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Abstract: Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears
in mid to late-stage Parkinson’s disease (PD) and can lead to falling and injury. A system that
predicts freezing before it occurs or detects freezing immediately after onset would generate an
opportunity for FOG prevention or mitigation and thus enhance safe mobility and quality of life.
This research used accelerometer, gyroscope, and plantar pressure sensors to extract 861 features
from walking data collected from 11 people with FOG. Minimum-redundancy maximum-relevance
and Relief-F feature selection were performed prior to training boosted ensembles of decision trees.
The binary classification models identified Total-FOG or No FOG states, wherein the Total-FOG class
included data windows from 2 s before the FOG onset until the end of the FOG episode. Three
feature sets were compared: plantar pressure, inertial measurement unit (IMU), and both plantar
pressure and IMU features. The plantar-pressure-only model had the greatest sensitivity and the
IMU-only model had the greatest specificity. The best overall model used the combination of plantar
pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG
class components were evaluated individually (i.e., Pre-FOG windows, Freeze windows, transition
windows between Pre-FOG and Freeze). The best model detected windows that contained both
Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s
after the freeze began. Windows of FOG data were detected with 93.4% sensitivity. The IMU and
plantar pressure feature-based model slightly outperformed models that used data from a single
sensor type. The model achieved early detection by identifying the transition from Pre-FOG to FOG
while maintaining excellent FOG detection performance (93.4% sensitivity). Therefore, if used as
part of an intelligent, real-time FOG identification and cueing system, even if the Pre-FOG state were
missed, the model would perform well as a freeze detection and cueing system that could improve
the mobility and independence of people with PD during their daily activities.

Keywords: Parkinson’s disease; freezing of gait; wearable sensors; detection; prediction; ma-
chine learning

1. Introduction

Freezing of gait (FOG) is an intermittent walking disturbance common in the more
advanced stages of Parkinson’s disease (PD) and is characterized by an inability to move
the feet, often with the sensation of having one’s feet glued to the ground [1]. Sudden and
often unexpected FOG episodes can lead to falling and fall-related injuries that can have
severe health repercussions [2,3].

Auditory, visual, and tactile cues can help a person overcome freezing episodes and
resume walking [4,5]. Freeze-detection systems to automatically identify a freeze episode
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and activate an assistive cue only when needed are increasingly being studied [4]. However,
while cueing systems based on FOG detection can reduce freezing episode duration, the
risk of falling due to freezing is still present because the cue is only administered after
freeze onset. A practical freeze identification and cueing system should detect freezing as
early as possible. Ideally, oncoming freeze episodes would be predicted, and a pre-emptive
cue would be used to prevent the episode. If prediction is not possible, early detection
of FOG such that a cue can be administered immediately after freeze onset would also
be beneficial.

Various machine learning models using wearable-sensor data were developed to
predict FOG by assuming the presence of distinct gait characteristics prior to the onset of a
freezing episode and training a classifier to identify this pre-freeze state [6–12]. Recently, a
long short-term memory (LSTM) neural network was trained with data from all but one
participant. A final layer was trained only on the target participant’s data (only weights of
the final layer were updated). This transfer learning model achieved over 90% accuracy [11];
however, accuracy may overestimate model performance since all correct classifications
are used, regardless of class. Thus, a model that missed most FOG episodes but correctly
classified all non-FOG data may still have high accuracy, especially if the non-FOG class
greatly outnumbers FOG data, which is typically the case. FOG prediction has also been
approached as a time series prediction problem, where autoregressive predictive models
projected the feature time series [13], which was then classified as FOG or Non-FOG using
support vector machines and probabilistic neural networks. This method achieved FOG
prediction sensitivity and specificity above 90% [13]. However, FOG prediction in [11,13,14]
used the Daphnet dataset [15] (237 FOG episodes), where the majority of participants
were in the OFF antiparkinsonian medication state. PD-related movement symptoms can
dramatically improve with medication and worsen as the medication wears off [16,17].
People with PD who would benefit most from FOG identification and cueing devices
walk and perform activities of daily living independently and are likely on medication
to enable this quality of life. Therefore, data collected while the participants are on their
medication should be used to develop FOG identification systems. For the ON medication
state, gait parameters are less abnormal compared to OFF medication state [18]. Thus,
gait characteristics associated with FOG (or imminent FOG) may be less pronounced for
ON medication state. Investigation is still needed to determine the best combination
of algorithm and sensor type for FOG detection and prediction, especially for the ON
medication state.

Inertial measurement units (IMUs) on the lower limbs have been used for FOG
classification [6,12,14,19–21]. In [14], the shank was the preferred sensor location for FOG
episode prediction, and in [19], a model with ankle accelerometer data predicted 66.7% of
the FOG episodes within 2 s prior to onset. To improve FOG identification performance,
additional sensor types could be used. Since a complex interaction exists between postural
stability and freezing [16], plantar pressure sensors may detect subtle parameters linked to
FOG (e.g., weight transfer changes between feet or foot centre of pressure movement [22])
that would be difficult to detect using IMUs. Plantar pressure distribution and ground
reaction forces have been used for FOG detection [23,24] and for a variety of gait and
balance studies in PD populations [25–27]. Plantar pressure analysis has also been used in
post-traumatic rehabilitation [28], stroke rehabilitation [29], fall-risk prediction [30], faller
classification [31], and classifying individuals as PD or a healthy control from walking
data [32]. Furthermore, the pressure distribution may vary distinctly between phases of
normal walking, during transition from normal walking into freeze, and during a freeze.
Preliminary research using plantar pressure data for FOG detection and prediction has
shown promise [33,34]; thus, plantar pressure analysis may open new avenues in predicting
FOG events.

This research determined the effectiveness of FOG detection and prediction models
based on plantar pressure and IMU data, used separately and together. Since the ultimate
goal was to develop a real-time FOG prediction system that could enable preventative
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cueing, a computationally-light decision-tree-based classification model was developed
and evaluated. Notably, the model was trained with grouped Pre-FOG, Pre-FOG transition
(windows containing both Pre-FOG and FOG data), and FOG data and then evaluated
using these data labels grouped and separately. Participants were on their normal an-
tiparkinsonian medication schedule and dosage, to permit a somewhat realistic medication
condition. The developed models would ultimately be used to detect FOG as early as
possible and thereby become part of a novel wearable intelligent-cueing system. If FOG
classification models using plantar pressure sensors are found to be viable for FOG clas-
sification, this could lead to a self-contained in-shoe device that could have high user
compliance and provide FOG mitigation with a user-friendly wearable system.

2. Materials and Methods
2.1. Data Collection

Eleven male participants with PD were recruited from the community. Participants
were required to experience freezing at least once a week, be able to walk unassisted,
not have undergone deep brain stimulation therapy, and not have balance or mobility
conditions (other than PD) that affect walking. Participants visited the lab for a single data
collection session while on their normal antiparkinsonian medication dosage and schedule.
Data collection was typically scheduled in the hours prior to the participant’s next dose so
that the medication would be wearing off during testing and FOG would be more likely
to occur. Ethics approval was obtained from the University of Ottawa (H-05-19-3547) and
University of Waterloo (40954), and all participants provided informed written consent.
Participants were asked to walk a complex freeze-provoking path up to 30 times. The path
started and ended in a seated position and included 90◦ and 180◦ turns, stops, starts, and a
narrow passageway leading to a dead end (Figure 1).

Figure 1. Experiment walking path.

While walking the path, participants were asked to perform additional tasks simulta-
neously to increase the likelihood of freezing. These tasks were both physical (holding a
plastic tray with objects on top) and verbal (naming as many words as possible starting
with a specific letter). Motor-task difficulty was increased if the participant did not find the
task challenging. For example, the motor task started with three small wooden blocks on
the tray, but additional blocks were added as needed to increase difficulty. Alternatively,
the blocks were replaced with an empty paper coffee cup or a sealed water bottle, or the
participant was asked to carry the tray with only one hand. In total, 241 min of walking
data were collected, during which seven participants froze. Similar to [15] and [35], the
beginning of a freeze was defined as “the instant the stepping foot fails to leave the ground
despite the clear intention to step” and the end of the freeze was defined as “the instant the
stepping foot begins or resumes an effective step”.
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During the walking trials, plantar pressure data were collected using FScan pressure-
sensing insoles (Tekscan, Boston, MA). The flexible insoles are less than 1 mm thick with
3.9 pressure-sensing cells per cm2 (Figure 2a). A new pair of insoles was used for each
participant and trimmed to fit inside their regular shoes. The insoles were equilibrated
prior to the participant data-collection session. At the beginning of data collection, the
sensors were calibrated by asking the participant to stand with all their weight on a single
foot and then shift to stand on the other foot. This was done for both feet.

Figure 2. Sensor systems used in data collection: (a) FScan pressure-sensing insole, (b) Shimmer3 inertial measurement unit
(IMU) sensor, (c) diagram of IMU placement, and (d) photograph of insole and IMU systems worn on body.

In addition to the plantar pressure sensors, the Shimmer3 IMU system (Shimmer,
Dublin, Ireland) was used to record lower limb acceleration and angular rotation (Figure 2b).
A sensor was placed on the medial side of each shank, just above the malleolus, and lateral
side of each thigh, just above the knee (Figure 2c,d). IMU data were collected at 512 Hz and
downsampled in post-processing to match the plantar pressure sampling rate of 100 Hz.
Walking trials were video-recorded using a smartphone camera for post-collection FOG
identification. IMU, plantar pressure insole, and video signals were synchronized using a
single foot stomp performed at the beginning of each walking trial.

2.2. Labelling and Windowing

FOG instances were identified visually from the video using a custom labelling pro-
gram written using MATLAB R2019b App Designer (MathWorks, Natick, MA, USA).
During data collection, authors SP and JN identified FOG occurrences. In post-processing,
SP identified the onset and termination of FOG episodes using video data with a 30 Hz
frame rate. In case of uncertainty, the second rater was consulted. During labelling,
synchronization of IMU, plantar pressure insole, and video signals was confirmed using
multiple heel-strike events.

Data were windowed using a 1 s sliding window with a 0.2 s shift between windows
(i.e., 0.8 s overlap between consecutive windows) (Figure 3). The Pre-FOG segment was
defined as the 2 s period immediately before FOG episode onset. With reference to Figure 3,
each window (W) was labelled as Pre-FOG (entire window within 2 s before a freeze
(W7–W11)), FOG (entire window during the freeze (W17)), Pre-FOG-Transition (window
containing both Pre-FOG and FOG instances (W12–W16)), or No-FOG (window without
any freeze (W1, W23)), or window that includes No-FOG instances and overlaps with the
beginning of Pre-FOG gait (W2–W6) or the end of FOG (W18–W22). Another combined
label was generated as Total-FOG, which contained all Pre-FOG and FOG instances (Pre-
FOG, Pre-FOG-Transition, FOG (W7–W17)).
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Figure 3. Freezing of gait (FOG) episode windowing scheme example. Windows (W) 1–6 are “No-FOG”, Windows 7–11 are
“Pre-FOG”, Windows 12–16 overlap the Pre-FOG and FOG segments and are thus “Pre-FOG-Transition”, Window 17 is
entirely in the FOG segment and is “FOG”, and Windows 18–23 extend or entirely occur beyond the end of the FOG episode
and are “No-FOG”.

2.3. Feature Extraction

The features used in this research were based on [34] (Table 1). In total, 861 individual
features were extracted from the 71,067 data windows. Features were grouped by time
domain (n = 13), fast Fourier transform (n = 8), and discrete wavelet transform (Haar mother
wavelet) (n = 14). All features were calculated separately for the left and right sides, with
the exception of “number of weight shifts” that required data from both feet. For the FFT
and WT categories, 38 signal inputs were used: total ground reaction force (GRF); position,
velocity, and acceleration of foot centre of pressure (COP) in Y (anterior/posterior (AP))
and X (medial/lateral (ML)) directions; ankle and thigh acceleration in anterior/posterior
(X), vertical (Y), and medial/lateral (Z) directions; and ankle and thigh angular rotation
in anterior/posterior (X), vertical (Y), and medial/lateral (Z) directions. COP velocity
and acceleration were calculated as the first and second derivatives of COP position,
respectively. A total of 528 features were calculated from accelerometer and gyroscope data,
and 333 features were calculated from plantar pressure data (GRF; COP position, velocity,
acceleration). Before calculating COP, GRF values less than 5% of the two-foot total were
set to 0, since the limb was in swing and the small pressures were not relevant to FOG.

Table 1. Features extracted from windowed data.

Feature Feature Description Source
Number of

Input
Parameters

Total
Features

Time domain features (n = 13)

Number, duration, length of
COP reversals

Number, length, duration of centre of pressure
(COP) path direction reversals per window (n = 3) [36] 2 6

Number, duration, length of
COP deviations

Number, length, duration of mediolateral COP
deviations per window. Deviation is the first
derivative of COP ML exceeding a threshold of
±0.5 mm/window (n = 3)

[36] 2 6

CV of COP position, velocity,
acceleration

Anterior/posterior (AP) and medial/lateral (ML)
coefficients of variation (CV) of COP position,
velocity, and acceleration (n = 6)

[36] 2 12
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Table 1. Cont.

Feature Feature Description Source
Number of

Input
Parameters

Total
Features

Number of weight shifts Number of times the majority of total GRF (>50%)
changed foot (n = 1) - 1 1

Category
total 25

Fast Fourier transform (FFT) features (n = 8)

Total power in FFT signal Power in FFT signal per window as sum of
squared amplitude (n = 1) [37] 38 38

Dominant frequency Frequency bin with highest amplitude per
window (n = 1) [38] 38 38

Max, min, mean Maximum, minimum, and mean amplitude of
FFT signal (n = 3) [38] 38 114

Power in locomotion, freeze
bands

Power under FFT curve in locomotion band
(0.5–3 Hz) and freeze band (3–8 Hz) (n = 2) [39] 38 76

Freeze index Ratio of power in freeze band (3–8 Hz) and
locomotion band (0.5–3 Hz) (n = 1) [39] 38 38

Category
total 304

Discrete wavelet transform features (n = 14), Haar mother wavelet

Variance of coefficients Variance of the detail and approximation
coefficient vectors (n = 2) [40] 38 76

Max, min, mean Maximum, minimum, mean of detail and
approximation coefficient vectors (n = 6) [40] 38 228

Max, min, mean energy Maximum, minimum, mean energy of detail and
approximation coefficient vectors (n = 6) [40] 38 228

Category
total 532

2.4. Feature Selection

Feature selection was performed to reduce the number of features and to determine
which sensors contributed the most useful features. Feature selection and subsequent
model development were performed three times: first with only features extracted from
plantar pressure data, second with only IMU sensor features, and finally with all features.

For feature selection, both minimum-redundancy maximum-relevance (mRMR) and
Relief-F feature selection algorithms were used. mRMR is a multivariate approach that
selects features such that mutual information between a feature and class is maximized,
while pairwise information between features is minimized [41]. mRMR has been used for
FOG detection [34,35]. Relief-F incorporates interactions between features [42] and has
been used in activity monitoring situations with plantar pressure data collected during
walking [36]. Both mRMR and Relief-F performed feature selection by ranking features.
Relief-F was performed with k = 200 nearest neighbours and 2000 updates.

For feature selection, the target class was composed of all windows with the Total-FOG
label (including all Pre-FOG, Pre-FOG-transition, and FOG windows), and the nontarget
class contained the No-FOG windows.

2.5. Ensemble Model Development

A decision-tree ensemble was used for window classification. The base decision trees
were tested with maximum depths of 5 or 10 decision splits and with the top 5, 10, 15, 20, 25,
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50, 75, and 100 features according to both the Relief-F and mRMR feature selection methods.
The ensemble of trees used random undersampling (RUS)-boosting and a maximum of
100 learning cycles. In pilot testing, RUS-boosting performed better than bagging and
AdaBoosting approaches. This is likely due to the dataset being highly imbalanced, which
can negatively affect classifier performance. RUS-boosting randomly undersamples the
majority class (nontarget class in this study) so that the number of samples matches the
minority class. Note that undersampling is only done during model training and not
during testing; therefore, class imbalance in the testing data is unaffected.

Leave-one-freezer-out (LOFO) cross-validation was used to evaluate the models. The
typical leave-one-out cross-validation trains a model using the data from all but one person
and then tests the model using the held-out person’s data. In FOG classification studies, it
is common for some individuals to experience FOG in normal living but not during the
in-laboratory data collection. Thus, if a person who did not freeze during testing was held
out as the test subject, the corresponding test data would be entirely from the No-FOG
class. This is problematic since a model cannot truly be evaluated using data from only
the negative class. In some studies, the model is assumed to have 100% sensitivity for
these individuals [35,43]; however, this assumption can skew overall model performance
results. The LOFO method avoids this issue since only participants who froze during data
collection are involved with model testing, while participants who did not experience FOG
are always included in the training set.

Five test cases were used during LOFO analysis (Table 2). The target and nontarget
classes for the five test cases were defined as different groupings of the labelled windows.
For each cross-validation fold, the model was trained only once using Case 1 (target class:
Total-FOG, nontarget class: No-FOG) and then evaluated on each of the five test cases.
Case 1, where the target class was Total-FOG windows and included Pre-FOG, Pre-FOG-
transition, and FOG windows, was based on the goal of a clinically relevant cueing system,
where real-time cueing would be activated before or during a freeze. For Cases 2, 4, and 5,
the target class contained a single label. This was done to evaluate the model’s ability to
recognize each of the labels individually. For Case 3, the Pre-FOG and Pre-FOG-Transition
windows were grouped to form the target class, to examine the feasibility of using these
two labels in future model development. This target class (Case 3) contained windows
from the beginning of Pre-FOG data until, at most, 1 s into the FOG event; therefore,
detection of windows in this target class would be either prediction of a freeze or detection
of freeze episode initiation. Episode initiation detection would be useful in an intelligent
cueing system.

Table 2. Target and nontarget class composition for each test case.

Target Class Nontarget Class

Case 1 Total-FOG:
Pre-FOG, Pre-FOG-Transition, FOG No-FOG

Case 2 Pre-FOG No-FOG

Case 3 Pre-FOG, Pre-FOG-Transition No-FOG

Case 4 Pre-FOG-Transition No-FOG

Case 5 FOG No-FOG

3. Results

Table 3 presents participant information and the total number of windows of each
label from each participant. Table 4 presents the LOFO cross-validation results for the three
groups of features: plantar pressure features, IMU features, and both plantar pressure and
IMU (PP-IMU).
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Table 3. Clinical details of the participants: number of years since PD diagnosis, New Freezing of Gait questionnaire
(NFOG-Q), Unified Parkinson’s Disease Rating Scale Section III (UPDRS III); and number of data windows of each label
extracted from each participant.

Participant Years Since
Diagnosis NFOG-Q UPDRS III

Window Labels

Pre-FOG Pre-FOG-
Transition FOG No-FOG

P01 16 14 10 217 166 7 3721

P02 11 21 20 178 171 294 5188

P03 11 17 13 66 62 17 6884

P04 10 4 18 0 0 0 2635

P05 14 20 13 0 0 0 5331

P06 19 22 29 52 49 162 9368

P07 5 15 16 725 1303 766 6572

P08 12 17 20 75 126 84 4848

P09 10 18 18 44 30 5 6848

P10 2 4 15 0 0 0 6034

P11 5 19 20 0 0 0 9039

Mean
(SD)

10.5
(4.8)

15.5
(5.9)

17.5
(4.8)

Label total 1357 1907 1335 66,468

Table 4. Top-performing random undersampling (RUS)-boosted ensembles of decision trees. Target class is Total-FOG
(Case 1). Mean and SD exclude nonfreezers (P04, P05, P10, P11).

Plantar Pressure Features IMU Features PP-IMU Features

Relief-F, 5 Features,
5 Splits

mRMR, 25 Features,
5 Splits

Relief-F, 10 Features,
5 Splits

Held out Participant Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%)

P01 69.7 83.7 68.2 84.0 70.0 86.0

P02 71.7 86.7 67.0 90.7 70.6 87.9

P03 68.3 89.7 54.5 96.1 61.4 92.9

P04 - 85.4 - 91.9 - 86.5

P05 - 81.3 - 88.1 - 84.6

P06 93.9 89.5 73.4 93.5 93.2 90.2

P07 72.8 80.3 34.8 92.1 68.7 78.9

P08 89.5 79.6 70.9 92.3 82.1 87.6

P09 79.7 72.5 64.6 92.2 88.6 79.7

P10 - 87.7 - 90.2 - 89.2

P11 - 79.4 - 88.3 - 79.2

Mean
(SD)

78.0
(9.4)

83.2
(5.7)

61.9
(12.4)

91.6
(3.4)

76.4
(10.8)

86.2
(4.8)

Sens: sensitivity, Spec: specificity.

Performance was very similar for the plantar pressure features model (sensitivity
78.0%, specificity 83.2%) and the PP-IMU features model (sensitivity 76.4%, specificity
86.2%) (Table 4). The IMU features model had the lowest sensitivity (61.9%) but the highest
specificity (91.6%).
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The ideal number of features and best feature ranking method differed for each group
of features (Table 4). The best plantar pressure features model used the top 5 Relief-F
features. The best IMU features model used the top 25 mRMR features. The best PP-IMU
features model used the top 10 features according to Relief-F rankings. For all models,
decision trees with 5 splits outperformed decision trees with 10 splits. The best model from
Table 4 used combined features (i.e., PP-IMU features model), with 76.4% sensitivity and
86.2% specificity for the Total-FOG target class (Pre-FOG, Pre-FOG-Transition, FOG). For
completeness, the nonfreezers were held out as test participants and the specificity was
calculated (Table 4). The features used in the PP-IMU model are presented in Table 5.

Table 5. Top 10 features (according to Relief-F) used in the plantar pressure and IMU (PP-IMU)
features model.

Feature Rank Feature Description

1 Dominant frequency of COP velocity in Y (AP) direction for right leg

2 Dominant frequency of COP velocity in Y (AP) direction for left leg

3 Dominant frequency of COP velocity in X (ML) direction for right leg

4 Dominant frequency of thigh acceleration in X (AP) direction for left leg

5 Number of AP COP path reversals for left leg

6 Number of AP COP path reversals for right leg

7 Minimum WT dC of COP position in Y (AP) direction for right leg

8 Dominant frequency of thigh acceleration in X (AP) direction for right leg

9 Mean energy of WT aC of COP position in Y (AP) direction for right leg

10 Mean WT aC of COP position in Y (AP) direction for right leg
AP: anterior/posterior, ML: medial/lateral, WT: wavelet transform, aC: approximation coefficient, dC: detail
coefficient.

The results for Cases 2–5 are presented in Tables 6–8. The specificity results for Cases
2–5 are constant across cases, since specificity is based on the nontarget class (true negatives
and false positives), which is unchanged across cases.

Table 6. Target class test cases for PP-IMU features model, using top 10 features according to Relief-F. Column headers are
the label(s) included in the target class, as defined in Table 2.

Pre-FOG
(Case 2)

Pre-FOG and
Pre-FOG-Transition

(Case 3)

Pre-FOG-Transition
(Case 4)

FOG
(Case 5)

Held out Test
Participant

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

P01 52.5 86.0 69.5 86.0 91.6 86.0 100.0 86.0

P02 23.0 87.9 49.0 87.9 76.0 87.9 96.3 87.9

P03 37.9 92.9 57.8 92.9 79.0 92.9 88.2 92.9

P06 73.1 90.2 84.2 90.2 95.9 90.2 98.8 90.2

P07 48.8 78.9 64.5 78.9 73.2 78.9 79.9 78.9

P08 69.3 87.6 78.6 87.6 84.1 87.6 90.5 87.6

P09 81.8 79.7 87.8 79.7 96.7 79.7 100.0 79.7

Mean (SD) 55.2
(19.3)

86.2
(4.8)

70.2
(13.2)

86.2
(4.8)

85.2
(8.9)

86.2
(4.8)

93.4
(7.0)

86.2
(4.8)

Sens: sensitivity, Spec: specificity.
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Table 7. Target class test cases for plantar pressure features model, using top 5 features according to Relief-F. Column
headers are the label(s) included in the target class, as defined in Table 2.

Pre-FOG
(Case 2)

Pre-FOG and
Pre-FOG-Transition

(Case 3)

Pre-FOG-
Transition

(Case 4)

FOG
(Case 5)

Held out Test
Participant

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

P01 52.5 83.7 69.2 83.7 91.0 83.7 100.0 83.7

P02 23.6 86.7 49.6 86.7 76.6 86.7 98.0 86.7

P03 43.9 89.7 64.1 89.7 85.5 89.7 100.0 89.7

P06 76.9 89.5 85.1 89.5 93.9 89.5 99.4 89.5

P07 36.7 80.3 62.9 80.3 77.4 80.3 99.2 80.3

P08 82.7 79.6 88.1 79.6 91.3 79.6 92.9 79.6

P09 70.5 72.5 78.4 72.5 90.0 72.5 100.0 72.5

Mean (SD) 55.3
(20.5)

83.2
(5.7)

71.0
(12.7)

83.2
(5.7)

86.5
(6.4)

83.2
(5.7)

98.5
(2.4)

83.2
(5.7)

Sens: sensitivity, Spec: specificity.

Table 8. Target class test cases for IMU features model, using top 25 features according to minimum-redundancy maximum-
relevance (mRMR). Column headers are the label(s) included in the target class, as defined in Table 2.

Pre-FOG
(Case 2)

Pre-FOG and
Pre-FOG-Transition

(Case 3)

Pre-FOG-
Transition

(Case 4)

FOG
(Case 5)

Held out Test
Participant

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

Sens
(%)

Spec
(%)

P01 53.5 84.0 67.9 84.0 86.7 84.0 85.7 84.0

P02 16.3 90.7 43.8 90.7 72.5 90.7 94.6 90.7

P03 31.8 96.1 49.2 96.1 67.7 96.1 94.1 96.1

P06 44.2 93.5 62.4 93.5 81.6 93.5 80.2 93.5

P07 17.8 92.1 35.5 92.1 45.4 92.1 32.9 92.1

P08 65.3 92.3 66.2 92.3 66.7 92.3 82.1 92.3

P09 50.0 92.2 62.2 92.2 80.0 92.2 100.0 92.2

Mean (SD) 39.8
(17.2)

91.6
(3.4)

55.3
(11.6)

91.6
(3.4)

71.5
(12.7)

91.6
(3.4)

81.4
(20.9)

91.6
(3.4)

Sens: sensitivity, Spec: specificity.

4. Discussion

The research outcomes indicate that a decision-tree ensemble classifier using features
from IMU and plantar pressure data together can appropriately identify Total-FOG (Pre-
FOG, FOG Transition, FOG). This could lead to a wearable system where appropriate
cues are provided to either avoid a freeze or help exit the freeze episode. The use of a
decision-tree model will also facilitate integration with a real-time cueing system due to
the low computational cost for this machine learning model.

Participants in this research were on their normal antiparkinsonian medication dosage
and schedule. This is important since, in practice, FOG detection and cueing systems are
for persons with PD who are taking medication to manage their motor-related symptoms
to live independently.

Comparing the different models in Table 4 and the same test cases across Tables 7 and 8,
the plantar pressure features model reached higher sensitivity than the IMU features model.
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However, the IMU features model achieved higher specificity for all cases. This indicates
that plantar pressure may identify FOG-related patterns that the IMU sensors cannot;
however, plantar pressure sensors may produce more false positives. Thus, including
features from both sensor systems is recommended.

The PP-IMU features model was selected as the best overall model. Further analysis
from the additional four test cases (Table 6) showed that just over half the Pre-FOG windows
were correctly identified. If this model were used to trigger an assistive cue, identifying
55.2% of the Pre-FOG windows before the FOG occurs would be helpful but may result
in many missed opportunities to avoid a freeze (i.e., assuming that an appropriate cue
can mitigate or avoid an upcoming freeze episode). For Pre-FOG-Transition, sensitivity
was 85.2% using plantar pressure and IMU data, indicating that most transition windows
between Pre-FOG and the freeze would be identified; therefore, a cue could be administered
within the first second of the FOG episode. When Pre-FOG and Pre-FOG-Transition
windows were combined, model sensitivity decreased to 70.2%. Hence, including Pre-FOG
adversely affected freeze-event recognition. FOG window classification using plantar
pressure and IMU data was highly effective (93.4% sensitivity), indicating that few FOG
windows were missed. In practice, the freeze identification model would perform very
well as a FOG detection system, with a cue administered during the freeze if the Pre-FOG
or transition states were missed. A similar analysis in [19] predicted 66.7% of the freeze
episodes within 2 s of onset and detected 97.4% of the episodes between 2 s before and 4 s
after FOG onset. These results were based on the number of FOG episodes, which may
account for the higher performance compared to results presented in this paper, where
results were based on decisions for each window.

PP-IMU features model sensitivity was 76.4%, indicating that approximately 24% of
the target-class windows were missed by the model. Other FOG prediction research [13]
reported higher sensitivity (93%), although as in [11,19], the performance metrics were
calculated based on FOG episodes. Thus, the sensitivity results are not directly comparable
to our window-based analysis. Furthermore, the method presented here is a participant-
independent model. Typically, models that are adapted to a single individual perform
better than those that are not user-specific. For instance, [19] tested both participant-
independent and participant-dependent models and found better FOG prediction results
with the person-specific models. For everyday wearable cueing devices, personalized
freeze prediction systems are ideal. However, when validating new models, methods,
or features, personalized models may not generalize well. Using personalized models
and averaging across many participants could provide a better representation of model
performance. Unfortunately, the datasets used in FOG prediction and detection studies are
generally small. Moreover, individualized models usually require a large amount of data
for each participant and are difficult to obtain.

PP-IMU features model specificity was 86.2%, indicating that approximately 14% of
the nontarget classifications were false positives. In an intelligent cueing device, this could
result in excessive false cues during walking, which may lead to reduced compliance,
depending on the type of cue. To ensure that the cueing system is effective and is used as
intended, the number of false cues could be minimized in future research on the cueing
approach. For example, a decision threshold could be implemented such that consecutive
classifications are required to trigger a cue. In addition, minimalistic or variable cues could
be used such that false positives are better tolerated by the user. For instance, cue intensity
or magnitude could begin at an almost imperceptible level and increase with successive
positive FOG predictions. While 90% or greater specificity would be ideal, specificity
below this threshold is common in the FOG prediction literature. Specificities of 67.0% [21],
80.25% [44], and recently 86% [45] have been reported.

The research outcomes could be applicable to a wearable freeze-detection system
that is localized to the shoe. PP-IMU features model performance was only slightly better
than the plantar pressure features model. While improvements could be made to plantar
pressure features model sensitivity, the plantar pressure model performed very well as a
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detection system, detecting 98.5% of the FOG windows. The inclusion of IMU features in
the PP-IMU features model was primarily to improve specificity. If plantar pressure features
model specificity could be improved by other means, such as model personalization, then
the IMU sensors could be excluded. A plantar-pressure-only system would have less
complex hardware and software, be easier to don and doff, and could be more practical for
long-term movement monitoring. A self-contained in-shoe system could have better user
compliance since the instrumented shoes can be worn in daily activities.

While this research provided promising results, some limitations should be recognized.
Seven people froze during testing and were included in the analysis. More participants
will help with model generalization and model personalization. For instance, a larger
participant pool would allow a more complete understanding of FOG manifestations and
analysis of different FOG subtypes, leading to FOG-subtype-specific models. To further
improve model performance, model personalization such as using individual-specific
Pre-FOG and window durations could also be implemented.

5. Conclusions

Accelerometer, gyroscope, and plantar pressure sensors were viable wearable devices
for a FOG identification system. The combination of accelerometer, gyroscope, and plantar
pressure data gave the best results. The best decision-tree ensemble model was built
using 10 features and achieved 76.4% sensitivity and 86.2% specificity when classifying
1 s windows of Total-FOG data (data from 2 s before FOG onset until the end of the
FOG episode). This model detected the transition between Pre-FOG gait and FOG with
85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began.
Furthermore, the FOG windows were detected with 93.4% sensitivity, indicating that few
FOG windows were missed.

If the best model was applied in a wearable cueing device that can help avoid or
break out of a freeze, this system would have a 70.2% chance of identifying FOG before
or within 1 s of FOG onset. If this transition phase was missed, the cue would be applied
during the freeze in 93.4% of occurrences. While the model using both plantar pressure
and IMU features to detect Total-FOG had 86% specificity (i.e., 14% false-positive rate,
which is common in FOG prediction studies), higher specificity is preferred in practice. To
address this, a cueing threshold could be implemented such that a cue is only triggered if
multiple consecutive positive classifications are obtained. Future work could also include
additional participants, model personalization to improve performance, and window
length or Pre-FOG duration optimization.

Author Contributions: Conceptualization, S.P., G.S., J.K., J.N., and E.D.L.; methodology, S.P., G.S.,
J.K., J.N., and E.D.L.; investigation, S.P., and G.S.; data curation, S.P. and G.S.; writing—original draft
preparation, S.P.; writing—review and editing, S.P., G.S., J.K., J.N., and E.D.L.; supervision, J.K., J.N.,
and E.D.L.; project administration, J.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Microsoft Canada; Waterloo Artificial Intelligence Institute,
and Network for Aging Research, at University of Waterloo; Natural Sciences and Engineering
Research Council of Canada (NSERC); and University of Waterloo.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of the University of Waterloo (40954
23 May 2019) and the Research Ethics Board of the University of Ottawa (H-05-19-3547 11 July 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the participants to publish this paper.

Data Availability Statement: The data will be made available from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Sensors 2021, 21, 2246 13 of 14

References
1. Nutt, J.G.; Bloem, B.R.; Giladi, N.; Hallett, M.; Horak, F.B.; Nieuwboer, A. Freezing of gait: Moving forward on a mysterious

clinical phenomenon. Lancet Neurol. 2011, 10, 734–744. [CrossRef]
2. Okuma, Y.; Silva de Lima, A.L.; Fukae, J.; Bloem, B.R.; Snijders, A.H. A prospective study of falls in relation to freezing of gait

and response fluctuations in Parkinson’s disease. Park. Relat. Disord. 2018, 46, 30–35. [CrossRef] [PubMed]
3. Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of gait in Parkinson’s disease: A review of two intercon-

nected, episodic phenomena. Mov. Disord. 2004, 19, 871–884. [CrossRef]
4. Ginis, P.; Nackaerts, E.; Nieuwboer, A.; Heremans, E. Cueing for people with Parkinson’s disease with freezing of gait: A narrative

review of the state-of-the-art and novel perspectives. Ann. Phys. Rehabil. Med. 2018, 61, 407–413. [CrossRef]
5. Nieuwboer, A. Cueing for freezing of gait in patients with Parkinson’s disease: A rehabilitation perspective. Mov. Disord. 2008,

23, S475–S481. [CrossRef] [PubMed]
6. Pardoel, S.; Kofman, J.; Nantel, J.; Lemaire, E.D. Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s

disease: A review. Sensors 2019, 19, 5141. [CrossRef]
7. Nieuwboer, A.; Dom, R.; De Weerdt, W.; Desloovere, K.; Janssens, L.; Stijn, V. Electromyographic profiles of gait prior to onset of

freezing episodes in patients with Parkinson’s disease. Brain 2004, 127, 1650–1660. [CrossRef] [PubMed]
8. Ferster, M.L.; Mazilu, S.; Tröster, G. Gait Parameters Change Prior to Freezing in Parkinson’s Disease: A Data-Driven Study with

Wearable Inertial Units. In Proceedings of the 10th EAI International Conference on Body Area Networks, Sydney, Australia,
28–30 September 2015; pp. 159–166. [CrossRef]

9. Mazilu, S.; Blanke, U.; Calatroni, A.; Gazit, E.; Hausdorff, J.M.; Tröster, G. The role of wrist-mounted inertial sensors in detecting
gait freeze episodes in Parkinson’s disease. Pervasive Mob. Comput. 2016, 33, 1–16. [CrossRef]

10. Handojoseno, A.M.A.; Shine, J.M.; Nguyen, T.N.; Tran, Y.; Lewis, S.J.G.; Nguyen, H.T. Analysis and prediction of the freezing of
gait using EEG brain dynamics. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 887–896. [CrossRef]

11. Torvi, V.G.; Bhattacharya, A.; Chakraborty, S. Deep Domain Adaptation to Predict Freezing of Gait in Patients with Parkinson’s
Disease. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL,
USA, 17–20 December 2018; pp. 1001–1006. [CrossRef]

12. Mazilu, S.; Calatroni, A.; Gazit, E.; Roggen, D.; Hausdorff, J.M.; Tröster, G. Feature Learning for Detection and Prediction of
Freezing of Gait in Parkinson’s Disease. In Machine Learning and Data Mining in Pattern Recognition; Perner, P., Ed.; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 7988, pp. 144–158. ISBN 978-3-642-39712-7.

13. Arami, A.; Poulakakis-Daktylidis, A.; Tai, Y.F.; Burdet, E. Prediction of gait freezing in Parkinsonian patients: A binary clas-
sification augmented with time series prediction. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1909–1919. [CrossRef]
[PubMed]

14. Naghavi, N.; Wade, E. Prediction of freezing of gait in Parkinson’s disease using statistical inference and lower-limb acceleration
data. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 947–955. [CrossRef] [PubMed]

15. Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable assistant for Parkinson’s disease
patients with the freezing of gait symptom. Trans. Inf. Technol. Biomed. 2010, 14, 436–446. [CrossRef] [PubMed]

16. Nantel, J.; Bronte-Stewart, H. The effect of medication and the role of postural instability in different components of freezing of
gait (FOG). Park. Relat. Disord. 2014, 20, 447–451. [CrossRef] [PubMed]

17. Lees, A.J. The on-off phenomenon. J. Neurol. Neurosurg. Psychiatry 1989, 52, 29–37. [CrossRef]
18. Suppa, A.; Kita, A.; Leodori, G.; Zampogna, A.; Nicolini, E.; Lorenzi, P.; Rao, R.; Irrera, F. L-DOPA and freezing of gait in

Parkinson’s disease: Objective assessment through a wearable wireless system. Front. Neurol. 2017, 8, 406. [CrossRef]
19. Naghavi, N.; Miller, A.; Wade, E. Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: Addressing

the class imbalance problem. Sensors 2019, 19, 3898. [CrossRef]
20. Silva de Lima, A.L.; Evers, L.J.W.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing

of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654.
[CrossRef]

21. Palmerini, L.; Rocchi, L.; Mazilu, S.; Gazit, E.; Hausdorff, J.M.; Chiari, L. Identification of characteristic motor patterns preceding
freezing of gait in Parkinson’s disease using wearable sensors. Front. Neurol. 2017, 8, 394. [CrossRef]

22. Rahimi, F.; Xian, S.Y.; Delrobaei, M.; Jog, M. Characteristics of Gait Freezing: Possibilities for Rehabilitation. In Proceedings of
the International IEEE/EMBS Conference on Neural Engineering, San Diego, USA, CA, 6–8 November 2013; pp. 1594–1597.
[CrossRef]

23. Popovic, M.B.; Djuric-Jovicic, M.; Radovanovic, S.; Petrovic, I.; Kostic, V. A simple method to assess freezing of gait in Parkinson’s
disease patients. Braz. J. Med. Biol. Res. 2010, 43, 883–889. [CrossRef]

24. Nantel, J.; de Solages, C.; Bronte-Stewart, H. Repetitive stepping in place identifies and measures freezing episodes in subjects
with Parkinson’s disease. Gait Posture 2011, 34, 329–333. [CrossRef]

25. Plotnik, M.; Giladi, N.; Hausdorff, J.M. Bilateral coordination of walking and freezing of gait in Parkinson’s disease. Eur. J.
Neurosci. 2008, 27, 1999–2006. [CrossRef]

26. Shah, J.; Pillai, L.; Williams, D.K.; Doerhoff, S.M.; Larson-Prior, L.; Garcia-Rill, E.; Virmani, T. Increased foot strike variability in
Parkinson’s disease patients with freezing of gait. Park. Relat. Disord. 2018, 53, 58–63. [CrossRef] [PubMed]

http://doi.org/10.1016/S1474-4422(11)70143-0
http://doi.org/10.1016/j.parkreldis.2017.10.013
http://www.ncbi.nlm.nih.gov/pubmed/29079421
http://doi.org/10.1002/mds.20115
http://doi.org/10.1016/j.rehab.2017.08.002
http://doi.org/10.1002/mds.21978
http://www.ncbi.nlm.nih.gov/pubmed/18668619
http://doi.org/10.3390/s19235141
http://doi.org/10.1093/brain/awh189
http://www.ncbi.nlm.nih.gov/pubmed/15128621
http://doi.org/10.4108/eai.28-9-2015.2261411
http://doi.org/10.1016/j.pmcj.2015.12.007
http://doi.org/10.1109/TNSRE.2014.2381254
http://doi.org/10.1109/ICMLA.2018.00163
http://doi.org/10.1109/TNSRE.2019.2933626
http://www.ncbi.nlm.nih.gov/pubmed/31398122
http://doi.org/10.1109/TNSRE.2019.2910165
http://www.ncbi.nlm.nih.gov/pubmed/30990186
http://doi.org/10.1109/TITB.2009.2036165
http://www.ncbi.nlm.nih.gov/pubmed/19906597
http://doi.org/10.1016/j.parkreldis.2014.01.017
http://www.ncbi.nlm.nih.gov/pubmed/24530016
http://doi.org/10.1136/jnnp.52.Suppl.29
http://doi.org/10.3389/fneur.2017.00406
http://doi.org/10.3390/s19183898
http://doi.org/10.1007/s00415-017-8424-0
http://doi.org/10.3389/fneur.2017.00394
http://doi.org/10.1109/NER.2013.6696253
http://doi.org/10.1590/S0100-879X2010007500077
http://doi.org/10.1016/j.gaitpost.2011.05.020
http://doi.org/10.1111/j.1460-9568.2008.06167.x
http://doi.org/10.1016/j.parkreldis.2018.04.032
http://www.ncbi.nlm.nih.gov/pubmed/29773512


Sensors 2021, 21, 2246 14 of 14

27. Maculewicz, J.; Kofoed, L.B.; Serafin, S. A technological review of the instrumented footwear for rehabilitation with a focus on
Parkinson’s disease patients. Front. Neurol. 2016, 7, 1–6. [CrossRef] [PubMed]

28. Neaga, F.; Moga, D.; Petreus, D.; Munteanu, M.; Stroia, N. A Wireless System for Monitoring the Progressive Loading of Lower
Limb in Post-Traumatic Rehabilitation. In Proceedings of the International Conference on Advancements of Medicine and Health Care
through Technology, Cluj-Napoca, Romania, 29 August–2 September 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 36,
pp. 54–59. [CrossRef]

29. Edgar, S.R.; Swyka, T.; Fulk, G.; Sazonov, E.S. Wearable Shoe-Based Device for Rehabilitation of Stroke Patients. In Proceedings
of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina,
31 August–3 September 2010; pp. 3772–3775. [CrossRef]

30. Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE
Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1812–1820. [CrossRef]

31. Howcroft, J.; Lemaire, E.D.; Kofman, J. Wearable-sensor-based classification models of faller status in older adults. PLoS ONE
2016, 11, e153240. [CrossRef] [PubMed]

32. Jeon, H.S.; Han, J.; Yi, W.J.; Jeon, B.; Park, K.S. Classification of Parkinson Gait and Normal Gait using Spatial-Temporal Image of
Plantar Pressure. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4672–4675. [CrossRef]

33. Shalin, G.; Pardoel, S.; Nantel, J.; Lemaire, E.D.; Kofman, J. Prediction of Freezing of Gait in Parkinson’s Disease from Foot
Plantar-Pressure Arrays using a Convolutional Neural Network. In Proceedings of the 42nd Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–24 July 2020; pp. 244–247. [CrossRef]

34. Pardoel, S.; Shalin, G.; Nantel, J.; Lemaire, E.D.; Kofman, J. Selection of Plantar-Pressure and Ankle-Acceleration Features
for Freezing of Gait Detection in Parkinson’s Disease using Minimum-Redundancy Maximum-Relevance. In Proceedings of
the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada,
20–24 July 2020; pp. 4034–4037. [CrossRef]

35. Reches, T.; Dagan, M.; Herman, T.; Gazit, E.; Gouskova, N.A.; Giladi, N.; Manor, B.; Hausdorff, J.M. Using wearable sensors and
machine learning to automatically detect freezing of gait during a FOG-provoking test. Sensors 2020, 20, 4474. [CrossRef]

36. Howcroft, J.; Kofman, J.; Lemaire, E.D. Feature selection for elderly faller classification based on wearable sensors. J. Neuroeng.
Rehabil. 2017, 14, 11. [CrossRef]

37. Bächlin, M.; Roggen, D.; Plotnik, M.; Hausdorff, J.M.; Giladi, N.; Tröster, G. Online Detection of Freezing of Gait in Parkinson’s
Disease Patients: A Performance Characterization. In Proceedings of the 4th International ICST Conference on Body Area
Networks, Los Angeles, CA, USA, 1–3 April 2009. [CrossRef]

38. Ahlrichs, C.; Samà, A.; Lawo, M.; Cabestany, J.; Rodríguez-Martín, D.; Pérez-López, C.; Sweeney, D.; Quinlan, L.R.; Laighin,
G.Ò.; Counihan, T.; et al. Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. Med. Biol. Eng.
Comput. 2016, 54, 223–233. [CrossRef]

39. Moore, S.T.; MacDougall, H.G.; Ondo, W.G. Ambulatory monitoring of freezing of gait in Parkinson’s disease. J. Neurosci. Methods
2008, 167, 340–348. [CrossRef] [PubMed]

40. El-Attar, A.; Ashour, A.S.; Dey, N.; Abdelkader, H.; Abd El-Naby, M.M.; Sherratt, S.R. Discrete wavelet transform-based freezing
of gait detection in Parkinson’s disease. J. Exp. Theor. Artif. Intell. 2018, 1–17. [CrossRef]

41. Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2014, 24,
175–186. [CrossRef]

42. Urbanowicz, R.J.; Meeker, M.; Lacava, W.; Olson, R.S.; Jason, H. Relief-based feature selection: Introduction and review. J. Biomed.
Inform. 2018, 85, 189–203. [CrossRef]

43. Tripoliti, E.E.; Tzallas, A.T.; Tsipouras, M.G.; Rigas, G.; Bougia, P.; Leontiou, M.; Konitsiotis, S.; Chondrogiorgi, M.; Tsouli, S.;
Fotiadis, D.I. Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput. Methods Programs
Biomed. 2013, 110, 12–26. [CrossRef] [PubMed]

44. Handojoseno, A.M.A.; Naik, G.R.; Gilat, M.; Shine, J.M.; Nguyen, T.N.; Quynh, T.L.; Lewis, S.J.G.; Nguyen, H.T. Prediction of
freezing of gait in patients with Parkinson’s disease using EEG signals. Stud. Health Technol. Inform. 2017, 246, 124–131. [CrossRef]

45. Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Olmo, G.; Irrera, F. Prediction of freezing of gait in Parkinson’s disease using
wearables and machine learning. Sensors 2021, 21, 614. [CrossRef] [PubMed]

http://doi.org/10.3389/fneur.2016.00001
http://www.ncbi.nlm.nih.gov/pubmed/26834696
http://doi.org/10.1007/978-3-642-22586-4_13
http://doi.org/10.1109/IEMBS.2010.5627577
http://doi.org/10.1109/TNSRE.2017.2687100
http://doi.org/10.1371/journal.pone.0153240
http://www.ncbi.nlm.nih.gov/pubmed/27054878
http://doi.org/10.1109/IEMBS.2008.4650255
http://doi.org/10.1109/EMBC44109.2020.9176382
http://doi.org/10.1109/EMBC44109.2020.9176607
http://doi.org/10.3390/s20164474
http://doi.org/10.1186/s12984-017-0255-9
http://doi.org/10.4108/ICST.BODYNETS2009.5852
http://doi.org/10.1007/s11517-015-1395-3
http://doi.org/10.1016/j.jneumeth.2007.08.023
http://www.ncbi.nlm.nih.gov/pubmed/17928063
http://doi.org/10.1080/0952813X.2018.1519000
http://doi.org/10.1007/s00521-013-1368-0
http://doi.org/10.1016/j.jbi.2018.07.014
http://doi.org/10.1016/j.cmpb.2012.10.016
http://www.ncbi.nlm.nih.gov/pubmed/23195495
http://doi.org/10.3233/978-1-61499-845-7-124
http://doi.org/10.3390/s21020614
http://www.ncbi.nlm.nih.gov/pubmed/33477323

	Introduction 
	Materials and Methods 
	Data Collection 
	Labelling and Windowing 
	Feature Extraction 
	Feature Selection 
	Ensemble Model Development 

	Results 
	Discussion 
	Conclusions 
	References

