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Abstract: Power transformers are considered important and expensive items in electrical power
networks. In this regard, the early discovery of potential faults in transformers considering datasets
collected from diverse sensors can guarantee the continuous operation of electrical systems. Indeed,
the discontinuity of these transformers is expensive and can lead to excessive economic losses for
the power utilities. Dissolved gas analysis (DGA), as well as partial discharge (PD) tests considering
different intelligent sensors for the measurement process, are used as diagnostic techniques for
detecting the oil insulation level. This paper includes two parts; the first part is about the integration
among the diagnosis results of recognized dissolved gas analysis techniques, in this part, the proposed
techniques are classified into four techniques. The integration between the different DGA techniques
not only improves the oil fault condition monitoring but also overcomes the individual weakness,
and this positive feature is proved by using 532 samples from the Egyptian Electricity Transmission
Company (EETC). The second part overview the experimental setup for (66/11.86 kV–40 MVA)
power transformer which exists in the Egyptian Electricity Transmission Company (EETC), the first
section in this part analyzes the dissolved gases concentricity for many samples, and the second
section illustrates the measurement of PD particularly in this case study. The results demonstrate
that precise interpretation of oil transformers can be provided to system operators, thanks to the
combination of the most appropriate techniques.

Keywords: dissolved gas analysis; partial discharge; PD sensor; power transformer; insulating oil

1. Introduction

Dissolved gas analysis (DGA) is an efficient diagnostic way to the early detection
of incipient transformer faults. Specifically, DGA is one of the most important tests for
insulating fluid materials in the electrical components with different intelligent sensors.
Besides, power transformers are considered the most key assets of electric power substa-
tions [1–5]. Practically, an oil transformer sample is regularly investigated at any time from
all electrical devices without needing to turn it off. Key gasses formed by the degradation
of oil and paper insulation are: (1) hydrogen (H2), (2) ethylene (C2H4), (3) acetylene (C2H2),
(4) carbon dioxide (CO2), (5) ethane (C2H6), (6) methane (CH4), and (7) carbon monoxide
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(CO). The gas concentrations, generation rates, specific gas ratios, and the total combustible
gas are important parameters for interpreting the result of DGA [6–9].

The six common faults type are partial discharge (PD), low discharge faults (D1),
high discharge faults (D2), low thermal faults (T1) in oil or/and in a paper, below 300 ◦C,
and above 300 ◦C of the paper has carbonized medium thermal faults (T2), high thermal
fault (T3) of a temperature above 700 ◦C if there is strong evidence of carbonization of
the oil. There are many traditional approaches for the transformer fault diagnosis by the
DGA method which comprises the important gas analysis—e.g., Rogers Ratio technique,
IEC gas ratio code (IEC 60599) [8], followed by Dornenburg Ratio technique, and Duval
triangle technique. These traditional diagnostics approaches do not often yield accurate
analysis while missing important incipient faults, thereby leading to the ‘no decision’
issue. To ensure great efficacy of accuracy and sufficient diagnostics of definite transformer
fault types, numerous artificial intelligent techniques were executed. In turn, the artificial
intelligence-based diagnostic techniques are an effective tool for maintenance transformer
scheduling [10–12]. Hence, graphical DGA techniques are easy to be applied, nonetheless
they still have limited diagnostic accuracies for different transformer faults [13,14]. More
recently, the artificial neural network (ANN) is considered the most extensively used
method in the literature for not only DGA but also diverse practical applications [15–17].
In [18], a fuzzy logic system is combined with a metaheuristic approach that is the hybrid
grey wolf optimizer which adjusts DGA considering a diagnostic way that is robust
against uncertainties. It is demonstrated that fuzzy logic, metaheuristics, and ANN can
provide improved performance in general engineering applications [19–23]. Specifically in
transformer oil diagnoses, [24] introduces an intelligent approach used to diagnose the fault
and to make the decision for oil-immersed power transformers, based on the DGA principle.
In [25], a deep parallel detection technique for dissolved gas analysis of the transformer
is used. In [26], modified diagnosis techniques of fault types within oil-immersed power
transformers using DGA and genetic algorithm software are presented.

As mentioned in the above literature, most of the existing DGA techniques can have
poor diagnostic precision [27,28], while they may fail to interpret the oil faults in transform-
ers. To solve this issue, this research work aims to fill this gap by improving the diagnostic
accuracy of transformer faults. This ambitious task is accomplished by combining mul-
tiple techniques together in a unified framework, thereby contributing to maximize the
diagnostic accuracy compared to individual approaches. Specifically, the first part is about
the proposed techniques that are produced, and are classified into four techniques. These
techniques were formed by combining the results of different conventional methods with
methods from previous studies, as the results of these techniques improved compared to
the methods involved in the formation of each technique separately. Technique no. 1 is
constructed based on the outputs of three techniques, Duval, Roger’s four ratios refined,
IEC refined techniques, while technique no. 2 is preceded based on three (DGA) methods
(clustering, conditional probability, and Duval triangle). Technique no. 3 is depending on
the diagnosis results of two techniques (the artificial neural network (ANN) technique and
Roger’s refined method). Finally, technique no. 4 is depended on the combined results of
techniques no. 2 and no. 3. The integration between these DGA techniques with partial
discharge (PD) sensors overcomes the individual weakness and the differences between
the conventional methods, and this is proved by using 532 samples from the Egyptian
Electricity Transmission Company (EETC) substation. In addition, the second part of this
research overviews the experimental setup for (66/11.86 kV–40 MVA) power transformer
which exists in the EETC networks, the first section in this part illustrates the analysis
of the dissolved gases concentricity in part per millions (ppm) for several samples, the
second section in this part illustrates the measurement of partial discharge before and
after oil terminated. The novelty of this paper is that the demonstration of four proposed
techniques for transformer oil fault diagnosis. These constructions techniques are based
on integration among the different DGA techniques. Also, it includes the dissolved gases
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analysis for many samples as well as a measurement of PD, particularly for (66/11.86
kV–40 MVA) power transformer.

2. Faults and Failure Mode in Transformers

The arrangement of the gas formed in a fault is specified by several factors. In
addition, the specified gases which are realized in any gas sample noticed at the analysis
are additionally influenced by features other than those linking to the fault. Fault gases are
caused by partial discharge faults, arcing discharge faults, and thermal faults (hotspots) [29].
The generation of fault gases is strongly dependent on the temperature; from [30], it
is demonstrated relative amounts of gas with approximate temperature. Specifically,
hydrogen, as well as methane, start to form in minor amounts about 150 ◦C, H2 and
C2H4 production go down as temperature rises. When the temperature reaches 250 ◦C,
the production of ethane starts to be formed. In turn, the production of C2H4 begins
at about 350 ◦C. Besides, C2H2 production starts between 500 ◦C and 700 ◦C. Greater
amounts of C2H2 can only be formed above 700 ◦C by interior arcing. Starting at around
275 ◦C and on up, the making of ethane surpasses methane. At near 450 ◦C, hydrogen
production surpasses all other gases until around 750 ◦C to 800 ◦C; formerly more acetylene
is formed [30]. Recently, researchers have been prompted to direct their attention to
biodegradable and renewable insulating materials for transformer oil [31].

2.1. Partial Discharge Fault

PDs look like short pulses that frequently goes together with the emission of sound,
bright, heat, and chemical responses. The bases of partial discharges comprise voids and
cracks in solid insulation, floating mechanisms—e.g., water drops—as well as air bubbles,
and corona produced due to sharp ends of solid insulation, windings, or tank. After
initializing, partial discharge can transmit with increasing intensity until releasing as an
arc discharge. Typically, this type of fault is categorized by the production of H2 and CH4.

2.2. Arcing Discharge Fault

Arcing discharges produce excessive temperatures and high amounts of gases, mostly
C2H2 and H2. This fault kind is very unsafe and if not managed, can reason extreme
pressure in the transformer tank, triggering even a dangerous explosion.

2.3. Thermal Fault

Thermal transformer faults arise because of the hotness of conductors, short circuits,
hotness of windings because of eddy currents, slack connections, and inadequate cooling.
These faults can be categorized into (1) low-temperature fault for temperature up to
150 ◦C, (2) medium to high fault for temperature between 300 ◦C and 700 ◦C, and (3)
high-temperature fault for temperature above 1000 ◦C. Furthermore, localized thermal
faults are recognized as flashpoints. Thermal faults generation hydrocarbon gases, mainly
C2H4, CH4, and C2H6. A thermal fault type at little temperature (<300 ◦C) products mostly
methane and ethane and approximately ethylene. However, a thermal fault at advanced
temperatures (>300 ◦C) products ethylene. The excessive the temperature becomes the
better the production of ethylene.

3. Dissolved Gas Analysis: Interpretation Techniques

Several DGA techniques are used in the first part of this research and are briefly
listed below.

3.1. Duval Technique

This technique is built based on the attentiveness of three dissolved gases: C2H2, CH4,
and C2H4. Usually, in the Duval triangle, seven zones are categorized as partial discharge
(PD), thermal fault T1 (at T is less than 300 ◦C), thermal fault T2 (at T is between 300 ◦C and
700 ◦C), thermal fault T3 (at T is greater than 700 ◦C), low energy discharge (D1) sparking,
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high energy discharge (D2) arching and a maximum of thermal and electrical faults (DT).
In order to diagnose the transformer fault using the Duval triangle (see Figure 1), the
overall accumulated quantity of the three Duval triangle gases (C2H2, CH4, and C2H4) was
considered and divided each gas by the total to find the percentage of each gas. Then, the
fault type is determined by using the three ratios according to [32–36].

Figure 1. Description of Duval triangle.

3.2. Roger’s Four Ratios Refined Technique

This technique is used to rise the correctness of Rogers’s four ratio method by adapting
the ratio limits and their association between them to achieve the modified fault types link
to the actual fault [37,38]. These four gas ratios are CH4/H2, C2H6/CH4, C2H4/C2H6, and
C2H2/C2H4.

3.3. IEC Refined Technique

IEC refined technique is applied to raise the precision of the IEC method by adjusting
the gas ratio limits and their connection between them to contract the correct fault types
correspond to the actual fault [38,39]. The transformer faults type is determined by using
three ratios CH4/H2, C2H2/C2H4, and C2H4/C2H6.

3.4. Conditional Probability Technique

Based on the percentage of the five main gases concerning their whole amounts, this
method is utilized to diagnose transformer fault kinds. In this method, the probabilities of
each fault type occurrence and non-occurrence are determined. Formerly, the probabilistic
suggestion of each fault kind occurrence can be quantified according to the provisional
probability of confident fault occurrence.

The transformer oil fault is classified as partial discharge (PD), arcing (AR), or thermal
(TH), and the diagnostic is the fault type corresponding to the maximum probability [40,41].

3.5. Clustering Technique

This technique is based on the percentage of the five major dissolved gases—H2, C2H2,
C2H6, C2H4, and CH4—with respect to their summation. The transformer fault is classified
as partial discharge (PD), arcing (D1 and D2), or thermal (T1, T2, and T3). Based on the
percentage ratio for each gas with respect to the sum of the five gases, the limit of each
fault type in this method is determined [37,38].
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3.6. Artificial Neural Network (ANN) Techniques

The ANNs are considered mathematical models that can be used in the modeling of
composite structures. Specifically, ANNs contain three layers—the input layer, the hidden
layer, and the output layer. The first layer characterizes the inputs while the third one
models the outputs. The second layer contains nodes that attempt to functionally map the
model inputs throughout optimization with respect to the model outputs [42,43].

Using the ANN technique, three DGA methods are combined. These methods are
Rogers, IEC, and Duval. Each method consists of four-layer network (one input layer, two
hidden layers, and one output layer). The input patterns are considered the gas ratios
according to each method. Adopted weights represent the connection to the input while
the product of weight and input yields the strength of it. A specified neuron receives
multiple inputs from dissimilar sources. The output patterns are considered the main six
fault types (PD, D1, D2, T1, T2, and T3) [44,45].

4. Proposed Techniques

Because of the importance of power transformers in the electrical grid and their high
cost, it is necessary to develop fault diagnosis methods. DGA of different techniques is one
of these methods used for the detection of transformer-oil faults. Therefore, new diagnostic
methods should be developed based on the dissolved gases. Note that the construction
of a large power transformer very depends on the current application or the type of the
transformer, as in [46].

The proposed techniques are constructed based on the integration of the diagnosis
results of recognized DGA techniques and are classified into four techniques.

4.1. Proposed Technique No. 1

This technique is constructed based on the outputs of three techniques, Duval, Roger’s
four ratios refined, and IEC refined techniques. The inputs to this method are the combi-
nations of outputs diagnoses from the three techniques. The integration between three
DGA techniques is to improve the oil fault condition monitoring and overcome the indi-
vidual weakness.

Below, we describe the steps to apply this proposed combined technique (see Figure 2):

• When the three outputs (dig1, dig2, and dig3) are identical to each other, the diagnosis
is one of these techniques;

• When the two outputs (dig2 and dig1) are identical to each other, the diagnosis is like
dig2 or dig1;

• When the two outputs (dig2 and dig3) are identical to each other and are not equal to
undetermined fault type, the diagnosis is like dig2 or dig3;

• When the diagnosis of dig2 is T1, the diagnosis is like dig2;
• When the diagnosis of dig3 is T2, the diagnosis is like dig3;
• When the diagnosis of dig1 is D1, the diagnosis is like dig1;
• When the three outputs (dig1, dig2, and dig3) are not identical to each other, the

diagnosis is like dig3.

Where dig1, dig2, and dig3 are the diagnosis results by Duval and Rogers refined and
IEC refined techniques, respectively.
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Figure 2. Flowchart procedure of technique no. 1.

4.2. Proposed Technique No. 2

This technique uses the integration among the outputs of three (DGA) techniques.
These techniques are (clustering technique, the conditional probability technique, the
Duval triangle method) [45]. This technique is associated with conventional methods
represented by the Duval technique and unconventional methods represented by clustering
and conditional probability techniques.

The steps of this technique are as follows:

• Insert the diagnostic outputs of the three above techniques (dig4, dig5, and dig1);
• If the three diagnostic outputs are identical, the diagnosis of the transformer fault type

is identical to one of them (dig4 or dig5, or dig1);
• If the two diagnostic outputs (dig4 and dig5) are identical, the diagnosis of the trans-

former fault type is identical to one of them (dig4 or dig5);
• If the two diagnostic outputs (dig5 and dig1) are identical, the diagnosis of the trans-

former fault type is identical to one of them (dig5 or dig1);
• If the two diagnostic outputs (dig4 and dig1) are identical, the diagnosis of the trans-

former fault type is identical to one of them (dig4 or dig1);
• If the three diagnostic outputs are not identical, the diagnosis of the transformer fault

type is dig5 due to higher accuracy compare to dig4 and dig1.

Figure 3 illustrates the flowchart of technique no. 2 according to the above steps.
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Where dig1, dig4, and dig5 refer to the outputs of Duval triangle, clustering, and conditional
probability techniques.

Figure 3. Flowchart procedure of technique no. 2.

4.3. Proposed Technique No. 3

This DGA technique is depending on the diagnosis results of two DGA techniques,
the ANN technique and Roger’s refined method. This method links a conventional method
with an unconventional method. The output of ANN’s technique and Roger’s refined
technique (dig6, dig2) respectively are the inputs to the integrated technique (see Figure 4).
The fault diagnosis using this DGA technique can be determined by following these steps:

• Insert the diagnostic outputs of the two techniques (dig6 and dig2);
• If the two diagnostic outputs are identical and give partial discharge fault type, or

(dig6 diagnoses partial discharge fault type and dig2 is not diagnosed (T1 or T3)), the
transformer fault type is partial discharge;

• If the two diagnostic outputs are identical and give low energy discharge (D1) fault
type, or (dig6) diagnoses low energy discharge (D1) fault type, the transformer fault
type is D1;

• If the two diagnostic outputs are identical and give high energy discharge (D2) fault
type, or dig6 diagnoses high energy discharge (D2) fault type, the transformer fault
type is D2;

• If the two diagnostic outputs are identical and give low thermal (T1) fault type, or
dig2 diagnoses low thermal discharge (T1) fault type, the transformer fault type is T1.

• If the two diagnostic outputs are identical and give medium thermal (T2) fault type,
or dig6 diagnoses medium thermal discharge (T2) fault type, the transformer fault
type is T2;
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• If the two diagnostic outputs are identical and give high thermal (T3) fault type, or
dig2 diagnoses high thermal discharge (T3) fault type, the transformer fault type is T3;

• If the above steps were not achieved, the diagnosis of the transformer fault type is
identical to dig6.

Figure 4. Flowchart procedure of technique no. 3.

4.4. Proposed Technique No. 4

This technique uses the integration among the output results of the two techniques
(no. 2 and no. 3) to improve the overall accuracy. During this technique construction, we
take into account the merits and demerits of each of the two techniques (no. 2 and no. 3).
The dig7 and dig8 refer to the results of technique no. 2 and technique no. 3 respectively
and are the inputs to technique no. 4.

The steps of this technique as follows: (see Figure 5)

• Insert the diagnostic outputs of the two techniques (dig7 and dig8).
• If the diagnostic output of dig8 is low or high thermal fault type and the diagnostic

output of dig7 is not a medium thermal fault, the diagnostic fault is identical to the
diagnostic output of dig8.
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• If the above condition is not met, the diagnostic fault is identical to the diagnostic
output of dig7.

Figure 5. Flowchart procedure of technique no. 4.

5. Performance Evaluation of the Proposed Techniques

The training data set used was 532 samples from the Egyptian ministry of electricity,
and were known for their actual faults (see Table 1). The performance of the proposed
technique is evaluated by using MATLAB software.

Table 1. Number of samples for each fault type.

Fault Type PD D1 D2 T1 T2 T3 All

Sample 59 96 175 92 30 80 532

The total accuracy percentage of technique no. 1 is improved with compare to the three
techniques (Duval triangle, Rogers refined, IEC refined) were produce this technique. The
overall accuracy percentage of this technique is 69.92, whilst the total accuracy percentage
of the three techniques (Duval, Rogers refined, and IEC refined) are 66.35, 59.9, and 66.9
respectively (see Table 2 and Figure 6).

Table 2. Accuracies percentage of the no. 1, Duval, Roger’s four ratios refined and IEC refined methods.

Fault Type
Accuracy Percentage

Duval Roger’s 4 Ratios Refined IEC Refined Proposed Technique
No. 1

PD 54.2 32.2 57.6 50.84
D1 75 8.3 29.1 31.25
D2 70.2 70.2 81.7 81.14
T1 47.8 88.0 67.3 90.21
T2 33.3 46.6 66.6 43.33
T3 90 92.5 86.2 92.5

ALL 66.3 59.9 66.9 69.92



Sensors 2021, 21, 2223 10 of 21

Figure 6. Comparison between the proposed technique no. 1 and its component method.

The proposed technique no. 2 improved the overall accuracy percentage compare to
the three techniques (Duval triangle, Conditional probability, and clustering techniques).
The total accuracy percentage of this technique is 84.96, whilst the total accuracy percentage
of the three techniques (Duval, conditional probability, and clustering approach) are 66.3,
82.8, and 62.7 respectively. The correctness of diagnosis D2 fault kind is enhanced from
70.2% for Duval and 92.5% for conditional probability and 94.2% for clustering method
to 96% for technique no. 2, and the accuracy of diagnosis T1 fault type is improved from
47.8% for Duval and 82.6% for conditional probability and 29.3% for clustering method to
83.6% for the proposed method (see Table 3).

Table 3. Accuracy percentages of the modified technique and the three techniques.

Fault Type
Accuracy Percentage

Duval Conditional Probability Clustering Approach Proposed Technique
No. 2

PD 54.2 91.5 93.2 91.5
D1 75 61.4 35.4 60.4
D2 70.2 92.5 94.2 96
T1 47.8 82.6 29.3 83.6
T2 33.3 86.6 50 83.3
T3 90 80 47.5 87.5

ALL 66.3 82.8 62.7 84.96

The total accuracy percentage of technique no. 3 is improved with comparison to the
two techniques (ANN and Rogers refined four ratios) techniques. The overall accuracy
percentage of it is 83.2, whilst the total accuracy percentage of the two techniques (ANN
and Rogers refined four ratios) is 81.7 and 59.9, respectively. The accuracy of diagnosis T1
fault type is improved from 91.3 % for ANN and 88 % for Roger’s four ratios technique to
94.5% for technique no. 3 (see Table 4).

By comparing the proposed techniques (no. 2 and no. 3), the detection of the fault
types using no. 2 is better than of no. 3 except for T1 and T3 fault types (see Figure 7), so
technique no. 4 is constructed to take into account the features of both techniques (see
Table 5). The accuracy percentage is enhanced using technique no. 4 compare to the three
techniques (no. 1, no. 2, and no. 3). The accuracy percentage of technique no. 4 is 85.3,
whilst the accuracy percentage of the three techniques (no. 1, no. 2, and no. 3) is 69.92,
84.96, and 83.27, respectively, (see Table 6).
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Table 4. Accuracy percentages of no. 3, ANN, and Roger’s 4 ratios refined techniques.

Fault Type
Accuracy Percentage

ANN Roger’s 4 Ratios Refined Proposed Technique No. 3

PD 84.7 32.2 84.7
D1 60.4 8.3 60.4
D2 90.2 70.2 90.2
T1 91.3 88.0 94.5
T2 60 46.6 60
T3 83.7 92.5 90

ALL 81.7 59.9 83.27

Figure 7. Comparison between the proposed techniques of no. 2 and no. 3.

Table 5. Accuracy percentages of no. 2, no. 3, and no. 4 techniques.

Fault Type
Accuracy Percentage

Proposed Technique No. 2 Proposed Technique No. 3 Proposed Technique No. 4

PD 91.5 84.7 89.8
D1 60.4 60.4 60.4
D2 96 90.2 94.8
T1 83.6 94.5 91.3
T2 83.3 60 83.3
T3 87.5 90 85

ALL 84.96 83.27 85.3

Table 6. Accuracy percentages of the four proposed techniques.

Fault Type
Accuracy Percentage

No. 1 No. 2 No. 3 No. 4

PD 50.84 91.5 84.7 89.8
D1 31.25 60.4 60.4 60.4
D2 81.14 96 90.2 94.8
T1 90.21 83.6 94.5 91.3
T2 43.33 83.3 60 83.3
T3 92.5 87.5 90 85

ALL 69.92 84.96 83.27 85.3
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• In the T3 fault type, the accuracy percentage of technique no. 1 is greater than the
other techniques;

• In PD and D2 fault types, the accuracy percentage of technique no. 2 is greater than
the other techniques;

• In the T1 fault type, the accuracy percentage of technique no. 3 is greater than the
other techniques;

• In the D1 fault type, the accuracy percentage of technique no. 1 is less than the other
techniques;

• In the T2 fault type, the accuracies percentage of techniques no. 1 and no. 3 are less
than the two other techniques as shown in Figure 8.

Figure 8. Comparison between the proposed DGA techniques.

6. Case Study

The (66/11.86 kV–40 MVA) power transformer has been analyzed and tested using
DGA and partial discharge measurement [47–49].

6.1. Dissolved Gas Analysis (DGA)

The part per million (ppm) of the extracting gases were given for eight samples during
the period from 8 November 2015 to 21 February 2019 as shown in Table 7.

Table 7. DGA history of the case study.

The Date H2 CH4 C2H6 C2H4 C2H2

Sample 1 18 12 136 421 0
Sample 2 18 11 95 472 7
Sample 3 38 81 57 359 3
Sample 4 38 93 62 621 1
Sample 5 48 134 131 561 3
Sample 6 31 34 177 706 9
Sample 7 28 9 126 444 6
Sample 8 36 117 89 707 7

The production of the most common gases (H2, CH4, C2H6, C2H4, and C2H2) by eight
samples during this period is as Table 7. The concentrations of C2H4, C2H6, and following
them (H2 and CH4) are the highest for eight samples. Figure 9 illustrates the production of
the most common ratios (C2H4/C2H6, CH4/H2, and C2H2/C2H4). The ratio C2H4/C2H6 is
higher than other ratios C2H2/C2H4 and CH4/H2. All proposed DGA techniques detected
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high thermal fault types for each sample such as laboratory results. After the oil has been
purified, the transformer is returned to service.

Figure 9. Analyzing the most common ratios in the case study.

6.2. By Using Partial Discharge Measurement

Based on the DGA of the case study, it showed an increase in the proportion of gases
over the study period with high energy electrical arcing (the thermal fault of 700 ◦C), this
means big eddy currents in tank and core, slight currents in tank walls caused by the
excessive uncompensated magnetic field, shorted core laminations. This requires taking
the decision to exit the network and conduct all tests with the recommendation to measure
the percentage of partial discharge. Power transformers that are regarded as complying
with IEC standards the same ways as new transformers shall be tested with 100% of the
required test voltage. Transformers after many years in service or repair after breakdown
shall be charged with 80–100% of the original test voltage.

(a) Induced Voltage Test with Partial Discharge Measurement (IVPD)
Induced voltage test with PD measurement according to IEC St. 60076-3 and IEC St.

60270 [36,37]. In the case of the test, frequency surpasses twice the nominal frequency, the
computed time in seconds of the test will be (see Equation (1))

Duration time = 120 × rated f requency
test f requency

, but not less 15 (1)

In this case study, the rated frequency 50 Hz, the test frequency 150 Hz, and the
duration time 40 s. The test shall begin at a voltage not higher than one-third of the
quantified test value, and the voltage is enlarged to the test value as quickly as is reliable
with practical tests. After the test, the voltage is minimized speedily to fewer than one-
third of the test value beforehand switching off. However, the PD level can be unceasingly
experiential on at least one measuring channel for the whole test period. Throughout
the test sequence, the inception and extinction voltages of any important PD activity
are required to be noted to aid the assessment of the test result if the test standards
are not achieved [50–52]. Figure 10 shows the power transformer understudy and its
control system using the condenser bushing test tap, where the capacitances between the
measuring terminal and central conductor act as a capacitive voltage divider for the partial
discharge signal. Furthermore, Figure 11 shows the online PD measurements experimental
set-up with its components.
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Figure 10. PD measurements; (a) power transformer under test, and (b) control system for the power transformer.

Figure 11. Partial discharge measurements experimental set-up.

PD is measured through a technique according to IEC 60270 [49]. Every PD mea-
surement channel includes the related bushing or coupling capacitor while calibrating in
terms of apparent charge (pC). In this case, the PD device is connected to the bushing tap,
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if bushing tap connectors are not available, coupling capacitors are placed close to the
bushing [53–55]. The PD measurement shall be assumed in pC and shall denote the maxi-
mum steady-state repetitive impulses specified by the measuring tool. The test can only be
carefully effective if the measured background PD value does not surpass 50 pC at both
the start and the termination of the test. For specified tests on shunt reactors, a background
PD value of up to 100 pC may be accepted. By using OMICRON MPD 600 system and
MI program, the results are obtained. Thence, Table 8 and Figures 12 and 13 show the syn-
chronous multichannel measurement and separation of PD and corona sources at different
locations with three phase amplitude relation diagram (3PARD) before oil terminated.

Table 8. Induced voltage test with PD measurement (IVPD) before oil terminated.

Induced Voltage (kV)—150 Hz
Time

PD Level (pC)

Ratio LV Ph-Ph HV Ph-Ph Ph(U) Ph(V) Ph(W)

1.8 Ur 21.34 118.8 00:00:40 - - -
1.58 Ur 18.73 104.2 00:60:00 957.3 1609 249.5

Figure 12. Synchronous multi-channel measurement and separation of PD.

The test proved the existence of partial discharge while the dissolved gas analysis did
not refer to it, because the effect of high thermal fault type was stronger than it. Also, this
test proved a defect for dissolved gas analysis, that only one fault type is diagnosed, which
is the most effective.

Since the presence of hydrogen and methane is related to the partial discharge failure,
it must be taken into account if they are greater than or equal to 10 ppm, even if the other
ratios are higher than them. Table 9 and Figure 14 show the results of PD measurements for
power transformers after oil terminated overall period up to 1 h, and the different location
for PD with three amplitude relation diagrams (3PARD) Shown in Figure 15.
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Figure 13. Different locations for PD (3PARD).

Table 9. Induced voltage test with PD measurement (IVPD), after oil terminated.

Induced Voltage (kV)—150 Hz
Time

PD Level (pC)

Ratio LV Ph-Ph HV Ph-Ph Ph(U) Ph(V) Ph(W)

1.8 Ur 21.34 118.8 00:00:40 - - -
1.58 Ur 18.73 104.2 00:60:00 5.686 13.28 34.88
1.58 Ur 18.73 104.2 00:55:00 8.232 15.63 54.42
1.58 Ur 18.73 104.2 00:50:00 7.66 14.92 49.15
1.58 Ur 18.73 104.2 00:45:00 7.11 14.45 43.30
1.58 Ur 18.73 104.2 00:40:00 6.73 13.31 34.53
1.58 Ur 18.73 104.2 00:35:00 8.002 23.06 32.93
1.58 Ur 18.73 104.2 00:30:00 10.27 35.81 27.55
1.58 Ur 18.73 104.2 00:25:00 5.03 12.60 19.80
1.58 Ur 18.73 104.2 00:20:00 4.89 12.38 24.62
1.58 Ur 18.73 104.2 00:15:00 4.85 12.69 17.64
1.58 Ur 18.73 104.2 00:10:00 5.07 12.94 20.42
1.58 Ur 18.73 104.2 00:05:00 5.57 12.84 18.43

Figure 16 shows an example of the relation between the raise of induced voltage
at test frequency 150 Hz and the PD level during measurements for Phase V. The test is
successful according to IEC Std. 60076 -3, where the PD value measured at a voltage value
of (1.2 Ur)/

√
3 afterward the 1 h time does not surpass 100 pC, and the PD levels recorded

during the one hour period exceed 250 pC, also the DGA after rapier and oil terminated
within limit according to IEC Std. 60567 and IEEE Std. C57.104.
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Figure 14. Synchronous multi-channel measurement and separation of PD After oil terminated
(60 min).

Figure 15. Different locations for PD with (3PARD) after oil terminated.



Sensors 2021, 21, 2223 18 of 21

Figure 16. Relation between the raise of induced voltage and PD level.

6.3. Discussion

By evaluating the results of the proposed technique:

• The diagnosis accuracy of the first technique is 69.92%. Furthermore, the accuracies of
Duval, Rogers, and IEC techniques are 66.35%, 59.9%, and 66.9%, respectively.

• The diagnosis accuracy of the second DGA method is 84.96%. The accuracies of
clustering, conditional probability, and Duval methods are 62.7%, 82.8%, and 66.3%,
respectively.

• The diagnosis accuracy of the third DGA method is 83.2%. The accuracies of artificial
neural network (ANN) and the Rogers methods are 81.7% and 59.9%, respectively.

• The fourth proposed method accuracy is higher than the accuracy of the first three methods.

According to the above section, the integration between DGA methods improves the
accuracy of fault detection. This integration may be between conventional methods only or
between conventional and unconventional methods or between unconventional methods
only. For the case study of high thermal fault type according to DGA methods, the partial
discharge levels are detected between phases U and V using electrical methods.

7. Conclusions

This paper introduces four techniques of DGA diagnosis for the interpretation of DGA
results in mineral oil-filled transformers. These techniques constructions based on integra-
tion among the different DGA techniques. Also, it illustrates the dissolved gases analysis
for many samples as well as a measurement of PD, particularly for (66/11.86 kV–40 MVA)
power transformer. The first proposed technique is constructed based on the outputs of
three techniques, Duval, Roger’s four ratios refined, IEC refined techniques, while the
second technique is preceded based on three methods (new approach, conditional prob-
ability, and Duval triangle). The third technique is depending on the diagnosis results
of two techniques (the artificial neural network technique and Roger’s refined method).
The fourth proposed technique is depending on the results of the second and the third
techniques. The first diagnosis technique has 69.92% accuracy as compared with 66.3%
for Duval, 59.9% for Roger’s refined, and 66.9% for IEC refined. The second technique
has 84.96% accuracy as compared with 66.3% for Duval, 82.8% for conditional probability,
and 62.7% for clustering approach; the third technique has 83.27% accuracy as compared
with 81.7% for ANN, 59.9% for Roger’s refined. The fourth proposed technique has 85.3%
accuracy as compared with 84.96% for the second technique and 83.27% for the third
technique. While the case study is analyzed using the dissolved for eight samples during
the recent period, and the partial discharge is measured using electrical pulse detection.
By analyzing the dissolved gases, the concentrations of C2H4, C2H6, and following them
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(H2 and CH4) are the highest for all samples, and the ratio C2H4/C2H6 is higher than
other ratios C2H2/C2H4 and CH4/H2. The sensing of PD is measured experimentally at
an induced voltage ratio of 1.58 Ur, and the partial discharge levels are detected between
phases U and V. This case study summarized that we must not neglect hydrogen and
methane if there are ppms that are greater than or equal to 10, even if the other ppms are
higher than them. It also summarized the most important disadvantage of dissolved gas
analysis, which is the diagnosis of only one fault type even if there is more than one fault.
It should be taken into account in future research.

Author Contributions: All authors have contributed to the preparation of this manuscript. A.E.-F.,
M.B., and S.A.I. designed the idea strategy, studied the data, and wrote the manuscript. M.M.F.D.
and K.M. revised and proofread the manuscript and investigate the proposed techniques. Finally,
S.A.W. and M.L. reviewing, editing, and supporting different improvements for the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Department of Electrical Engineering and Automation,
Aalto University, Espoo, Finland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bustamante, S.; Manana, M.; Arroyo, A.; Castro, P.; Laso, A.; Martinez, R. Dissolved Gas Analysis Equipment for Online

Monitoring of Transformer Oil: A Review. Sensors 2019, 19, 4057. [CrossRef] [PubMed]
2. Dong, H.; Yang, X.; Li, A.; Xie, Z.; Zuo, Y. Bio-Inspired PHM Model for Diagnostics of Faults in Power Transformers Using

Dissolved Gas-in-Oil Data. Sensors 2019, 19, 845. [CrossRef] [PubMed]
3. Ghoneim, S.S.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Enhancing Diagnostic Accuracy of Transformer Faults Using

Teaching-Learning-Based Optimization. IEEE Access 2021, 9, 30817–30832. [CrossRef]
4. Bezerra, F.E.; Garcia, F.A.Z.; Nabeta, S.I.; De Souza, G.F.M.; Chabu, I.E.; Santos, J.C.; Junior, S.N.; Pereira, F.H. Wavelet-Like

Transform to Optimize the Order of an Autoregressive Neural Network Model to Predict the Dissolved Gas Concentration in
Power Transformer Oil from Sensor Data. Sensors 2020, 20, 2730. [CrossRef]

5. Abdel-Akher, M.; Mahmoud, K. Implementation of three-phase transformer model in radial load-flow analysis. Ain Shams Eng. J.
2013, 4, 65–73. [CrossRef]

6. Ward, S.A.; Elfaraskoury, A.; Badwi, M.; Ibrahim, S.A. A Modified Dissolved Gas Analysis Technique as a Diagnostic Tool for
Faults in Power Transformers. In Proceedings of the 2019 21st International Middle East Power Systems Conference (MEPCON),
Cairo, Egypt, 17–19 December 2019.

7. Gouda, O.E.; El-Hoshy, S.H.; Hassan, H.T. Condition assessment of power transformers based on dissolved gas analysis. IET
Gener. Transm. Distrib. 2019, 13, 2299–2310. [CrossRef]

8. Ward, S. Evaluating transformer condition using DGA oil analysis. In Proceedings of the 2003 Annual Report Conference on
Electrical Insulation and Dielectric Phenomena, Albuquerque, NM, USA, 19–22 October 2003; pp. 463–468.

9. Ghoneim, S.; Ward, S.A.; Helmi, D.H.; Zidan, U.S. Detection of faults in power transformers using an expertise method depending
on DGA. In Proceedings of the 15th International Middle East Power Systems Conference (MEPCON’12), Alexandria, Egypt,
23–25 December 2012; pp. 1–6.

10. Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Reliable Industry 4.0 Based on Machine Learning and IoT for Analyzing,
Monitoring, and Securing Smart Meters. Sensors 2021, 21, 487. [CrossRef]

11. Ali, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M. Promising MPPT Methods Combining Metaheuristic, Fuzzy-Logic and ANN
Techniques for Grid-Connected Photovoltaic. Sensors 2021, 21, 1244. [CrossRef]

12. Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M. Deep Learning-Based Industry 4.0 and Internet of Things
Towards Effective Energy Management for Smart Buildings. Sensors 2021, 21, 1038. [CrossRef]

13. Chatterjee, K.; Dawn, S.; Jadoun, V.K.; Jarial, R. Novel prediction-reliability based graphical DGA technique using multi-layer
perceptron network & gas ratio combination algorithm. IET Sci. Meas. Technol. 2019, 13, 836–842. [CrossRef]

14. Mansour, D.-E.A. Development of a new graphical technique for dissolved gas analysis in power transformers based on the five
combustible gases. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2507–2512. [CrossRef]

15. Ali, M.N.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. An Efficient Fuzzy-Logic Based Variable-Step Incremental Conductance
MPPT Method for Grid-connected PV Systems. IEEE Access 2021, 9, 1. [CrossRef]

http://doi.org/10.3390/s19194057
http://www.ncbi.nlm.nih.gov/pubmed/31546981
http://doi.org/10.3390/s19040845
http://www.ncbi.nlm.nih.gov/pubmed/30781700
http://doi.org/10.1109/ACCESS.2021.3060288
http://doi.org/10.3390/s20092730
http://doi.org/10.1016/j.asej.2012.04.009
http://doi.org/10.1049/iet-gtd.2018.6168
http://doi.org/10.3390/s21020487
http://doi.org/10.3390/s21041244
http://doi.org/10.3390/s21041038
http://doi.org/10.1049/iet-smt.2018.5397
http://doi.org/10.1109/TDEI.2015.004999
http://doi.org/10.1109/ACCESS.2021.3058052


Sensors 2021, 21, 2223 20 of 21

16. Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. An Improved Neural Network Algorithm to Efficiently Track Various
Trajectories of Robot Manipulator Arms. IEEE Access 2021, 9, 11911–11920. [CrossRef]

17. Abaza, A.; El-Sehiemy, R.; Mahmoud, K.; Lehtonen, M.; Darwish, M. Optimal Estimation of Proton Exchange Membrane Fuel
Cells Parameter Based on Coyote Optimization Algorithm. Appl. Sci. 2021, 11, 2052. [CrossRef]

18. Hoballah, A.; Mansour, D.-E.A.; Taha, I.B.M. Hybrid Grey Wolf Optimizer for Transformer Fault Diagnosis Using Dissolved
Gases Considering Uncertainty in Measurements. IEEE Access 2020, 8, 139176–139187. [CrossRef]

19. Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Robust Design of ANFIS-Based Blade Pitch Controller for
Wind Energy Conversion Systems Against Wind Speed Fluctuations. IEEE Access 2021, 9, 37894–37904. [CrossRef]

20. Bayoumi, A.; El-Sehiemy, R.; Mahmoud, K.; Lehtonen, M.; Darwish, M. Assessment of an Improved Three-Diode against
Modified Two-Diode Patterns of MCS Solar Cells Associated with Soft Parameter Estimation Paradigms. Appl. Sci. 2021,
11, 1055. [CrossRef]

21. Abbas, A.S.; El-Sehiemy, R.A.; El-Ela, A.A.; Ali, E.S.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Optimal Harmonic Mitigation
in Distribution Systems with Inverter Based Distributed Generation. Appl. Sci. 2021, 11, 774. [CrossRef]

22. Abouelatta, M.A.; Ward, S.A.; Sayed, A.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Fast Corona Discharge Assessment
Using FDM integrated With Full Multigrid Method in HVDC Transmission Lines Considering Wind Impact. IEEE Access 2020, 8,
225872–225883. [CrossRef]

23. Ali, E.; El-Sehiemy, R.; El-Ela, A.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M. An Effective Bi-Stage Method for Renewable
Energy Sources Integration into Unbalanced Distribution Systems Considering Uncertainty. Processes 2021, 9, 471. [CrossRef]

24. Cheng, L.; Yu, T. Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for
Large Oil-Immersed Power Transformers: A Survey. Energies 2018, 11, 913. [CrossRef]

25. Wu, X.; He, Y.; Duan, J. A Deep Parallel Diagnostic Method for Transformer Dissolved Gas Analysis. Appl. Sci. 2020, 10,
1329. [CrossRef]

26. Abu-Siada, A. Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas
Analysis and Gene Expression Programming. Energies 2019, 12, 730. [CrossRef]

27. Faiz, J.; Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional methods a review.
IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1239–1248. [CrossRef]

28. Gongwei, X.; ChuTian, Y.; Weigen, C.; Lingfeng, J.; Sirui, T. Study on the development and test method of SnO2-based gas sensor
array for dissolved gas analysis. In Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement &
Instruments (ICEMI), Yangzhou, China, 20–22 October 2017; pp. 220–227. [CrossRef]

29. Ghoneim, S.S.M.; Ward, S.A. Dissolved Gas Analysis as a Diagnostic Tools for Early Detection of Transformer Faults. Adv. Electr.
Eng. Syst. 2012, 1, 152–156.

30. Bureau of Reclamation. Transformers: Basics, Maintenance and Diagnostics; US Department of the Interior Bureau of Reclamation:
Denver, CO, USA, 2005.

31. Rafiq, M.; Lv, Y.Z.; Zhou, Y.; Ma, K.B.; Wang, W.; Li, C.R.; Wang, Q. Use of vegetable oils as transformer oils—A review. Renew.
Sustain. Energy Rev. 2015, 52, 308–324. [CrossRef]

32. Abu Bakar, N.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE
Electr. Insul. Mag. 2014, 30, 39–49. [CrossRef]

33. Singh, S.; Bandyopadhyay, M.N. Duval Triangle: A Noble Technique for DGA in Power Transformers. Int. J. Electr. Power Eng.
2010, 4, 193–197. [CrossRef]

34. Duval, M.; Lamarre, L. The duval pentagon—A new complimentary tool for the interpretation of dissolved gas analysis in
transformers. IEEE Electr. Insul. Mag. 2014, 30, 9–12.

35. Duval, M. Use of pentagons and triangles for the interpretation of DGA in electrical equipment. In Proceedings of the TechCon
North America Conference 2016, Albuquerque, NM, USA, 23–25 February 2016.

36. Duval, M. State of the art of technical diagnosis through interpretation of DGA. In Proceedings of the My Transfo Conference
2012, Torino, Italy, 21–22 November 2012.

37. Mharakurwa, E.T.; Nyakoe, G.N.; Akumu, A.O. Power Transformer Fault Severity Estimation Based on Dissolved Gas Analysis
and Energy of Fault Formation Technique. J. Electr. Comput. Eng. 2019, 2019, 9674054. [CrossRef]

38. IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers. IEEE Standard C57.104-2019, IEEE, USA.
February 2019. Available online: https://ieeexplore.ieee.org/servlet/opac?punumber=2903 (accessed on 22 March 2021). [CrossRef]

39. IEC Standard 60599—Oil-Impregnated Electrical Equipment in Service—Guide to the Interpretation of Dissolved and Free Gases
Analysis, 2nd ed. 2007. Available online: https://www.sis.se/api/document/preview/568793/ (accessed on 22 March 2021).

40. Taha, I.B.; Mansour, D.-E.A.; Ghoneim, S.S.; Elkalashy, N.I. Conditional probability-based interpretation of dissolved gas analysis
for transformer incipient faults. IET Gener. Transm. Distrib. 2017, 11, 943–951. [CrossRef]

41. Ribeiro, M.I. Gaussian Probability Density Functions: Properties and Error Characterizatio. 2004. Available online:
https://www.semanticscholar.org/paper/Gaussian-Probability-Density-Functions%3A-Properties-Ribeiro/8811a6d277323a4
320d5a20608304ddfada8f0e2 (accessed on 22 March 2021).

42. Khade, P.S.; Mahajan, G.K.; Chaudhari, A.P. Artificial Neural Network Approach to Dissolved Gas Analysis for Interpretation of
Fault in Power Transformer. Int. J. Sci. Eng. Res. 2016, 7, 373–377.

http://doi.org/10.1109/ACCESS.2021.3051807
http://doi.org/10.3390/app11052052
http://doi.org/10.1109/ACCESS.2020.3012633
http://doi.org/10.1109/ACCESS.2021.3063053
http://doi.org/10.3390/app11031055
http://doi.org/10.3390/app11020774
http://doi.org/10.1109/ACCESS.2020.3045073
http://doi.org/10.3390/pr9030471
http://doi.org/10.3390/en11040913
http://doi.org/10.3390/app10041329
http://doi.org/10.3390/en12040730
http://doi.org/10.1109/TDEI.2017.005959
http://doi.org/10.1109/ICEMI.2017.8265771
http://doi.org/10.1016/j.rser.2015.07.032
http://doi.org/10.1109/MEI.2014.6804740
http://doi.org/10.3923/ijepe.2010.193.197
http://doi.org/10.1155/2019/9674054
https://ieeexplore.ieee.org/servlet/opac?punumber=2903
http://doi.org/10.1109/IEEESTD.2019.8890040
https://www.sis.se/api/document/preview/568793/
http://doi.org/10.1049/iet-gtd.2016.0886
https://www.semanticscholar.org/paper/Gaussian-Probability-Density-Functions%3A-Properties-Ribeiro/8811a6d277323a4320d5a20608304ddfada8f0e2
https://www.semanticscholar.org/paper/Gaussian-Probability-Density-Functions%3A-Properties-Ribeiro/8811a6d277323a4320d5a20608304ddfada8f0e2


Sensors 2021, 21, 2223 21 of 21

43. Guardado, J.L.; Nared, J.L.; Moreno, P.; Fuerte, C.R. A Comparative Study of Neural Network Efficiency in Power Transformers
Diagnosis Using Dissolved Gas Analysis. IEEE Trans. Power Deliv. 2001, 16, 643–647. [CrossRef]

44. Miranda, V.; Castro, A.R.G.; Lima, S. Diagnosing Faults in Power Transformers With Autoassociative Neural Networks and Mean
Shift. IEEE Trans. Power Deliv. 2012, 27, 1350–1357. [CrossRef]

45. Samy, A.; Ward, S.A.; Ali, M.N. Conventional Ratio and Artificial Intelligence (AI) Diagnostic methods for DGA in Electrical
Transformers. Int. Electr. Eng. J. 2015, 6, 2096–2102.

46. Orosz, T. Evolution and Modern Approaches of the Power Transformer Cost Optimization Methods. Period. Polytech. Electr. Eng.
Comput. Sci. 2019, 63, 37–50. [CrossRef]

47. Ibrahim, S.A. A New Approach of Dissolved Gas Analysis (DGA) Technique for Transformer Faults Diagnosis. Master’s Thesis,
Faculty of Engineering at Shoubra, Benha Unieristy, Cairo, Egypt, 2020.

48. IEC Standards 60076-3, Power Transformers-Part 3: Insulation Levels, Dielectric Tests and External Clearances in Air, Edition 3.0.
Available online: https://webstore.iec.ch/publication/601 (accessed on 19 March 2021).

49. IEC Standards 60270, High Voltage Test Technique—Discharge Measurements, Edition 3.1. 2015. Available online: https:
//global.ihs.com/doc_detail.cfm?document_name=IEC%2060270&item_s_key=00035759 (accessed on 22 March 2021).

50. Abdel-Gawad, N.M.K.; El Dein, A.Z.; Mansour, D.-E.A.; Ahmed, H.M.; Darwish, M.M.F.; Lehtonen, M. Experimental measure-
ments of partial discharge activity within LDPE/TiO2 nanocomposites. In Proceedings of the 2017 Nineteenth International
Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 811–816.

51. Mansour, D.-E.A.; Abdel-Gawad, N.M.K.; El Dein, A.Z.; Ahmed, H.M.; Darwish, M.M.F.; Lehtonen, M. Recent Advances in
Polymer Nanocomposites Based on Polyethylene and Polyvinylchloride for Power Cables. Materials 2021, 14, 66. [CrossRef]

52. Abdel-Gawad, N.M.; Mansour, D.-E.A.; Darwish, M.M.F.; El Dein, A.Z.; Ahmed, H.M.; Lehtonen, M. Impact of nanoparticles func-
tionalization on partial discharge activity within PVC/SiO2 nanocomposites. In Proceedings of the 2018 IEEE 2nd International
Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018; pp. 1–4.

53. El-Faraskoury, A.A. Field Diagnosis for Determining the Insulation Health Index for Power Transformers. In Proceedings of the
20th International Symposium on High Voltage Engineering, Buenos Aires, Argntina, 27 August–1 September 2017.

54. Darwish, M.M.F.; Ahmed, H.M.; Mansour, D.A. Thermo-Mechanical Properties of LDPE/SiO2 Nanocomposites based on
Chemically Functionalized SiO2 Nanoparticles. In Proceedings of the 2020 International Symposium on Electrical Insulating
Materials (ISEIM), Tokyo, Japan, 13–17 September 2020; pp. 241–244.

55. Abdel-Gawad, N.M.; El Dein, A.Z.; Mansour, D.A.; Ahmed, H.M.; Darwish, M.M.F.; Lehtonen, M. Development of industrial scale
PVC nanocomposites with comprehensive enhancement in dielectric properties. IET Sci. Meas. Technol. 2019, 13, 90–96. [CrossRef]

http://doi.org/10.1109/61.956751
http://doi.org/10.1109/TPWRD.2012.2188143
http://doi.org/10.3311/PPee.13000
https://webstore.iec.ch/publication/601
https://global.ihs.com/doc_detail.cfm?document_name=IEC%2060270&item_s_key=00035759
https://global.ihs.com/doc_detail.cfm?document_name=IEC%2060270&item_s_key=00035759
http://doi.org/10.3390/ma14010066
http://doi.org/10.1049/iet-smt.2018.5270

	Introduction 
	Faults and Failure Mode in Transformers 
	Partial Discharge Fault 
	Arcing Discharge Fault 
	Thermal Fault 

	Dissolved Gas Analysis: Interpretation Techniques 
	Duval Technique 
	Roger’s Four Ratios Refined Technique 
	IEC Refined Technique 
	Conditional Probability Technique 
	Clustering Technique 
	Artificial Neural Network (ANN) Techniques 

	Proposed Techniques 
	Proposed Technique No. 1 
	Proposed Technique No. 2 
	Proposed Technique No. 3 
	Proposed Technique No. 4 

	Performance Evaluation of the Proposed Techniques 
	Case Study 
	Dissolved Gas Analysis (DGA) 
	By Using Partial Discharge Measurement 
	Discussion 

	Conclusions 
	References

