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Abstract: Facial expression recognition (FER) is a challenging problem due to the intra-class variation
caused by subject identities. In this paper, a self-difference convolutional network (SD-CNN) is
proposed to address the intra-class variation issue in FER. First, the SD-CNN uses a conditional
generative adversarial network to generate the six typical facial expressions for the same subject in
the testing image. Second, six compact and light-weighted difference-based CNNs, called DiffNets,
are designed for classifying facial expressions. Each DiffNet extracts a pair of deep features from
the testing image and one of the six synthesized expression images, and compares the difference
between the deep feature pair. In this way, any potential facial expression in the testing image has
an opportunity to be compared with the synthesized “Self”—an image of the same subject with the
same facial expression as the testing image. As most of the self-difference features of the images
with the same facial expression gather tightly in the feature space, the intra-class variation issue is
significantly alleviated. The proposed SD-CNN is extensively evaluated on two widely-used facial
expression datasets: CK+ and Oulu-CASIA. Experimental results demonstrate that the SD-CNN
achieves state-of-the-art performance with accuracies of 99.7% on CK+ and 91.3% on Oulu-CASIA,
respectively. Moreover, the model size of the online processing part of the SD-CNN is only 9.54 MB
(1.59 MB ×6), which enables the SD-CNN to run on low-cost hardware.

Keywords: facial expression recognition; difference-based method; self-difference convolutional
neural network; facial expression synthesis; facial expression classification

1. Introduction

Facial expression recognition (FER) aims to classify a static face image or a sequence
of face images into one of the typical facial expression classes, such as anger, disgust,
fear, happiness, sadness, and surprise [1]. Facial expressions often convey cues about the
emotional state and even the intentions of human beings. It is, therefore, unsurprising
that automatic FER systems have many practical applications, including, but not limited
to, human-robot interaction [2], leaner’s interest analysis [3,4], and detection of mental
disorders [5]. Thereby, FER has become one of the hottest research topics in the computer
vision community.

Benefiting from the development of deep learning, great progresses have been made
in the field of FER in the past decade [6]. However, FER is still a challenging problem due
to the intra-class variation caused by subject identities. It is rather difficult to transfer face
images into a feature space where the distance between two samples of different subjects
with the same facial expression is always smaller than the distance between two samples
of the same subject with different facial expressions. To better understand the intra-class
variation, we picked out 90 samples of 5 randomly selected subjects (each subject with
the 6 typical facial expressions and 3 expression intensities) from the CK+ dataset [7],
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and visualized the deep features of these samples extracted by the well-known VGG-face
network [8] fine-tuned on CK+ using the t-SNE [9]. As shown in Figure 1a, the samples
from all the six facial expression classes are entangled with each other, while most of
the samples are relatively clustered according to their identities. As most of the samples
distribute in the feature space according to the identities rather than facial expressions, it is
difficult to design a high-precision classifier for FER.

（a） （b）

Figure 1. Visualization of deep features output by the fine-tuned VGG-face [8] (a) and the self-difference features extracted
by the proposed self-difference convolutional network (SD-CNN) (b). Each dot represents the deep feature extracted from a
face image. Different shapes denote different subject identities, and different colors represent different facial expressions.

To address the intra-class variation issue, several studies [10–12] have tried to rec-
ognize facial expression by comparing a subject’s expression with the neutral expression
of the same subject. In our previous work [10], a deep feature extraction network called
deep peak-neutral difference is proposed to use the difference between two deep rep-
resentations of the fully expressive (peak) and neutral facial expression frames for FER.
The peak-neutral-difference-based methods assume that the images with neutral and peak
expressions can be discriminated accurately from the facial expression sequences. However,
discriminating the neutral or peak expressions is also a tough task. Furthermore, facial
expression sequences even may not obtainable in many application scenarios. In order to
utilize the peak-neutral-difference approach under such scenarios, Yang et al. [12] treated
facial expression as a combination of an expression component and a neutral component
(or identity component) of a subject and proposed a De-expression Residue Learning
(DeRL) procedure to eliminate the subject identity information. First, the DeRL uses a
generative adversarial network to generate the corresponding neutral face image for the
input image. Then, given the generated neutral face image, the DeRL learns the expression
component deposited in the generative model for FER. Although the DeRL can generate a
neutral expression image based on the single input image and tries to remove the identity
component, the expression component deposited in the generative model is not powerful
enough for facial expression classification.

In this paper, we propose a novel approach called Self-Difference Convolutional
Neural Networks (SD-CNN) for FER. Our SD-CNN still uses the feature-level differences
between the testing image and the corresponding synthesized expressions of the same
subject for FER. However, unlike the existing difference-based FER methods that pick out
or synthesize only one reference image with the neutral expression, our SD-CNN uses a
conditional Generative Adversarial Network (cGAN) [13] to generate six reference images
based on action unit intensities. Each of the generated reference images with one of the
six typical facial expressions. Moreover, six compact and light-weighted difference-based
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CNNs, called DiffNets, are designed for classifying facial expressions. Each DiffNet extracts
a pair of deep features from the testing image and one of the six synthesized reference
images, and compares the difference between the deep feature pair. In this way, any
potential facial expression in the testing image has an opportunity to be compared with
the synthesized “Self”—an image of the same subject with the same facial expression as
the testing image. Our insight is that the distance between any potential facial expression
and the synthesized “Self” is very small. As the self-difference features extracted from the
images with the same facial expression gather tightly in the feature space, the intra-class
variation issue is alleviated and, thus, can improve the performance of FER. To confirm this
insight, the self-difference features of the 90 samples mentioned above are also visualized
using the t-SNE [9]. As illustrated in Figure 1b, the self-difference features of different
subjects with the same facial expression are obviously clustered in the low-dimensional
visualization space. It means that the self-difference features are discriminative for facial
expression classification. Our SD-CNN has been evaluated on two widely-used FER
datasets: CK+ [7] and Oulu-CASIA [14]. Experimental results show that our SD-CNN
achieves high accuracies of 99.7% on CK+ and 91.3% on Oulu-CASIA, and it outperforms
most of the current state-of-the-art FER methods on both the two datasets. Moreover,
the model size of the online processing part of our SD-CNN is only 9.54 MB because of the
compact and lightweight design of DiffNets.

The main contribution of this paper is three-fold:
(1) We propose a novel approach called SD-CNN for FER. The self-difference feature

output by our SD-CNN can significantly alleviate the intra-class variation issue in FER an
is discriminative for fical expression classification.

(2) We present a cGAN-base facial expression generator to synthesize reference images
with the six typical facial expressions. Conditioned by empirical action unit intensities,
the generator can synthesize photo-realistic images with the desired expressions from any
input face image.

(3) We design networks called DiffNets to extract the self-difference feature between
the testing image and the synthesized expression image. Despite the fact that DiffNets
are compact and light-weighted, they achieve state-of-the-art performance on public
FER datasets.

The rest of the paper is arranged as follows: the related work is introduced in Section 2,
the details of the SD-CNN are described in Section 3, the experiments are presented in
Section 4, and the conclusions are given in Section 5.

2. Related Work

FER methods can be divided into two main categories according to the information
used: static image-based FER and sequence-based FER. Static image-based methods ex-
tract visual features only from a single face image, while sequence-based methods learn
representations from a sequence of face images with contiguously changed expressions
and may utilize the spatial-temporal information among frames.

2.1. Static Image-Based FER Methods

To mitigate the overfitting problem when training FER models with relatively small-
scale facial expression data, many studies fine-tune networks that have been pre-trained on
task-related large-scale datasets. Liu et al. [15] proposed to pre-train the VGG-face [8] on a
large-scale face-recognition dataset and then fine-tuned the network on a small facial expres-
sion dataset for FER. To extend the generalizability of FER models, Mollahosseini et al. [16]
fine-tuned a GoogleLeNet-like [17] network on a set of public available facial expression
datasets. Ding et al. [18] presented a method called FaceNet2ExpNet to transform vi-
sual representations from the face recognition domain into the facial expression domain.
The convolutional layers of the FaceNet2ExpNet are first trained and regularized by an off-
the-shelf face recognition network, then the whole FaceNet2ExpNet, which consists of the
pre-trained convolutional layers and fully-connected layers, is re-trained jointly on facial
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expression datasets. The FaceNet2ExpNet achieves an accuracy of 98.6% on the small-scale
CK+ dataset when following a 10-fold cross-validation protocol. Although pre-training
FER networks on other face-related datasets help improve the performance, the identity
information retained in the pre-trained models may have a negative impact on the accuracy
of FER [10].

To address the identity retaining problem, several researchers proposed to subtract
the identity component from the face image. In order to develop a pose-invariant facial
expression recognition algorithm, Zhang et al. [19] presented a GAN-based model to
synthesize face images with different poses and expressions. In Reference [20], a GAN-
based approach, called Identity-Adaptive Generative model (IA-gen), is proposed to
alleviate the identity retaining issue by minimizing the distance between the synthesized
prototypic facial expressions and the query image. Based on a CNN fine-tuned on FER
datasets, the IA-gen achieves accuracies of 96.75% on CK+ and 88.92% on Oulu-CASIA.
Fabiano et al. [21] first utilized a deep-learning-based 3D morphable model to synthesize
3D images with different expressions, and then employed the synthesize 3D images to
train deep neural networks for facial emotion recognition on 3D datasets.

Recently, many researchers embedded the attention mechanism into FER networks
to make the networks focus on the most expressive facial regions. In order to suppress
the uncertainties caused by low-quality face images and ambiguous facial expressions,
Wang et al. [22] proposed a Self-Cure Network (SCN) to weight each sample in training
dataset with a ranking regularization by embedding a self-attention mechanism into
neural networks. The SCN outperforms most of the state-of-the-art methods on several
public FER datasets. Wang et al. [23] proposed a Region Attention Network (RAN),
which employs a region biased loss to encourage high attention weights for the important
face regions, to make the network extracts the most expression-related features for FER.
Recently, Gan et al. [24] proposed to simulate the coarse-to-fine attention mechanism of
human beings, and developed a multiple attention network to boost the performance of
facial expression recognition. However, this multiple attention network only achieves an
accuracy of 96.4% on the CK+ dataset.

In order to apply automatic FER systems on smart-phone and other embedded plat-
forms, many efforts have been made to design compact and light-weighted neural networks
for FER. In order to train a FER classifier with a lower requirement of computing resources,
Zhu et al. [25] designed a neural network called IExpressNet-based on the ResNet-18.
The IexpressNet is trained in an incremental manner and, thus, reduces the time con-
sumption by over 80%. Zeng et al. [26] developed a FER network that consists of only 3
convolutional layers. Although this network is rather compact, the best accuracy on the
CK+ dataset achieved by it is 95.79%, which is much lower than the deeper FER networks,
like FaceNet2ExpNet [18] and DeRL [12].

2.2. Sequence-Based FER Methods

In order to reduce the difficulty of facial expression recognition, most sequence-based
methods focus on utilizing frames with the most expressive (peak) expressions for FER.
Zhao et al. [11] proposed a peak-piloted deep network (PPDN) that embeds the facial
expression evolution from non-peak to peak frames into the network parameters. By us-
ing a special-purpose back-propagation procedure called PGS for network optimization,
the PPDN drives the intermediate-layer features of the non-peak expression sample to-
wards those of the peak expression sample. Yu et al. [27] proposed a deeper cascade
peak-piloted network (CPPN) to employ the most expressive images for boosting the
performance of the weak facial expression recognition. Similar to the PPDN [11], the CPPN
also uses the peak expression to supervise the non-peak expression of the same subject.
Despite the fact that CCPN achieves an accuracy of 99.30% on the CK+ dataset, the network
of CCPN is 42 layers deep.
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Many studies exploited both the spatial and temporal information to to improve the
performance of facial expression recognition. To extract representative features from facial
expression sequence, Chen et al. [28] proposed a framework named Facial Motion Prior
Networks (FMPN) to employ domain knowledge for FER. The insight of the FMPN is
that focusing on facial muscle moving regions can help to extract representative features
and, thus, improve the FER performance. In order to improve the performance of FER by
exploiting more information, Jung et al. [29] proposed to train two CNN-based networks
joinlty to squeeze spatial-temporal information form the facial expression sequences and
the temporal facial landmark points, respectively. Kuo et al. [30] proposed a compact
CNN-based (CompactCNN) approach that employs the gated recurrent units to exploit
temporal information among frames. By exploiting the temporal information, the per-
formance of the CompactCNN is boosted from 97.37% to 98.47% on the CK+ dataset.
Recently, Meng et al. [31] developed an end-to-end framework called Frame Attention
Networks (FAN) to aggregate the spatial features among frames with temporal information.
The FAN first employs a spatial attention module to learn an attention weight for each
frame, then aggregate the features extracted from all the frames to form a single repre-
sentation adaptively based on the attention weight of each frame. As a result, the FAN
achieves the state-of-the-art performance on the CK+ dataset with an accuracy of 99.68%.
Despite the fact that performance of FER can be improved by squeezing spatial-temporal
information among frames, facial expression sequences are not always obtainable in many
application scenarios.

3. Methodology
3.1. Overview

The proposed FER method consists of two main modules, i.e., the facial expression
generator and the facial expression classifier, as illustrated in Figure 2. Given the empirical
Action Unit (AU) vectors of facial expressions, the facial expression generator employs
a cGAN [13,32] to synthesize photo-realistic reference images with the six typical facial
expressions (i.e., happiness, sadness, surprise, disgust, anger, and fear) from an input face
image under an arbitrary facial expression. The facial expression classifier is composed
of six DiffNets. Each DiffNet first extracts a pair of deep features from the testing image
and one of the synthesized reference images, respectively, by two subnets named the
query-subnet and the reference-subnet; then produces a difference vector by comparing
the features extracted by these two subnets; and finally outputs a probability distribution
over predicted facial expressions. As the six DiffNets output probability distributions over
predicted facial expressions for each testing image, a voting scheme is adopted to make the
final decision. In our voting scheme, each DiffNet holds a vote and uses a “winner-take-all”
scheme to cast its vote. After being voted by all of the six DiffNets, the testing image is
classified as the facial expression class that has received the most votes.

The networks in our method are divided into the offline components and the online
components according to run-time. As illustrated in Figure 2, only the query-subnets in
the DiffNets need to process online, while all the other networks can run offline. Since
each query-subnet consists of only 4 light-weighted convolutional layers and 3 narrow
fully-connected layers, our method is able to run on devices with low-cost processors
and memory.
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Figure 2. Framework of the proposed facial expression recognition method. The proposed method which at its core consists
of two modules, i.e., the facial expression generator and the facial expression classifier. The facial expression generator
synthesizes photo-realistic images with the six typical facial expressions from an input face image under an arbitrary facial
expression. The facial expression classifier uses six DiffNets for facial expression classification.

3.2. Facial Expression Generator

Facial Expression Representation. The aim of our facial expression generator is to
synthesize photo-realistic images with desired facial expressions from an input face image
under an arbitrary facial expression. Recently, Pumarola et al. [32] proposed a deep network
architecture for synthesizing facial expressions by a novel GAN conditioning scheme based
on facial action units. Inspired by this work, we also employ a cGAN conditioned by facial
action units to synthesize the six typical facial expressions, including anger, disgust, fear,
happiness, sadness, and surprise. For this purpose, each facial expression is encoded by a
vector which consists of a set of K action unit intensities:

Vi = (vi1, · · · , vik, · · · , viK)
T
, (1)

where i ∈ {1, · · · , 6} is the index for each of the six typical facial expressions, and vik ∈ [0, 1]
denotes the normalized intensity of the kth action unit. According to the Facial Action
Coding System (FACS) [33], each of the six facial expressions can be represented by a
vector of empirical action unit intensities that :Ṽi = (ṽi1, · · · , ṽiK)

T . In our implementation,
empirical action unit intensities are calculated from the EmotioNet dataset [34]. To make
the generated facial expressions more diverse, we sample an action unit vector for each
subject from the empirical action unit intensities using the Gaussian distribution.

vik ∼ N (ṽik, σ2
ik), (2)

where N denotes the Gaussian distribution, and σ2
ik is a given variance.

Network Structure. As illustrated in Figure 3, the network structure of our cGAN-
based facial expression generator mainly consists of the generative networks G and the
discriminative networks D. The generative networks are designed to synthesize a photo-
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realistic image Î with the desired facial expression Vi from the input image I. In order to
make the generative networks focus exclusively on the image regions that are responsible
of synthesizing the desired facial expression, the attention mechanism is embedded into the
generative networks [32]. Concretely, the generative networks are composed of an attention
network Ga and an expression synthesis network Ge, that is, G = (Ga, Ge). The output of
Ga is a pixel-wise mask that indicates the contribution of each pixel to the desired facial
expression. Then, the synthesized image is produced by the outputs of the two networks
and the original input image: Î = GA(I|Vi)GE(I|Vi) + [1− GA(I|Vi)]I. In order to utilize
the unsupervised strategy to train the facial expression generator, the generative networks
are applied twice. First, we apply the generative networks to transform the input image I to
the synthesized image Î with the desired facial expression Vi: Î = G(I|Vi); then, we adopt
them again to recover the input image from the synthesized image Î using the ground-truth
facial action unit intensitiesṼi: Ĩ = G( Î|Ṽi), where Ĩ denotes the recovered image. By using
this strategy, the generator does not require supervision, i.e., no pairs of images of the
same person with different expressions, nor the target image Î are assumed to be known.
The discriminative networks D are composed of a reality judgement network Dr, which
valuates the synthesized image in its photo-realism, an identity verification network Di
which verifies the input image and the synthesized image are the same individual, and an
expression estimation network De which estimates the action unit intensities (V̂) of the
synthesized image.

desired

ground-truth
estimated

Ga

Ge

Dr

De
synthesizedinput

recovered

Di

Figure 3. Network structure of the facial expression generator.

Loss Functions Our facial expression generator is trained following a min-max game:

G∗ = arg min
G

max
D
LG, (3)

where LG is the loss function which consists of five parts: the adversarial loss (Ld), the at-
tention loss (La), the identity loss (Li), the perceptual loss (Lp), and the expression loss
(Le). The adversarial loss proposed by WGAN-GP [35] is employed:

Ld =(EI [Dr(G(I|Vi))]−EI [Dr(I)])+

λ1E İ [(||∇ İ Dr( İ)||2 − 1)2],
(4)

where İ is the input image with random noise, and λ1 is a penalty coefficient. Following
Reference [32], the attention loss is defined as:

La =EI [∑
i,j
[(∇xGa(I|Vi)i,j)

2 + (∇yGa(I|Vi)i,j)
2]]+

λ2EI [||Ga(I|Vi)||2],
(5)
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where ∇ denotes the gradient of an image, and λ2 is a penalty coefficient. The identity loss
(Li) is defined for identity verification:

Li = y1log(q1) + (1− y1)log(1− q1), (6)

where y1 = 1 if the input image and the synthesized image are predicted as the same
individual by the identity verification network Di, and q1 denotes the probability that the
input image and the synthesized image the same individual. The perceptual loss [36] is
defined by the difference between the input image and the recovered image:

Lp = EI [||I − G(G(I|Vi)|Ṽi))||2]. (7)

The expression loss is defined as:

Le = EI [||De(G(I|Vi))−Vi||2] +EI [||De(I)− Ṽi||2]. (8)

Before training the whole facial expression generator, we pre-train the expression estimation
network De using the following simple loss function Le2:

Le2 = EI [||De(I)− Ṽi||2]. (9)

Finally, the whole loss function is built by combining all the four loss functions:

LG = λdLd + λaLa + λiLi + λpLp + λeLe, (10)

where λd, λa, λp, and λe are the hyper-parameters.

3.3. Facial Expression Classifier

The DiffNet. The architecture of a DiffNet is given in full detail in Figure 4. A DiffNet
consists of two branched subnets, i.e., the query-subnet which is used to extract features
from the testing image, and the reference-subnet which is used to extract features from
a synthesized reference image. The query-subnet and the reference-subnet are designed
as two peer networks with the same structure, but they do not share parameters for each
other. A query-subnet/reference-subnet comprises two convolutional units and a fully-
connected layer. Both the two convolutional units are composed of two convolutional layers
followed by a ReLU and a max pooling, but the numbers of their convolutional kernels
are, respectively, 32 and 64. After processed by a subtraction operation, a feature-level
difference vector between the testing image and the synthesized expression of the same
subject is obtained. Based on the difference vector, the DiffNet uses two fully-connected
layers and a Softmax for facial expression classification. Since the DiffNet is designed using
a compact and light-weighted structure, the number of parameters, the model size, and the
number of operations for a DiffNet are, respectively, 0.395 M, 1.59 MB, and 0.033G FLOPs.

Self-Difference Feature. As mentioned before, the facial expression classifier com-
prises six DiffNets, each of which compares the difference deep features extracted from
the input image and one of the six synthesized reference expression images. Therefore,
any potential facial expression in the input image has an opportunity to be compared with
the synthesized “Self” facial expression. The distance between any potential facial expres-
sion and the synthesized “Self” is usually very small. Thus, the self-difference features
extracted from the images with the same facial expression will gather in the feature space,
which will alleviate the intra-class variation issue. Although compact and light-weighted
DiffNets are employed for facial expression classification, the self-difference feature is
discriminative enough.
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Figure 4. Network structure of the DiffNet for facial expression classification.

Loss Functions. The loss function of each DiffNet is composed of two partial terms:
the cross-entropy loss Lc and the triplet loss Lt. The cross-entropy loss is defined as:

Lc = −
1
M

M

∑
i=1

6

∑
k=1

yk
i log(pk

i ), (11)

where M is the number of samples in a mini-batch, yk
i ∈ {0, 1} is the ground-truth label that

indicates whether the ith sample belongs to the kth facial expression class, and pk
i denotes

the predicted Softmax probability that the ith sample belongs to the kth facial expression.
The triplet loss [37], which is popularly used in the filed of person re-id, is also utilized
to optimize our DiffNets. When training a DiffNet with the triplet loss, each randomly
selected sample is called as the “anchor”. Except for the anchor, we randomly select two
additional samples: one belongs to the same facial expression class as the anchor, while
the other one with a different facial expression against the anchor. These two samples are,
respectively, called as the “positive” and the “negative”. The deep features of these three
samples output by the last fully-connected layer of a DiffNet are, respectively, denoted as
f a, f p, and f n. Thereby, a triplet is formed by < f a, f p, f n >, and the triplet loss is defined
using this triplet:

Lt = −
P

∑
i=1

K

∑
a=1

[ max
p=1...K

|| f a
i − f p

i ||2

− min
j=1...P
n=1...K

j 6=a

|| f a
i − f n

j ||2 + m]+
, (12)

where m is the margin between the intra-class and inter-class, and [·]+ = max(·, 0). In each
mini-batch, we select P facial expression class and K images from each class. Since the
positive pair ( f a, f p) are extracted from the samples with the same facial expression,
while the negative pair ( f a, f n) are extracted from images with different facial expressions,
the purpose of triplet loss is to make the intra-class distance as small as possible while
making the inter-class distance as large as possible. Finally, the full loss function is defined
by linearly combining the two loss terms:

LC = λcLc + λtLt, (13)

where λc and λt are the hyper-parameters that control the relative importance of the two
loss terms.
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Voting Scheme. As the six DiffNets in our facial expression classifier output six
groups of probabilities for each testing image, a voting scheme is designed to make the
final decision. In our voting scheme, each DiffNet holds a vote and uses a “winner-take-all”
scheme to cast its vote. Formally, let {p1

j , · · · , pk
j , · · · , p6

j }j=1,··· ,6 denote the probabilities
output by the Softmax layer of the jth DiffNet. Then, the jth DiffNet casts its vote to the
k∗-th facial expression class:

k∗ = arg max
k
{p1

j , · · · , pk
j , · · · , p6

j }. (14)

After being voted by all of the six DiffNets, the testing image is classified as the facial
expression class that has received the most votes. If more than one class has received the
same votes, then the final decision is made by the maximum Softmax probability output by
the DiffNets that cause the tie.

4. Experimental Results
4.1. Implementation Details

The facial expression generator and the DiffNets in the facial expression classifier are
trained independently. The expression generator is trained on 500,000 images randomly se-
lected from the EmotioNet dataset [38]. The hyper-parameters for the partial loss functions
in the generator are set as λd = 1, λa = 0.1, λp = 5, λi = 5, and λe = 4000.

The six DiffNets are trained on the CK+ [7] and Oulu-CASIA [14] datasets follow-
ing a 10-fold cross-validation protocol. We do not utilize the “pre-training then fine-
tuning” scheme for training our models. In other words, the DiffNets have not been
pre-trained on any other dataset. Since both the CK+ and Oulu-CASIA datasets consist of
sequences/videos with continuous facial expressions range from neutral to peak, only the
images whose sequence number is greater than 8 are captured for training. Each face in the
images is cropped and resized to 128× 128 pixels. In order to extend the training samples,
half of the images in the original training dataset are randomly selected and augmented
using FiveCrop [39] and horizontal flipping. The weight parameters of the partial loss
functions for the DiffNets are set as λc = 1, and λt = 10. When training the DiffNets,
the Adam with a momentum of 0.9 is adopted as the optimizer, and the mini-batch size is
fixed to 64. Since each of the fully-connected layers only consists of 64 neurons, dropout
is utilized to avoid overfitting. The dropout rate is set as 0.5. Each DiffNet is first trained
independently for 1000 epochs, and then all the six DiffNets are jointly trained for another
500 epochs. All the deep neural networks in our method are implemented by PyTorch.
It takes about 24 h for training all the six DiffNets on a computer with a single NVIDIA
GeForce 2080 Ti GPU.

4.2. Datasets and Performance Metric

Datasets. The proposed SD-CNN is extensively evaluated on two widely-used FER
datasets: CK+ [7] and Oulu-CASIA [14]. The CK+ dataset includes 593 sequences from 123
subjects, and involves seven facial expression classes (i.e., anger, contempt, disgust, fear,
happiness, sadness, and surprise). In our experiments, the 18 sequences with contempt
expression are ignored. The Oulu-CASIA dataset contains 2280 videos with the six typical
facial expressions (i.e., anger, disgust, fear, happiness, sadness, and surprise) from 80
subjects. The videos in Oulu-CASIA are captured with two imaging systems, NIR (Near
Infrared) and VIS (Visible light), but we only use the VIS videos in our experiments. As the
sequences/videos in both CK+ and Oulu-CASIA record faces with facial expressions range
form neutral to peak, we cut all the sequences/videos into images and ignore the images
with neutral expressions. Totally, we capture 3482 images from the sequences in CK+
and 6540 images from the videos in Oulu-CASIA. As mentioned above, our experiments
conduct on CK+ and Oulu-CASIA follow a 10-fold cross-validation protocol. The frames
from one sequence are kept only either in the training set or in the testing set. When
conducting experiments on CK+, 3134 images are used for training and 348 images are
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used for testing; when conducting experiments on Oulu-CASIA, 5886 images are used as
the training dataset, and 654 images are used as the testing dataset. The class distribution
of images in the CK+ and Oulu-CASIA datasets is listed in the Table 1. Some samples
randomly selected from these two datasets are shown in Figure 5.

Table 1. Distribution of the test images in the CK+ and Oulu-CASIA.

Anger Disgust Fear Happiness Sadness Surprise

CK+ 13.07% 20.07% 10.68% 24.35% 10.20% 21.63%
Oulu-CASIA 17.58% 15.18% 17.68% 17.60% 15.73% 16.22%

Performance Metric. The Accuracy (ACC) is adopted as the metric for evaluating the
facial expression recognition performance:

ACC = [
1
N

N

∑
i=1

(ŷi == yi)]× 100%, (15)

where N is the number of samples in the testing dataset, and y and ŷ are, respectively,
the ground-truth label and the predicted facial expression class of a testing sample.

C
K

+
O

u
lu

-C
A

S
IA

Happiness Sadness Surprise Disgust Anger Fear

Figure 5. Example samples randomly selected from the CK+ [7] and Oulu-CASIA [14] datasets.

4.3. Experiments on CK+

Our SD-CNN method is compared with the recent state-of-the-art FER methods, includ-
ing DeRL [12], FN2EN [18], FMPN [28], VGG-face [8] , MicroExpNet [34], GoogLeNet [17],
MultiAttention [24], DSAE [26], GCNet [40], DynamicMTL [41], IA-gen [20], CompactCNN [30],
DTAGN(Joint) [29], CPPN [27], DPND [10], PPDN [11], and FAN [31]. Table 2 reports our
experimental results and shows the comparisons with these methods. In Table 2, the meth-
ods are divided into two groups according to the information used: static image-based FER
and sequence-based FER. It is can be seen that our method achieves the best performance
among the static image-based methods with an accuracy of 99.7%, which surpasses the
current state-of-the-art image-based method (i.e., the DeRL [12]) by 0.4%. Even though
much less information is used, our method achieves very competitive performance with
respect to the state-of-the-art sequence-based method (i.e., the FAN [31]). For a subject,
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our method only need a single image for facial expression recognition, but the FAN [31]
needs to capture a sequence of images with facial expressions range from neural to peek.
However, image sequence with different expression intensities for an individual subject
is not always available in practice. Moreover, the high performance of sequence-based
methods depends on the accuracy of expressive (peak) frames identification. As reported
in Reference [27], when conducting experiments only on the images with weak expres-
sions, the performance of sequence-based methods usually decreases sharply. For example,
the accuracies of the PPDN [11] and the CPPN [27] on the weak expression images in CK+,
respectively, decrease from 99.3% and 98.3% to 83.4% and 92.5%.

Table 2. Comparisons with state-of-the-art methods on the CK+ datasets.

Methods ACC(%) Image/Sequence

SD-CNN (Ours) 99.7 Image
DeRL [12] 99.3 Image

FN2EN [18] 98.6 Image
FMPN [28] 98.0 Image

VGG-face (fine-tuned) [8] 94.9 Image
GoogLeNet (fine-tuned) [17] 95.3 Image

MicroExpNet [34] 96.9 Image
MultiAttention [24] 96.4 Image

DSAE [26] 95.8 Image
GCNet [40] 97.3 Image

DynamicMTL [41] 99.1 Image
CompactCNN (frame-based) [30] 97.4 Image

IA-gen [20] 96.6 Image

FAN [31] 99.7 Sequence
FAN(w/o attention) [31] 99.1 Sequence

CompactCNN [30] 98.5 Sequence
DTAGN(Joint) [29] 97.3 Sequence

CPPN [27] 98.3 Sequence
DPND [10] 94.4 Sequence
PPDN [11] 99.3 Sequence

Figure 6 shows the confusion matrix of our SD-CNN on the CK+ dataset. It can
be observed that happiness, sadness, fear and surprise are almost recognized perfectly,
with accuracies of 99.88%, 99.72%, 99.46%, and 99.73%, respectively. Anger and disgust
are relatively hard to recognize. For the testing samples with anger, 0.28% of them are
misclassified as disgust, and 0.14% of them are misclassified as surprise. For the testing
samples with disgust expression, 0.44% of them are misclassified as anger. Figure 7
illustrates some testing samples in CK+ that are misclassified by our method. Obviously,
most of these misclassified samples are with very weak expressions, which are rather hard
to be classified correctly by human beings.
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Figure 6. Confusion matrix for the CK+ dataset.

Happiness Sadness SurpriseDisgust Anger Fear

Ground-truth Predicted
Figure 7. Testing samples in CK+ that are misclassified by our method.

In order to evaluate the effect of the facial expression generator’, we use only 1
DiffNet to compare the test image with the reference (neutral expression) image and the
performance on CK+ decreases from 99.7 % to 92.4%.

To better understand why our method achieves good performance, we visualize the
self-difference features extracted by our SD-CNN and deep features extracted by the fine-
tuned VGG-face [8] using t-SNE [9]. As shown in Figure 8, the self-difference features
output by our method are closely gathered according to their facial expression classes in
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the two-dimensional visualization space, while the deep features output by the VGG-face
are entangled with each other, and there is obvious confusion among different classes.

Figure 8. Visualization of deep features output by the VGG-face [8] (left) and our method (right) on the CK+ dataset. Each
dot represents the deep feature extracted from a testing sample.

4.4. Experiments on Oulu-CASIA

Our SD-CNN is also compared with the recent state-of-the-art methods, includ-
ing FN2EN [18], DeRL [12], GoogLeNet (fine-tuned) [17], VGG-face (fine-tuned) [8],
GCNet [40], DynamicMTL [41], MicroExpNet [34], MultiAttention [24], IA-gen [20],
PPDN [11], DPND [10], DTAGN(Joint) [29], and CompactCNN [30], on the Oulu-CASIA
dataset. As shown in Table 3, our method achieves the highest accuracy of 91.3 %, which
outperforms the state-of-the-art static image-based method (i.e., the DynamicMTL [41])
by 1.7% and also suppresses the state-of-the-art sequence-based method (i.e., the Com-
pactCNN [30]) by 2.7%.

Table 3. Comparisons with state-of-the-art methods on the Oulu-CASIA datasets.

Methods ACC(%) Image/Sequence

SD-CNN (Ours) 91.3 Image
FN2EN [18] 87.7 Image
DeRL [12] 88.0 Image

GoogLeNet (fine-tuned) [17] 79.2 Image
VGG-face (fine-tuned) [8] 72.5 Image

GCNet [40] 86.4 Image
DynamicMTL [41] 89.6 Image
MicroExpNet [34] 85.8 Image

MultiAttention [24] 80.2 Image
IA-gen [20] 88.92 Image

PPDN [11] 84.6 Sequence
DPND [10] 75.3 Sequence

DTAGN(Joint) [29] 81.5 Sequence
LOMO [42] 82.1 Sequence

CompactCNN [30] 88.6 Sequence

Figure 9 shows the confusion matrix for the Oulu-CASIA dataset. Among the six
facial expressions in this dataset, sadness, happiness, surprise, and fear are recognized
with high accuracies of over 90%. Sadness is identified with the highest accuracy of
96.69%, while disgust is recognized with the lowest accuracy of 86.3%. Disgust and anger
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are two facial expressions that are easily misclassified from each other. For the testing
samples with anger, 8.52% of them are misclassified as disgust. Meanwhile, 6.45% of testing
samples with disgust are misclassified as anger. Figure 10 illustrates 12 randomly selected
testing samples in the Oulu-CASIA dataset that are misclassified by our method. Similar
to the misclassified samples in CK+, most of these misclassified samples are with weak
expressions, which are even quite difficult to be classified correctly by human beings.
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1.91% 1.71% 1.47% 0.35% 0.49% 92.55%

0.17% 1.51% 1.30% 1.48% 96.69% 0.85%

0.96% 1.91% 2.94% 91.66% 0.78% 1.79%

0.35% 2.11% 92.47% 4.26% 0.88% 2.36%

8.52% 86.30% 1.30% 0.61% 0.68% 1.79%

88.09% 6.45% 0.52% 1.65% 0.49% 0.66%

20

40

60

80

Figure 9. Confusion matrix for the Oulu-CASIA dataset.

Happiness Sadness SurpriseDisgust Anger Fear
Ground-truth Predicted

Figure 10. Testing samples in Oulu-CASIA that are misclassified by our method.

In order to evaluate the effect of the facial expression generator, we use only 1 DiffNet
to compare the test image with the neutral reference image, and the performance on
Oulu-CASIA decreases from 91.3% to 80.4%.
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The deep features of all the 654 testing samples in Oulu-CASIA extracted by our
method and the VGG-face [8] are visualized using t-SNE [9] in Figure 11. Similar to what
happened on the CK+ dataset, the deep features of all the six facial expression classes
output by the VGG-face are heavily entangled, while most of the deep features output by
our method are clustered according to their facial expression classes.

（a） （b）

Figure 11. Visualization of deep features output by the VGG-face [8] (a) and our method (b) on the Oulu-CASIA dataset.
Each dot represents the deep feature extracted from a testing sample.

5. Conclusions

In this paper, a self-difference convolutional network (SD-CNN) is proposed for
facial expression recognition. First, the SD-CNN uses a conditional generative adversarial
network to generate the six typical facial expressions for the same subject in the testing
image. Second, six compact and light-weighted difference-based CNNs, called DiffNets,
are designed for classifying facial expressions. Each DiffNet extracts a pair of deep features
from the testing image and one of the six synthesized expression images and compares the
difference between the deep feature pair. In this way, any potential facial expression in the
testing image has an opportunity to be compared with the synthesized “Self”. As most of
the self-difference features of the images with the same facial expression will gather tightly
in the feature space, the intra-class variation issue is significantly alleviated. Our SD-CNN
has been extensively evaluated on two widely-used FER datasets (i.e., the CK+ and Oulu-
CASIA datasets). Experimental results show that our SD-CNN achieves accuracies of 99.7%
on CK+ and 91.3% on Oulu-CASIA. Without exploiting the spatial-temporal information,
the SD-CNN outperforms the state-of-the-art static image-based methods and even most
of the sequence-based methods on both the two datasets. Moreover, the model size of
the online part of our SD-CNN is only 9.54 MB, which is much smaller than the recent
deep-learning-based FER methods. In future work, we will upgrade our SD-CNN to jointly
identify facial expression class and estimate facial expression intensity.
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