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Abstract: A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register
(SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment
(WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To
optimize the architecture with respect to power consumption and performance, several techniques
are proposed. A switching method which employs the common mode charge recovery (CMCR)
switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the
switching energy. The switching technique proposed in our work consumes 56.3% less energy in
comparison with conventional CMCR switching method. For high speed operation with low power
consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch
comparator with cascode is implemented. In addition, to optimize the flexibility relating to the
performance of logic part, an asynchronous topology is employed. The structure is fabricated in
65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of
20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at
Nyquist frequency while consuming only 472.2 µW with 1 V power supply.

Keywords: asynchronous control logic; successive approximation register (SAR); wireless access in
vehicular environments (WAVE); low power consumption; capacitive digital to analog converter
(CDAC)

1. Introduction

Internet of Things (IoT) is considered as a challenging technology and next growth
engine that will have an everlasting effect in the semiconductor field. IoT devices have
capability to connect a plenty of different end systems. IoT based techniques applied on
traffic management systems result in an intelligent and advanced transportation system.
A wireless access in vehicular environments (WAVE) is a protocol related to vehicle com-
munications and provides an efficient, and reliable radio communications in an intelligent
transportation system (ITS). In most of the ITS application, the WAVE protocol system
has been designed in such a way to allow one vehicle to communicate with other vehi-
cles (V2V), to other device (V2R), or to infrastructures (V2I) via dedicated short-range
communications (DSRC) [1,2]. WAVE protocol has the potential to carry out an authentic
and competent V2V, V2I and V2R communications to facilitate the mobility, safety and
environmental applications. It consists of an on-board equipment (OBE) and a roadside
equipment (RSE), wirelessly connected to provide an intelligent system. An on-board
equipment (OBE) generally should offer low power, low cost, low design complexity, good
reliability, and high energy efficiency. A fully-integrated RF-SoC is a most suitable option
to meet the above mentioned requirements.
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Figure 1 plots the top block diagram of highly integrated 5.8 GHz DSRC transceiver
system. It satisfies the aforementioned requirements without any externally connected
block like low-noise amplifier (LNA) and external power amplifier (PA) [3]. The main
building blocks consists of a matching network (M.N), single pole double throw (SPDT)
switch, an inductively generated low-noise amplifier (LNA) to amplify the input signal, a
mixer (MIXER), a 12-bit ADC, a 12-bit DAC, a received signal strength indicator (RSSI), a
variable gain amplifier (VGA) with a low pass filter (LPF) and power amplifier (PA) [4].
An integrated SAR ADC allows transceiver to communicate with the digital baseband [5].
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Figure 1. Top architecture of the DSRC transceiver. 

As a result of the breakneck advancement in wireless technologies, a number of com-
munication standard applications including ITS transceivers require on-chip ADCs with 
a sampling speed of few tens of MS/s and a resolution of more than 10 bits. The converters 
for finest communication systems, which include wireless local area networks (WLANs) 
based on IEEE standards protocol IEEE 802.11 require comparatively higher resolution of 
more than 10-bit and sampling rate of about few tens of MS/s [6]. 

Successive approximation register (SAR) analog-to-digital converters (ADCs) have 
been proven to be energy efficient in achieving moderate resolution and speed range [7,8] 
having a single comparator structure with no static power consumption and compara-
tively a simple structure. Recently, SAR algorithm based ADCs have also been used for 
higher speed and medium resolution applications by time interleaving multiple sub-SAR 
channels replacing traditionally implemented flash or pipeline structures [9]. However, 
with the increased number of bits, limitations due to comparator noise become severe 
which make SAR ADC as a difficult approach to implement for high resolution [10,11]. 
An energy-efficient prototype for high resolution is implemented front-end sampling 
switch, which results in eliminating the timing skew [12]. For high resolution ADCs, ca-
pacitive DAC consumes very high switching energy [13], for noise filtering integrator-
based amplifier is used in [14]. Re-configurability and bandwidth scalability is achieved 
in [15] SAR ADC at a cost of comparatively high power consumption. A top-plate sam-
pling increases the precision for 12-bit due to the implemented bootstrap switch. For a 
smaller overall capacitance, a DAC configurable binary window switching technique is 
implemented in [16]. However, it is lagging behind in terms of energy efficiency. For fully 
differential architecture, several techniques have been implemented to decrease the ca-
pacitor array size without digital calibration [17]. To reduce the switching energy and im-
prove the linearity, floating DAC switching technique is presented in [18]. In [19,20], a 
binary-window DAC switching technique is presented to decrease switching error and 
DAC non-linearity at the cost of excessive power consumption. To decrease the distortion 
introduced by threshold voltage and parasitic capacitance, a linearity enhancement switch 
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As a result of the breakneck advancement in wireless technologies, a number of
communication standard applications including ITS transceivers require on-chip ADCs
with a sampling speed of few tens of MS/s and a resolution of more than 10 bits. The
converters for finest communication systems, which include wireless local area networks
(WLANs) based on IEEE standards protocol IEEE 802.11 require comparatively higher
resolution of more than 10-bit and sampling rate of about few tens of MS/s [6].

Successive approximation register (SAR) analog-to-digital converters (ADCs) have
been proven to be energy efficient in achieving moderate resolution and speed range [7,8]
having a single comparator structure with no static power consumption and comparatively
a simple structure. Recently, SAR algorithm based ADCs have also been used for higher
speed and medium resolution applications by time interleaving multiple sub-SAR channels
replacing traditionally implemented flash or pipeline structures [9]. However, with the
increased number of bits, limitations due to comparator noise become severe which make
SAR ADC as a difficult approach to implement for high resolution [10,11]. An energy-
efficient prototype for high resolution is implemented front-end sampling switch, which
results in eliminating the timing skew [12]. For high resolution ADCs, capacitive DAC
consumes very high switching energy [13], for noise filtering integrator-based amplifier
is used in [14]. Re-configurability and bandwidth scalability is achieved in [15] SAR
ADC at a cost of comparatively high power consumption. A top-plate sampling increases
the precision for 12-bit due to the implemented bootstrap switch. For a smaller overall
capacitance, a DAC configurable binary window switching technique is implemented
in [16]. However, it is lagging behind in terms of energy efficiency. For fully differential
architecture, several techniques have been implemented to decrease the capacitor array size
without digital calibration [17]. To reduce the switching energy and improve the linearity,
floating DAC switching technique is presented in [18]. In [19,20], a binary-window DAC
switching technique is presented to decrease switching error and DAC non-linearity at the
cost of excessive power consumption. To decrease the distortion introduced by threshold
voltage and parasitic capacitance, a linearity enhancement switch is implemented in [21].
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A top-plate sampling technique is used to reduce the capacitor array size by half in [22],
but it can cause non-linearity and common mode dependency upon input. A bottom plate
sampling method is presented in [23] to reduce the overall size of the capacitor array.

This paper presents a 12-bit, 20 MS/s asynchronously controlled fully differential SAR
ADC for wide-band WAVE based DSRC transceiver systems. To improve the static and
dynamic performance of ADC, various techniques have been implemented. For 12-bit
ADC, the implemented switching technique with CMCR switching conversion reduces
the switching energy of DAC by 56.3% as compared to the conventional CMCR switching
technique. The top-plate sampling results in increased settling because the influence
of charge injection is reduced due to the aligned switching (AS) and detect-and-skip
(DAS) switching technique. The implemented bootstrap switching technique improves
the static performance of ADC. A constant DC shift and gain error can be introduced
by the sustainable charge injection error, and sampling linearity will not deteriorate by
implemented bootstrap switches. To decrease the power consumption and kickback noise
of ADC, the proposed dynamic latch comparator with cascode is used.

The top configuration of the proposed asynchronous SAR ADC architecture is de-
picted in Section 2. The sub-blocks of the proposed ADC, such as the proposed capacitive
DAC with a modified CMCR switching method, bootstrap switching, and dynamic latch
comparator with cascode are explained in Section 3. The measured results and the perfor-
mance summary of the presented ADC architecture is discussed in Section 4, and finally,
we conclude our brief in Section 5.

2. The Top-Block Diagram of Proposed ADC Architecture

The presented configuration of SAR ADC is depicted in Figure 2. The presented
architecture contains a comparator, SAR logic, clock generator, binary-weighted capac-
itive DAC and bootstrap switch. To improve the common-mode noise rejection and to
reduce the noise of supply voltage we have implemented a fully differential architecture of
SAR ADC. By bootstrap switches, the differential input signal is sampled at the bottom
plate of capacitive DAC. According to the comparator decision and output digital code
stored by the modified asynchronously controlled SAR logic, which controls the capacitive
DAC switches.
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Figure 2. Top block diagram of proposed 12-bit asynchronous SAR ADC.

3. Circuit Implementation
3.1. Capacitive DAC with Modified CMCR Switching Technique

In a conventional switching scheme, for N-bit resolution, SAR ADC usually requires
2N number of unit capacitors. The number of the unit capacitor can be reduced by op-
timizing the capacitive DAC’s switching sequence, which is broadly explored, such as
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common mode based switching, set-and-down [24,25], and so on. The Area and power
consumption of the capacitive DAC are significantly large for the high-resolution ADC
such as over 10-bit resolution. To lower the capacitance from the DAC part, we adopt
the common-mode charge recovery (CMCR) switching method [26]. With this switching,
we use the possible minimum size of the unit capacitor in a capacitive DAC layout. An
example of a 3-bit CMCR switching sequence is represented in Figure 3.
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Figure 3. A 3-bit example of CMCR switching scheme.

The CMCR switching technique operation is based on the common-mode voltage
scheme anticipated by the last comparison cycle. An additional bit is monotonously
converted to the lowest capacitor of capacitive DAC to VREFT from VCM. Due to differential
implementation, noise can be eliminated by the CMCR switching technique, furthermore,
this switching method introduced the ripple in the LSB conversion by VCM. Although,
VCM can easily implement 1-bit accuracy, and it is effective for the reduction of the
cost of sampling switches and DAC. We propose a switching technique based on the
CMCR switching method for 12-bit SAR ADC as shown in Figure 4. Switches S1~S4 are
input sampling switches which sample the input signal to the sub-DACs. The driving
requirement of the SAR logic and comparator must be satisfied by the DAC control switches.
For the 12-bit ADC, large switches are needed to achieve the charge sharing within the
restricted time, because the peak-to-peak value of voltage discrepancy is VREF on the top
plate of the capacitive DAC, which causes the large power dissipation. Besides, the loss
of switching energy in the proposed switching technique for the first ten comparison
cycle is 2/4 times in comparison with the 10-bit CMCR switching method for the DAC
capacitance increase.
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Figure 4. Example of proposed switching technique for 6-bit SAR architecture (a) Sampling phase (b)
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The proposed DAC switching sequence use the detect-and-skip (DAS) technique, and
aligned switching (AS) technique to minimize the switching energy loss and the size of
DAC controlling switches S1~S4, in the comparison phase [14]. The proposed switching
procedure prosecute with two steps:

(1) LSB conversion by the whole sub-DACs.
(2) MSB conversion by one sub-DAC.

The proposed switching technique for 6-bit SAR ADC which contains two sub-DACs
is represented in Figure 4. In the implemented DAC, with the CMCR switching technique
ADC start the conversion of sampling signal after the sampling phase, while sub-DAC
A does not consume any switching energy because it is idle. By using the DAS and AS
technique, the data transferred to sub-DAC A after the generation of the first three bits
(B3~B5). Simultaneously, B2 determines by the comparator. When the sub-DAC B’s LSB
capacitors are switched by B2, the switches SP and SN are switched on in the 4th comparison
cycle. During the 3rd comparison cycle, AS sets up and sub-DACs switching does not
require any additional settling time. In the end, by the CMCR switching technique, the
bits (B1~B0) are converted. By the proposed switching method, we are able to reduce the
loss of switching energy from the capacitive DAC part, because the generation of the first
nine bits is done by only one sub–DAC, and others are idle. The comparison between the
conventional switching and the proposed switching energy versus output code is shown in
Figure 5. The proposed switching method consumes 56.3% less energy when compared to
the conventional CMCR switching method. The voltage variation is very small at the top
plate, and DAC controlling switches S1~S4 requirements are reduced because they turn on
after the achievement of nine bits. The switching energy is very efficient for the DAS and
AS techniques. The dynamic performance with behavioral simulation is done in MATLAB®

of proposed switching technique with 1% unit capacitor mismatch is shown in Figure 6.
The static performance differential non-linearity (DNL), and integral non-linearity (INL)
behavioral model of proposed switching technique with 1% unit capacitor mismatch is
shown in Figure 7.
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For 12-bit, unit capacitor size is calculated with 1 V power supply by considering
the capacitor mismatch and thermal noise power from DAC and due to sampling. The
effective noise power due to sampling and from DAC is calculated by following the
Equations (1) and (2) respectively,

v2
ns =

2KT
CSAM

(1)

v2
nd =

2KT(CDAC)

(CSAM)(CA)
(2)

where, v2
ns is noise because of sampling,v2

nd is effective noise from DAC, K is Boltzman’s
constant, T is the temperature, CSAM is the total sampling capacitance, CA is the intentional
grounding capacitor for attenuation, and CDAC is the overall DAC capacitance. The total
sampling capacitance is 286 C, where C is the unit capacitance with a value of 15 fF.

3.2. Bootstrap Switch

Figure 8 shows the employed schematic of bootstrap switching, which is improved as
proposed in [27]. The implemented bootstrap switch operates at the supply voltage. The
gate body voltage (VGB) of transistor M11 will be twice the supply voltage. Deep N-well
(DNW) transistors M10–M13 are used to reduce the risk of enhancing reliability and failure.
Transistors M10–M12 are turned on during the sampling phase. During this phase, the



Sensors 2021, 21, 2260 8 of 15

gate source voltage (VGS) and VGB of transistor M11 abide to supply voltage. During the
sampling period, the implemented procedure is also competent to increase the sampling
linearity and abolish the body effect because the body source voltage (VBS) of transistor
M11 stays at zero. When the substrate of transistor M11 goes to zero, while M13 is turned
on then transistors M10–M12 are turned off during the conversion phase. In this way, we
can ensure the separation of input VIP/VIN from the output VOUT, because both drain
substrate pn junction and source substrate pn junction are inversely-biased.
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Figure 8. Bootstrap Switching Schematic.

For the differential architecture, we assume that the bootstrap switches matching
accuracy is sufficient, since small common mode variation is caused by this, and the clock
feed-through effect can be ignored. By embracing the implemented bootstrap switch
architecture, we can alleviate the body-effect impact. On the differential inputs, a constant
DC shift and gain error can be introduced by the sustainable charge injection error, and
sampling linearity will not deteriorate. Hence, the clock feed-through and the charge
injection’s negative effect is attenuated by the differential architecture.

3.3. Dynamic Latched Comparator

To decrease the power consumption of ADCs, dynamic latched comparators are
frequently used [28]. Several issues have been considered during the comparator designing
such as; due to the comparator’s clock operation, kickback noise affects the CDAC top
plate. During the monotonic switching, offset voltage Voffset dependent on the VCM and
Voffset generated by device mismatch. The clock transition of the comparator distributes the
comparator differential input VCIP and VCIN. In the proposed dynamic latched comparator,
when the comparator clock signal CCLK goes to high then the input difference is settled.
By the clock feed-through, at the comparator input, kickback noise is created during the
CCLK transition. When the comparator input VCIP and VCIN sort out to a stable voltage
then there is a recovery period. The comparator begins to sort out the variance between
inputs, during this recovery period. Decision error can cause by a small asymmetry in the
recovery period.

The implemented architecture of the comparator is depicted in Figure 9a. Due to the
process variation, mismatch and hysteresis can exist in the comparator because of the use
of transistors M13 and M16. Therefore, to minimize the hysteresis common centroid layout
is used. To reduce the kickback noise and common mode dependent offset calibration
the proposed comparator is designed. Cascode transistors M2, M5, and M6 shield the
input transistors M3 and M4 to reduce the kickback noise of the comparator. The aspect
ratio of cascode transistors M2, M5, and M6 is small so that these transistors operate in
the saturation region and increase the output resistance of these transistors. Increased
output resistance attenuates the large voltage step produced in result of the transition from
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CCLK. By the circuit simulation, we choose the bias voltages VB1 and VB2 and size of the
cascode transistors. We control the current of transistors M5 and M6 through bias voltage
VB2. During the CCLK transition, the peak current reduced through transistors M5 and M6
when bias voltage VB2 is reduced. Furthermore, we optimize the size of input transistors
M3 and M4. The kickback peak value is reduced by using the size optimization and cascode
transistors. Figure 9b represents the DAC output voltages VCIP and VCIN. When CCLK
goes to high from low, the input difference is minimized in the dynamic latched comparator.
At the comparators input, kickback noise is generated by clock feed-through of CCLK
transition. When the comparators input VCIP and VCIN settles to a stable voltage, then
there is a recovery period and in this time period input difference of comparator start to
resolve, decision error can cause by a small asymmetry in the recovery period.
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Figure 9. (a) Schematic of Dynamic Latched Comparator using Cascode to reduce kick-back (DNL), and (b) Waveform
represented the CDAC settling with comparator.

Comparator offset calibration is performed by using binary-weighted capacitor array
to control voltage offset Voffset. We select digital approach instead of analog offset calibration,
because it requires additional DAC [29]. The voltage offset Voffset consists the dynamic and
static offset of the comparator. Voffset of comparator can be derived as:

Vo f f set = ∆VTH3,4 +
VSG − |VTH3,4|

2

(
∆(W/L)3,4

(W/L)3,4
+

∆Rload
Rload

)
(3)

where VTH3,4 is the threshold voltage, ∆VTH3,4 is the threshold mismatch, ∆Rload is the load
resistance mismatch, and ∆(W/L)3,4 is the physical dimension mismatch between transistors
M3 and M4.

3.4. Asynchronous SAR Logic Processing

Asynchronous SAR control logic avoids the need of high frequency external clock
signal as all conversions are carried out in a single clock cycle. To optimize the flexibility
relating to the performance of logic part, an asynchronous topology is employed as shown
in Figure 10.
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Figure 10. SAR logic block diagram.

To optimize the DAC switching and conversion time, we have added the digitally
controllable delay cells for each conversion. Schematic and logic explanation of modified
asynchronous clock generator CCLK is presented in Figure 11. The comparator output
reset to VDD, when CCLK signal is high which is controlled by sampling signal SAM.
SAM is the modified Clock signal with changed duty cycle. After sampling phase SAM
signal goes to low and CCLK makes the comparator starts working after T1 time. The
comparator’s outputs generate a high signal A through NAND1. After T2 time, CCLK goes
to high which results in resetting the comparator for further comparison. After T3 time,
the comparator’s outputs goes to high which generates a low signal A and comparator is
triggered. Digitally controllable delay cell is added in time T3, to optimize the conversion
speed, depending upon the settling time of the DAC.
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description of CCLK generation.

4. Measurement Results

In a one poly six metal (1P6M) 65 nm CMOS technology, the fabricated prototype
occupies an active chip area of 0.14 mm2 as shown if Figure 12. The marked contents of the
die micrograph correspond to each sub block of the proposed SAR ADC. The measured
dynamic performance of the proposed ADC at two different frequencies is shown in
Figure 13. The FFT spectrum shows that it achieves an ENOB of 10.98 bit at 4 MHz input
frequency and 10.58 bit at around Nyquist input frequency with a sampling rate of 20 MS/s
and an input single with a peak-to-peak voltage range of 600 mV.
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Figure 14 presents the measured static performance. The peak differential non-linearity
(DNL) and integral non-linearity (INL) values are +0.6/−0.6 LSB and +0.9/−0.9 LSB,
respectively.
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Figure 15a presents the trend of SFDR and SNDR versus the applied input signal
frequencies at 20 MS/s with 1 V of power supply. ENOB variation with respect to input
signal frequency is shown in Figure 15b. The breakdown of power consumption with
respect of sub blocks is presented in Figure 16.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 15 
 

 

  
(a) (b) 

Figure 14. Static performance parameter (a) DNL, and (b) INL. 

 
(a) (b) 

Figure 15. (a) Input frequency versus SNDR and SFDR. (b) Input frequency versus ENOB. 

 
Figure 16. Breakdown of power consumption of ADC. 

Table 1 presents the performance summary of the proposed architecture and its com-
parison with the other state of the art architectures [15,16,19–21]. It is evident that the pro-
posed architecture exhibits a competitive performance in terms of energy efficiency and 

Figure 15. (a) Input frequency versus SNDR and SFDR. (b) Input frequency versus ENOB.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 15 
 

 

  
(a) (b) 

Figure 14. Static performance parameter (a) DNL, and (b) INL. 

 
(a) (b) 

Figure 15. (a) Input frequency versus SNDR and SFDR. (b) Input frequency versus ENOB. 

 
Figure 16. Breakdown of power consumption of ADC. 

Table 1 presents the performance summary of the proposed architecture and its com-
parison with the other state of the art architectures [15,16,19–21]. It is evident that the pro-
posed architecture exhibits a competitive performance in terms of energy efficiency and 

Figure 16. Breakdown of power consumption of ADC.

Table 1 presents the performance summary of the proposed architecture and its
comparison with the other state of the art architectures [15,16,19–21]. It is evident that the
proposed architecture exhibits a competitive performance in terms of energy efficiency and
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linearity. To evaluate the overall performance of the proposed ADC, the commonly used
parameter, Figure of Merit (FOM), is used as

FOM =
PADC

min{FS, 2× ERBW}2ENOB (4)

where, FS denotes the sampling rate and PADC is the power consumed by the structure.
The proposed structure achieves a FOM of 15.42 fJ/conv. step.

Table 1. Performance summary and comparison.

Parameter [15] [16] [19] [20] [21] This Work

Process (nm) 180 180 180 180 180 65
Supply Voltage (V) 1.8 1.5 1.5 1.2 1.8 1

Resolution (bit) 12 12 12 12 12 12
Sampling Rate (MS/s) 20 20 10 40 10 20

SNDR (dB) 64.6 59.1 63.8 62.5 66.9 65.44
ENOB (bits) 10.44 9.52 10.31 10.09 10.82 10.58
DNL (LSB) −0.51/0.445 −0.65/0.58 1.05 2.33 0.69 −0.46/0.48
INL (LSB) −1.01/0.98 −1.06/1.04 1.38 3.1 1.15 −0.50/0.58

Power Consumption (µW) 1770 1220 600 1320 820 472.2
FOM (fJ/conv. step) 63.7 83 47.2 30.4 44.2 15.42

5. Conclusions

A low power 12-bit, 20 MS/s asynchronously controlled SAR ADC was fabricated
with one poly six metal (1P6M) 65 nm CMOS technology to be used in WAVE protocol
based intelligent transportation system. Several techniques have been proposed to optimize
the architecture with respect to power consumption and performance. To alleviate the
switching energy problem of the DAC part, the proposed switching method which employs
CMCR switching technique is implemented in CDAC part. A mutated dynamic latch
comparator with cascode is implemented to make certain a high speed operation with
low power consumption and to overcome the kick back issue. Moreover, the presented
modified asynchronous topology in control logic part optimizes the flexibility relating to
the performance of logic part. The structure have an active area of 0.14 mm2. The presented
SAR ADC was operated at a sampling rate of 20 MS/s, attaining a peak SNDR level of
65.44 dB with a peak ENOB of 10.58 bits at Nyquist frequency. While consuming only
472.2 µW of power with 1 V power supply, the proposed architecture achieved a FOM of
15.42 fJ/conv. step.
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