON clustering, as well as a global variogram with no clustering. First three
time frames of test data set are shown, from left to right.
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Figure 8. RMSE values. While interpolation with oracle clustering results in the lowest RMSE values,
EDISON improves on both the baseline clustering as well as an unclustered, global interpolation.

5. Discussion

Results. The main motivation of EDISON is the distribution of the large-scale sensor
data and the heavy computations related to spatio-temporal interpolation of the data. How-
ever, the RMSE results (Table 3 and Figure 8) show that in fact, even if global modelling
were possible, EDISON would improve on the global interpolation by, at best, ca. 10%.
Indeed, fitting a single variogram over the whole area and subsequently using that vari-
ogram for interpolation loses the detail of the local spatial processes and leads to worse
overall performance.

Further, the RMSE results show that taking into account both proximity and similarity
(see Section 3.1) further improves, by 6% at best, on the baseline k-median clustering
algorithm, which accounts only for the proximity of the data. In the same vein, using a
cubed distance instead of the squared one proposed by Ruha et al. [50] improves on the
result with at most 6%. The cubed distance function emphasizes the spatial connectedness
(see Section 3.1) of the clustering, favouring proximity over similarity when observations
are spatially distant.

Limitations. As evidenced by the evaluation results (see Table 3 and Figure 8), EDI-
SON shines when data is generated by a number of complex, relatively independent,
spatially distributed processes. Such processes arguably include, for example, short-term
surface temperatures in urban environments with a number of independent heat sources
as well as varying surface materials and densities. However, as a result of the distributed
nature of EDISON, the interpolated values often have sharp edges between the different
clusters (see Figure 7, EDISON row). If the data-generating processes vary smoothly over
long distances, such sharp edges may not be desirable.

Further, the current architecture has the mobile IoT gateways passing the observations
to the edge servers over Wi-Fi upon rendezvous. While the setup is easy to deploy, it
also introduces some limitations. For example, depending on the mobility patterns of the
mobile sensors, the rendezvous events may be too rare to support timely interpolations.
This is especially true for client applications requiring real-time or near-real time data.

Finally, if the mobility patterns of the mobile sensors have large spatial variance, that
is, wide areas have few observations while others have many, the resulting cluster structure
may not be optimal to provide high-quality interpolations, as some clusters may have too
thin training data. The current architecture does not consider changes in the number or
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mobility patterns of mobile sensors. If, for example, the number of mobile sensors grows
significantly, the edge servers may need to be augmented with further computational
capacity. On the other hand, if the mobility patterns change, there may be a need for
another round of clustering and local learning.

Future considerations. There are a number of possible avenues for mitigating the
above limitations. The sharp edges between cluster interpolations, if undesired in the
application, could be addressed by modifying the interpolation method. For example,
the patchwork Kriging method by Park and Apley [38] could replace the ordinary Kriging
approach used here. Patchwork Kriging generates pseudo-observations along the bound-
aries between neighbouring clusters to tie their results smoothly together. The resulting
communication burden between the edge servers would, however, need to be closely
considered for such a change.

Ruha et al. [50] considered also upper and lower capacity limits in the PACK clustering
algorithm. EDISON could employ such limits for (1) to ensure each cluster has sufficient
data for learning the local interpolation models (lower limit), and (2) assuming the mobile
sensor trajectories maintain their spatial density, to ensure that the edge servers have
enough computational capacity for the interpolation (upper limit). As such, the lower
limit would likely improve the quality of the predictions in cases where the mobile sensor
observations have large spatial variation in their density, whereas the upper limit, while
ensuring computational capacity, would only reduce the quality of the predictions.

Further, for a more real-time operation, a mobile network (e.g., 5G or beyond [60])
could provide easy and fast connectivity with local MEC servers, capable of taking the role
of the EDISON edge servers. Such a setup would, however, require a rethinking of the
EDISON cluster architecture and the data flow in the distributed inference state due to the
different placement of the MEC servers as well as the near-constant connectivity offered by
5G (see Figure 9).

Device

Mobile sensor

Edge

Cloud

IoT gateway

MEC server

Vehicle

Base station

Fixed sensor

5G

BLE

Figure 9. EDISON with Multi-Access Edge Computing (MEC). Coverage of each base station shown
in yellow. Adapting EDISON for MEC requires a rethinking of the cluster architecture, based now
around the BS locations. Further, due to the near-constant connectivity offered by 5G, data flow in
the distributed inference state must be carefully reconsidered.

Finally, while the application here concentrates on interpolation, the same architecture
could be used for predictive analytics in general. As future work, we plan to apply EDISON
on various environmental sensor analytics topics such as local road surface temperature or
friction prediction, extending our previous studies [61,62].

6. Conclusions

Smart cities aim, in part, to refine the observations provided by opportunistic, mobile
sensor networks into fine-grained and reliable interpolations for city-scale contextual and
situational awareness of the urban environment. However, the challenges of large-scale
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data, heterogeneous data providers, mobile and low-capability devices as an integral
part of the system, and real-time requirements of many urban services, can make tradi-
tional cloud-based solutions infeasible. Indeed, few interpolation methods account for the
computational complexity of current interpolation methods, and none consider also the
communication burden caused by a massive sensor fleet uploading their observations over
the wireless and fixed networks in the smart city.

This article proposed EDISON, an edge-native distributed AI architecture and a set of
methods for interpolating the observations of a heterogeneous and sparse set of mobile and
stationary sensors. EDISON addressed, in particular, smart city challenges related to large-
scale data and mobile, low-capability devices. By partitioning the observations to clusters
of manageable size, considering jointly the proximity and the similarity of the observations
(see Section 3), EDISON trained local interpolation models over homogeneous data sets.
The interpolation models, their computations, and the observed data were distributed
vertically and horizontally between device, edge and cloud layers, minimizing both local
computational burden as well as the communication load on the core network.

This study further included a controlled, simulated example with 1M observations of
a spatio-temporal phenomenon. Compared to both a baseline solution considering only
the proximity of the observations (“baseline”), a related solution considering both the
proximity and the similarity of the results (“E2”), and a global, non-distributed solution,
EDISON provided the lowest RMSE scores in all experiments.
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