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Abstract: Human-Machine Interfaces (HMI) allow users to interact with different devices such as
computers or home elements. A key part in HMI is the design of simple non-invasive interfaces
to capture the signals associated with the user’s intentions. In this work, we have designed two
different approaches based on Electroencephalography (EEG) and Electrooculography (EOG). For
both cases, signal acquisition is performed using only one electrode, which makes placement more
comfortable compared to multi-channel systems. We have also developed a Graphical User Interface
(GUI) that presents objects to the user using two paradigms—one-by-one objects or rows-columns of
objects. Both interfaces and paradigms have been compared for several users considering interactions
with home elements.

Keywords: human-machine interfaces; electroencephalography; electrooculography; P300; graphical
user interface

1. Introduction

During the last years, Human-Machine Interfaces (HMIs) and, especially, Brain-
Computer Interfaces (BCIs), have become very active research fields with significant
developments and advances in non-clinical areas such as entertainment, home automation
or cognitive training [1]. BCI systems can be defined as the combination of hardware
and software in a communication system that monitors the user’s cerebral activity and
translates certain characteristics, corresponding to the user’s intentions, to commands for
device control [2]. BCIs present a new communication channel with outer devices without
the involvement of peripheral nerves and muscles, allowing users to interact with the
environment without any physical activity and using only their thoughts. Therefore, it
results in an extremely useful technology for patients with severe motor disabilities. Elec-
troencephalography (EEG) is the most widely used technique for neuroimaging and brain
signal acquisition for BCIs. This preference is mainly based on the non-invasive character
of this technology, which implies a low risk for the users. Moreover, it shows several ad-
vantages such as its high portability and temporal resolution, its relatively low cost, and its
ease of use [1,3,4]. The brain activity collected by the EEG encodes the users’ intentions,
which can be translated into control commands for interacting with their surroundings.
For this purpose, several brain signal patterns have been assessed, where Motor-Imagery
(MI) synchronisation/desynchronisation, Steady-State Visual Evoked Potential (SSVEP)
and P300 Evoked Potential (P300 EP) are the most common approaches [1].

The P300 EP is a positive deflection located in the parietal area of the cortex that
occurs in the EEG brain activity 300 ms after an infrequent or surprising auditory, visual or
somatosensory stimuli [5–7]. The potential is usually evoked by the “oddball” paradigm,
where several stimuli are presented to the subject and one of them is less frequent than the
others. Based on this brain response, a specific action can be associated to that stimulus so
it will be executed when the P300 is detected. The most common way to employ the P300
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EP in BCIs is through visual stimulation, where different elements which users can interact
with are, usually, randomly presented on a screen. Users must focus their attention on one
of these infrequent elements so that when it appears, the P300 potential will be elicited and
BCIs can detect and execute associated actions.

Voluntary eye movements such as blinking, saccades or fixation have also been used
as control signals in different HMIs. The electrical signal produced by the eye activity can
be measured using the Electrooculography (EOG) technique, also a non-invasive, portable,
easy to use and affordable technology [8]. EOG signals are stronger in amplitude than
the EEG ones, so they are easier to detect and more stable across users [9], which can
be an advantage to improve the accuracy of the interface. Consequently, several HMIs
have been proposed employing blinking movements as control signals [9,10]. The eye can
be modelled as a dipole with its positive pole at the cornea and its negative pole at the
retina [8]. When closing and opening the eyelids, that is, blinking, a vertical movement is
produced in the eye, which causes a change in the dipole orientation and thus a change in
the electric potential field measured by EOG. As a consequence, a blink presents a specific
pattern captured by the EOG signal, characterized by two consecutive large peaks, positive
and negative, respectively, corresponding to the closing and opening of the eye. These two
large peaks are easily recognized from the recorded signal, so HMIs can detect them in
order to execute associated actions.

Non-contact methods, such as Videooculography (VOG), have also been successfully
applied for eye gaze analysis and blink detection to develop new HMIs [11,12]. These
detection systems usually employ several cameras that record the user’s eyes and, applying
image processing techniques and artificial vision algorithms, they can provide an accurate
analysis of the eye state of the user [13–15]. However, in comparison with EOG techniques,
these VOG methods have a high computational complexity derived from image analysis
and classification. This makes it difficult to implement in Single-Board Computers (SBC)
integrated into, for example, a smart home environment.

The use of EEG and EOG signals for interaction with home elements is a current
challenge. Previous works have developed multi-sensor systems to capture brain or eye
activity to detect the user’s intentions [16–21]. However, multi-sensor recording devices
are usually large and cumbersome, which becomes a problem when used for several
hours a day. Single-channel solutions have been proposed in order to overcome this
issue [10,22–24]. Recently, we have shown that low-cost systems with only one input
electrode are very useful for developing Internet of Things (IoT) applications in smart-
home environments [25]. Keeping up with this idea, in this paper we develop and compare
two systems focused on the interaction between users and home elements. The first system
is based on the P300 evoked potential, whereas the second one uses eye blinks as control
signals. We have developed a Graphical User Interface (GUI) where home elements are
displayed in a matrix-form and presented using two different paradigms: (i) home elements
are presented one-by-one; (ii) the elements of the same row/column are presented together.
Our objective is to determine which combination of system and paradigm offers the best
performance in terms of accuracy and time delay.

The paper is organized as follows. Section 2 summarizes some of the most important
works related to the utilization of the P300 potential and voluntary blinks as control signals.
Section 3 shows the two developed interfaces that make use of those control signals and
describes the materials and methods employed in the experiments. Section 4 shows the
obtained results. Finally, Section 5 analyzes these results and Section 6 presents the most
relevant conclusions of this work.

2. Previous Related Works

We review in this section the previous works related to systems based on P300 EP and
on EOG.
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2.1. P300-Based Systems

A large number of works can be found in the literature from recent years proposing
the use of P300 for building assistance systems that facilitate communication and environ-
mental control in patients with severe motor and neurological damages [1]. For instance,
the P300 speller proposed by Donchin and Farwell [6] is a well-known BCI for commu-
nication purposes. It displays a virtual keyboard organized in a 6 × 6 matrix whose cells
contain the letters of the alphabet and 1-word commands for system control. The user must
focus his/her attention on one cell while rows and columns of the matrix flash alternately.
EEG activity is analyzed after each flash, so the cell of interest is identified as the cell at the
intersection of the row and column that elicits the largest P300 potential. The developed
system achieved a spelling rate of 2 characters per minute.

Following this approach, several works have been presented that improve the system
performance. For example, different configurations of the characters were proposed to
avoid perceptual error in the detection of P300 produced by adjacent rows/columns.
In this regard, a region-based paradigm is proposed in [26], where letters are organized
into different flashing regions in the computer screen. Towsend et al. [27] also propose a
change of paradigm, using a checkerboard instead of traditional row and column schemes.
This novel approach outperforms the row/column paradigm in terms of accuracy and
transmission rates.

Moreover, several preprocessing techniques were assessed in order to improve the
P300 detection [28]. Xu et al. [29] proposed an algorithm based on Independent Component
Analysis (ICA) for EEG decomposition and a signal reconstruction according to spatio-
temporal patterns that enhance the P300 peak. They achieved a 100% accuracy for the
dataset IIb of BCI Competition 2003. Donchin et al. [30] assessed a P300-based BCI on ten
subjects employing the Discrete Wavelet Transform (DWT) with Daubechies wavelets and
four levels of decomposition. Their results indicate that, using a bootstrapping approach,
an offline version of the system can achieve a communication rate of 7.8 characters per
minute with an 80% accuracy. Several classification algorithms have been also applied for
P300 detection, such as step-wise discriminant analysis [30], Linear Discriminant Analysis
(LDA) [20] or Support-Vector Machine (SVM) [16,31] among others [28,32].

Although the original P300 Speller proposed by Donchin and Farwell [6] considered
only one input channel, it was discovered that the use of multiple channels improved the
classification accuracy [33]. Therefore, most modern spellers employ several recording
electrodes. However, a larger number of channels requires complex and expensive EEG
recording devices, where each electrode must be individually placed and calibrated. Such
conditions represent a limitation for home users and daily BCIs. Thus, several works
using single-channel P300 systems have been recently developed. Xie et al. [23] have
proposed a single-channel single-trial P300 detection based on a new method, known
as Extreme Learning Machine (ELM). Their algorithm is tested on eight subjects and an
average accuracy above 85% is obtained. In [22] a single-channel and single-trial P300
detection algorithm is also proposed. In this work, both DWT and ICA algorithms are
combined to extract features from the II dataset of the BCI Competition III, which is based
on the P300 speller paradigm. Their results show an average accuracy of 65% in single-trial
P300 detection.

On the other hand, the matrix-based paradigm for stimuli presentation, introduced by
the speller, have been widely applied in P300-based BCIs for environmental control [16].
In this case, the letters of the alphabet and the 1-word commands of the speller are replaced
by icons associated to a control function for devices in the user’s environment. Thus, instead
of selecting a character to be written, the user chooses an action to be executed in the selected
device. For example, Carabalona et al. proposed a P300-based BCI for disabled people in a
real smart home environment [18,19]. In this study, they presented a 6× 6 matrix with icons
corresponding to the smart home devices and compared its performance with the standard-
character speller. Their results reported lower accuracy for the icon tasks than for the
character ones, possibly due to cognitive effort when using icons. Aloise et al. [17] proposed
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an asynchronous P300-based BCI for home device control such as DVD players, electric
lights, phone calls, and so forth, which were presented in a 4 × 4 matrix. They introduced
a threshold-based classification approach that allowed the interface to understand the
user intent when he/she is engaged in another task or is distracted by the surrounding
events, avoiding false positive selections. In a more recent study, Corralejo et al. [34]
have proposed an assistance tool for operating of electronic devices at home through a
P300-based BCI. The interface is tested in a real scenario with fifteen severely impaired
subjects which could manage eight real devices by means of 113 control commands. Out
of the fifteen subjects in the study, ten achieved an accuracy higher than 75%, and eight
an accuracy above 95%. Schettini et al. [35] presented a P300-based BCI for Amyotrophic
Lateral Sclerosis (ALS) patients to manage communication and environmental control
applications. The results showed that the BCI could be used as an assistance technology
with no significant reduction of usability compared to other communication interfaces
such as screens or buttons. In a recent work, Kim et al. [16] developed an online BCI for
home appliances control such as TVs, electric lights or digital lock systems. They proposed
to present the stimuli employing an User Interface (UI) that displays a control icon and
a real time image of the corresponding appliances to jointly verify if the proposed UI
works correctly in a P300-based BCI even with introduced distractions due to live image
of these appliances. For this purpose, the P300 and N200 potentials were analyzed to
overcome visual distractions. The results showed that the healthy participants could
control the appliances via BCIs with an average accuracy ranging from 78.7% to 83%.
Moreover, different stimuli configuration and flashing methods have been also applied in
the P300-based BCI for environmental control. For instance, Hoffman et al. [20] presented
a BCI where home appliances images flashed one at a time to elicit the P300 potential.
Aydin et al. [21] proposed an internet-based asynchronous P300 BCI for environmental
control applying a region-based paradigm instead of using the standard row/column one.

2.2. EOG-Based Systems

Several HMIs based on EOG and eye movements have been proposed in recent years.
EOG signals are particularly useful for creating HMIs since they present consistent patterns
with relatively large potentials, becoming easier to detect than EEG activity [9,36]. In this
regard, He et al. [10] presented a single-channel EOG-based HMI that allows users to spell
by only blinking. Forty characters were displayed to subjects, which were randomly flashed.
In order to select one of them, the subject should blink as the target character was flashed.
The results showed that eight healthy subjects achieved an average accuracy of 94.4%
when selecting a character in synchronous mode and of 93.43% in asynchronous mode.
Deng et al. [37] proposed a multi-purpose EOG-based HMI where different eye movements
(horizontal and vertical) were detected by the system to control, for example, a TV for
channel shifting or volume adjusting. The authors claim that the system can achieve above
90% of accuracy after adjustment. Also employing eye-movements and the generated EOG
signal, Barea et al. [38] designed a system for controlling and guiding an electric wheelchair.
The system allows users to adjust the direction and speed of the wheelchair only from
eye-movement. The study successfully showed results with reduced learning and training
times. In a recent study, Guo et al. [24] presented a single-channel HMI that recorded
EOG activity using a self-designed patchable sensor. The captured eye-movements were
converted to computer commands, including scroll up, scroll down, and close. Eight
subjects were trained to use this system and became capable of making continuous control
with an average accuracy of 84%. Heo et al. [39] also designed a wearable forehead EOG
measurement system for HMIs. In this case, vertical and horizontal movements of the eye
were detected. The system was tested for three applications: a virtual keyboard using either
a modified Bremen BCI speller or an automatic sequential row/column scanner, and a
drivable power wheelchair. The results showed a typing speed of 10.81 and 7.74 letters
per minute and an accuracy of 91.25% and 95.12% for the BCI speller and the row-column
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scanner, respectively. For the wheelchair experiment, the user drove through an eight-shape
course without collision with obstacles.

EOG control signals have been combined with EEG control signals in order to build
more robust and reliable hybrid BCIs. A hybrid BCI is a mixed approach where the
technology of conventional BCIs is combined with another system in order to improve its
performance [9,40]. In this context, different hybrid systems have been proposed combining
EEG and EOG signals [41], such as SSVEP and blink-related EOG signals [9], MI tasks and
blinking EOG activity [42] and also the P300 EP combined with ocular movements [43,44].

Thus, P300- and EOG-based BCIs have been very active research fields during the last
decades, and numerous successful works have been presented. However, clinical devices
are usually employed in these works for the capture of the user’s brain or ocular activity.
The main drawback of these devices is that they typically consist of a large number of
sensors and are very expensive, which represents a limitation to build a daily-life BCI
accessible for the general public. In order to overcome these limitations, in this study
we propose a low-cost single-channel BCI based on a consumer-grade EEG device and
available to be used without expert knowledge.

3. Material and Methods

Two different systems have been developed in this study. Figure 1 depicts the architec-
ture of the EEG control system based on P300 EP. Figure 2 shows the EOG system based on
eye blinks. Both systems are made up of four main parts: a GUI for stimuli presentation,
a hardware device for EEG/EOG signal recording, the HMI for analyzing the captured
signal and converting it into an action command and, finally, household devices for the
execution of actions. The following sections describe each of these components.

Stimuli 
presentation 

Visual
stimulation

EEG 
recording

Bandpass filter
1 - 15 Hz Segmentation Ensemble

average

P300
detection

Target
prediction

Action command
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HMI Smart home
devices

Action
command
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EEG

Figure 1. Electroencephalography (EEG) system based on P300 EP.
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Figure 2. Electrooculography (EOG) system based on eye blinks.

3.1. Graphical User Interface

As depicted in Figures 1 and 2, for both developed systems, the objects that the user
can interact with are presented on a laptop screen using a GUI. This stimulation program
was designed and developed in Python employing the PsychoPy package [45].

Figure 3 shows an example of the GUI, composed by a 3 × 3 matrix containing nine
images describing the objects and control functions to be executed by users. The first two
rows correspond to home devices, such as TVs, digital house locks or electric lights, which
have a state that can be switched (e.g., on/off or up/down) by selecting it with the HMI.
The last row has three possible phone calls: the emergency call (i.e., an SOS number) and
two favourite contacts in their phone-book.

Two stimulation paradigms were assessed for the experiments. For the first paradigm,
each element of the matrix is intensified one by one. This intensification is randomly
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performed, but all the elements are intensified the same number of times. Therefore, they
will have the same probability of being intensified, that is, p = 1/9. Moreover, an element
cannot be intensified two consecutive times.

For the second paradigm, instead of element by element, each row and column of the
matrix is intensified. This is also done randomly, and they are intensified the same number
of times. Therefore, the probability of one element being intensified at any given time is
p = 2/6 = 1/3.

Figure 3 shows both stimulation paradigms: on the left side, the 1-by-1 paradigm
with all the elements intensified and, on the right side, the row/column paradigm with the
second row intensified.

(a) (b)

Figure 3. Graphical User Interface (GUI) for the two stimulation paradigms. (a) represents the 1-by-1
stimulation paradigm with all the elements intensified, while (b) corresponds to the row/column
stimulation paradigm only with the second row intensified.

The developed application for stimuli presentation is configurable and it can be
adapted to the user’s requirements. However, in order to obtain comparable results, we
have selected the same parameters for all the participants of the study. Figure 4 shows
the stimulation procedure for one run of the experiment. Each run starts with a preview
period of tp seconds for all the elements of the matrix, so the user can locate its target
before the intensifications begin. Following this first step, a dark matrix is shown to the
user during tr seconds. At this stage, the target must be located and the user must focus
his/her gaze on it for the rest of the run. Once this preparation ends, the intesification
step starts. The duration of this stage is conditioned by the selected stimulation paradigm
(1-by-1 or row/column) and by the recording mode (EEG or EOG), since the number
of intensifications and times will vary for each of them. Remember that these intensifi-
cations are randomly performed that is, the user does not know the order in which the
object or column/row will be intensified. These parameters are explained in detail in the
following sections.
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Preview Preparation

tp tr

tI

Intensifications
1-by-1

Row-Column

Figure 4. Sequence of steps in the two stimulation paradigms.

3.2. Hardware

EEG and EOG data have been recorded using the OpenBCI Cyton Board with a
sampling frequency of 250 Hz. The Cyton board allows simultaneous recording from eight
channels, but only one of them is employed in this study. Two types of electrodes can be
employed for capturing the EEG and EOG activity of the user—wet and dry electrodes.
Traditionally, wet electrodes have been employed for biopotential recordings [46]. This
procedure implies skin preparation and the use of wet gels or saline liquid to create a
conductive path that improves signal quality and reduces skin impedance. However, this
gel will eventually dry out, resulting in a poor quality signal and the need for electrode
replacement. Moreover, for high-density electrode montages, the procedure can become
cumbersome and uncomfortable for the user. To overcome these issues, dry electrodes that
do not require any gel application [47,48] or semi-dry electrodes that only employ a tiny
amount of conductive gel [49–51] have been proposed and implemented in HMIs in recent
years. However, although these new dry electrodes offer a faster setup time and greater
user comfort, they usually present a higher skin impedance than the wet ones [52–54].
Since this study aims to analyze the control signals on each user and determine which one
offers the best performance, we decided to employ wet electrodes to obtain high-quality
and low-impedance signals.

In the experiments, gold cup electrodes were placed in accordance with the 10–20
international system for electrode placement [55] and attached to the subjects’ scalp using
a conductive paste. The electrode-skin impedance was checked to be below 15 kΩ at
all the electrodes. Following this placement system, each electrode location is identified
by numbers, the even ones representing the right hemisphere and the odd ones the left
hemisphere; and letters, corresponding to the lobe and area of the brain where they are
placed: pre-frontal (FP), frontal (F), temporal (T), central (C), parietal (P) and occipital (O).
For EEG recordings, since the objective is to detect the P300 potential, the electrode for the
input channel was located in the Cz position. Conversely, for EOG recordings, the electrode
was placed at Fp2 in order to detect activity related to eye blinks. Both recording modes
shared reference and ground electrodes, placed at the right mastoid (RM) and the left
earlobe (A1), respectively. It is important to note that this electrode location will depend
on the purpose of the HMI and the control signals it wants to capture, for example, a BCI
that wants to detect the eye state of the user (closed or open eyes) would probably place
the input electrodes on the occipital area of the brain where the visual cortex is located [25].
Figure 5 shows the electrode placement for the experiments.
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NASION

INION

Fp2Fp1

T4C4CzC3T3

O1 O2

T6T5

F8F7

A1

RM

Figure 5. Anatomical electrode distribution in accordance with the standard 10–20 placement system
used during the experiments. The yellow circle represents the input channel for EEG recordings,
while the blue one corresponds to EOG recordings. Black bordered circles represent reference and
ground electrodes.

3.3. EEG Recording and Signal Processing

Classical electrode location for P300-based EEG applications generally contains three
typical positions: Fz, Cz and Pz [56,57], since the P300 potential is maximally recorded from
the midline centroparietal regions [58]. Therefore, the only channel used by the proposed
EEG system shown in Figure 1 is placed at Cz position. The input signal is filtered using a
16th-order Butterworth infinite response filter between 1 and 15 Hz.

Evoked potentials appear as event-related responses from the brain to sensory stim-
ulation, such as the one used in this study (visual stimulation). The main challenge to
overcome when working with these brain responses is that individual EPs present very
low amplitude values, ranging from 0.1 to 10µV, whereas the EEG background activity
ranges from 10 to 100µV, which causes EPs to be hidden among the background informa-
tion. Fortunately, EPs are time-locked to stimuli that is, they usually occur with the same
latency from the stimulus onset. Conversely, background EEG not related to the stimulus
will fluctuate randomly. A widely applied technique that takes advantage of this effect is
ensemble averaging, which is based on averaging all the brain responses related to stimuli
presentation. In this procedure, the activity time-locked to stimuli onset will remain robust,
while the random background EEG will not, so the Event-Related Potentials (ERPs) will
appear clearly and the noise will be cancelled [59,60].

Consequently, we chose this processing technique for the acquisition of the ERPs and
detection of P300 EPs. In order to apply it, the EEG signal is first segmented into epochs
that are time-locked to stimuli. Following the criteria introduced by Farewell and Donchin
in the original P300-speller [6], which states that the useful data consisted of the recorded
EEG for 600 ms after the onset of each intensification, epochs of this duration are extracted
after each stimulus presentation. Once all the epochs have been extracted, an ensemble
average, that is, the average of all the epochs for each stimulus, is calculated. The recorded
EEG signal, x, can thus be segmented according to the k stimulus to obtain an ensemble of
M epochs, which in the discrete domain would be represented by N samples.

xk,i(n), i = 1, . . . , M; n = 0, . . . , N − 1; k = 1, . . . , K. (1)

The ensemble of epochs for the stimulus k can be represented in a matrix form, Xk,
where each row vector represents the different epochs and each column vector the samples
of the recorded EEG.

Xk =

 xk,1(0) · · · xk,1(N − 1)
...

. . .
...

xk,M(0) · · · xk,M(N − 1)

. (2)
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The size of the resulting matrix will be N × M, where each element xk,i(n) represents
the nth sample of the ith epoch for the kth stimulus.

The ensemble average for each stimulus, sk, can then be easily calculated by averaging
all its epochs as follows

sk =
xk,1 + xk,2 + · · ·+ xk,M

M
. (3)

Once the ensemble average for each stimulus has been obtained, the P300 potential
should clearly appear in the resulting averaged signal for the target stimulus. Therefore,
if the HMI is able to automatically detect this P300, it will predict the user’s will without
any physical intervention. Several methods have been proposed for detecting the P300
potential [61]. In this study, we define a P300 window that contains and surrounds the
potential, so the peak and area of the averaged signal in this window can be used for pre-
diction [29]. The elements with the highest area inside the P300 window will be considered
as possible targets.

In order to detect the target elements, one prediction criteria was applied for each
stimulation paradigm. On the one hand, for the 1-by-1 paradigm, the element with the
highest area inside the P300 window was selected as target. However, for the row/column
paradigm, the row and column with highest area were selected and the target element was
identified as the element in their intersection.

3.4. EOG Recording and Signal Processing

For the EOG system shown in Figure 2, data are captured employing only one input
channel placed on the forehead at the Fp2 position. This electrode location is selected due
to the blinking activity being concentrated at the frontal regions [9]. Then, data is filtered
using a 4th-order Butterworth infinite response filter between 1 and 15 Hz.

Users must blink when their target element is intensified. The purpose of this action is
to communicate the objective element to the HMI so it can execute its associated action. This
voluntary blink is time-locked to stimuli, since it must appear right after the intensification
onset of the target element and before the onset of the next intensification. Taking this into
account, the recorded EOG signal can be segmented into epochs of 1 s according to each
intensification. An epochs’ ensemble for the stimulus k can be represented in a matrix form,
Xk, as in (2), where each row vector of the matrix represents the epoch for stimulus k and
each column vector represents the samples of the recorded EOG signal. Hence, the element
xk,i(n) corresponds to the nth sample of the ith epoch for the kth stimulus.

Since EOG activity and, especially, blinking movements present consistent patterns
with large potentials, they are easier to detect than EEG brain responses [9,36] and, there-
fore, there is no need to present the stimuli as times as with EEG in order to reduce
background noise.

Once the recorded signal has been segmented, the HMI must detect the blinks in
the extracted epochs in order to predict the user’s will and execute the desired action.
Fortunately, blink movements present clear and characteristic patterns in EOG signals
with two consecutive large peaks, positive and negative, respectively, corresponding to the
closing and opening of eyes. These large peaks can be easily recognized from background
EEG activity, which presents smaller amplitude values [8,62]. Consequently, a threshold-
based detection algorithm is proposed in this study. Two specific threshold values are
defined: thn, for the negative peak and, thp, for the positive. Each epoch is analyzed and a
resulting vector v is constructed, where its nth sample follows this criteria,

vk,i(n) =


−1, xk,i(n) < thn,

1, xk,i(n) > thp,
0, thn ≤ xk,i(n) ≤ thp,

(4)

which represents the threshold vector for the ith epoch of the kth stimulus.
According to (4), the observed epochs can be divided into blinking and non-blinking

intervals. Blinking intervals will be those between vk,i(n) = −1 and vk,i(n) = 1 that
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is, between the closing and opening of eyes, while non-blinking intervals will be those
outside these values. The duration for blinking movements ranges from 100 to 400 ms [8,63],
so blinking intervals longer than 400 ms are discarded. Thus, it will be considered that a
blink is produced in a specific epoch when it contains a valid blinking interval that is, the
closing and opening of eyes have been detected in the lapse of 400 ms. The BCI can predict
the target element by counting the blinks produced on each of its epochs. Depending on
the stimulation paradigms, two prediction criteria were applied: for the 1-by-1 paradigm,
the element with the same number of blinks as experiment runs was considered the target;
for the row/column paradigm, the row and column with the same number of blinks
as experiment runs were selected and the target was determined to be the element on
their intersection.

3.5. Experimental Procedure

The participant group in our experiments included a total of nine volunteers who
agreed to collaborate in this research. The participants indicated that they did not have
hearing or visual impairments. Informed consents were obtained from all the participants
in order to employ their data in our study. Table 1 summarizes the information of each
subject that took part in the experiments.

Table 1. Information of participants in the experiments.

Participant Age Gender

1 26 Male
2 26 Female
3 26 Male
4 50 Female
5 53 Male
6 26 Male
7 26 Male
8 27 Male
9 26 Male

The experiments were carried out in a sound-attenuated room where the participants
were invited to sit in a comfortable chair while focusing their attention on a 15.6-inch
laptop screen where stimuli were presented. Figure 6 shows a participant during the P300
recording session, the electrode placement for both experiments and the recording device.

(a) (b)

Figure 6. Recording session from one participant of the study, electrode placement for the ex-
periments and recording device: (a) P300 recording session; (b) electrode locations for blinking
experiments depicted on the upper left corner; electrode locations for P300 experiments depicted on
the upper right corner, and the Cyton board employed for recording the data shown on the bottom.
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Recording sessions for each participant were divided into four independent exper-
iments, one per each stimulation paradigm and recording mode that is: for the 1-by-1
paradigm with EEG signals, for the row/column paradigm with EEG signals, for the 1-by-1
paradigm with EOG signals and for the row/column paradigm with EOG data.

As shown in Figure 4, each experiment was divided into runs consisting of three
stages: preview, preparation and intensifications. The GUI described in Section 3.1 was
configured with tp = 5 s and tr = 2 s. The duration of the intensification stage, tI, was
conditioned by four different parameters, as follows,

• Number of Stimuli (NS): nine for the 1-by-1 paradigm (one per each element of the
matrix) and six for the row/column paradigm (one per each row and column of
the matrix).

• Number of Instensifications (NI) that is, the number of times that each stimulus is
presented to users.

• Intensification Time (IT) that is, the time that a stimulus remains intensified.
• Inter-Stimuli Interval (ISI), the elapsed time since the stimulus intensification ends to the

onset of the next one. During an ISI, any element is intensified: all of them stay dark.

Consequently, tI = NS × NI × (IT + ISI). Table 2 summarizes the different config-
urations selected for each experiment type. The same parameters were used for all the
participants in the study.

Table 2. Parameters selected for each experiment performed during recording sessions. NS: Number
of Stimuli; NI: Number of Intensifications; IT: Intensification Time; ISI: Inter-Stimuli Interval; tI: time
of the intensification stage.

Experiment Recorded
Signal

Stimulation
Paradigm

Runs NS NI IT (ms) ISI
(ms) tI (s)

1 EEG 1-by-1 8 9 50 70 130 90
2 EEG Row/column 8 6 50 100 200 90
3 EOG 1-by-1 8 9 3 500 500 27
4 EOG Row/column 8 6 3 500 500 18

After each run, a rest interval of at least 30 s was allowed. The entire experimental
session lasted approximately 90 min. As the analysis of the collected data is performed
offline, no visual feedback is provided to the users when each run ends.

4. Experimental Results
4.1. Signal Analysis

Captured EEG signals from all the participants in this study were analyzed and
visually inspected in order to verify that their recordings were correctly performed and that
the P300 EP was elicited when the target element was intensified. As previously described,
the EEG signal was filtered, epoched and averaged for this purpose.

Figure 7 shows the averaged ERPs for the first 5 participants with both intensification
paradigms considering only one run of our experiment. The left column contains ERPs for
the 1-by-1 paradigm, while the right one corresponds to the row/column paradigm.

The P300 potential appears clearly around 300 ms for Subjects 1, 2 and 3 when the
target element is intensified, whereas for Subjects 4 and 5, although the potential appears,
it is more difficult to distinguish. In addition, it can be observed that the latency, that is, the
elapsed time from the stimulus onset to the highest value of the P300 potential curve, varies
from one participant to another. For example, for the 1-by-1 paradigm, the first subject
(Figure 7a,f) reaches its highest value at 304 ms, whereas for the third subject (Figure 7c,h)
this happens at 360 ms. For the first subject the delay also varies for each paradigm, since
for the row/column one the peak appears closer to 400 ms (Figure 7f).

Taking this analysis into account, the P300 window, defined by the BCI for the P300
detection and the subsequent target identification, will depend on the latency of the
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participants for each paradigm. Therefore, the BCI must define a P300 window adapted to
each participant and condition, since a general common window would offer poor results.

(a) (f)

(g)(b)

(h) (c)

(d) (i)

(e) (j)

Figure 7. Averaged Event-Related Potentials (ERPs) from the first five participants for both stimula-
tion paradigms: (a–e) 1-by-1 paradigm; (f–j) row/column paradigm.
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(f)

(b) (g)

(c) (h) 

(d) (i)

(e) (j)

(a)

Figure 8. Data from the first five participants for one run of the blinking experiment for both
stimulation paradigms: (a–e) 1-by-1 paradigm ; (f–j) row/column paradigm.
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EOG recordings were also analyzed and visually inspected in order to verify that
the data were correctly captured and that the blinks were well represented in the signals.
Figure 8 shows data from the first five participants for one run of the blinking experi-
ment and both stimulation paradigms. The left column contains the signal for the 1-by-1
paradigm, while the right one corresponds to the row/column one. The blinks, which are
represented by two consecutive large peaks, negative and positive, are clearly distinguish-
able from the background EEG data captured by the electrode. These voluntary blinks
appear right after the intensification onset of the target element, so the user is communi-
cating to the HMI the element that he/she wants to select. It is important to note that the
amplitude of these blinks varies for each participant. For example, for the first subject,
blink peaks are above 300µV, while for the second subject they appear from 80 to 150µV.

Taking this amplitude variation into account, the threshold value employed by the
blink detection algorithm must be subject-dependent. That is, the BCI must define a
threshold value for each participant in order to detect the produced blinks in the epochs.

4.2. Classification

High classification accuracy when detecting the element selected by the users is of
primary importance for the correct performance of the HMI. Low accuracy would imply
the execution of the wrong action in the user’s environment, which could be frustrating,
annoying and, in some cases, it could even mean a risk for him/her, for example, if the user
needs to call emergency services but the interface does not detect it correctly. Consequently,
the accuracy of the classification algorithms presented in this study is assessed and analyzed
in order to determine if their results are suitable for the implementation of a reliable HMI
with practical applications in a smart-home environment.

Table 3 shows the classification accuracy for each subject, stimulation paradigm and
both control signals. This accuracy is calculated according to the number of runs that were
correctly classified by the HMI. An accuracy of 100% is achieved when the interface is able
to correctly predict each target element in the eight runs of the experiment.

For the P300 experiments, the 1-by-1 stimulation paradigm presents significantly
higher results than the row/column one, with all the participants above 75% and five of
them reaching 100% of accuracy. Conversely, the row/column paradigm offers very poor
results, with five out of the nine subjects below 63%. In the blinking case, both paradigms
achieve similar results, offering high classification rates with comparable average accuracy.

Table 3. Classification accuracy (in %) for each subject, stimulation paradigm and control signal.

Participants
P300 Blink

1-by-1 Row/Column 1-by-1 Row/Column

1 100 62.50 87.50 100
2 100 100 100 100
3 100 100 100 100
4 100 62.50 100 87.50
5 87.50 62.50 100 100
6 75 75 87.50 100
7 87.50 100 100 100
8 100 62.50 100 100
9 75 50 100 100

Average 91.67 75 97.22 98.61

4.3. Response Time

The response time of the HMI is also an important feature to be evaluated. Long
response times will produce fatigue, frustration and anxiety in the users, which can lead to
a bad performance of the interface and a loss of interest in the system. We must find the
shortest response time for the HMI that does not compromise the classification accuracy.
Thus, the time response of each stimulation paradigm and control signal was assessed.
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Figure 9 shows the average classification accuracy obtained for each participant as a
function of the number of intensifications performed for each stimulus, which is directly
related to response time. Figure 9a,c show the accuracy obtained from the P300 experiments.
Figure 9a shows the results obtained from the 1-by-1 paradigm while Figure 9c shows those
from the row/column paradigm. It is apparent that there exists a trade-off between NI and
accuracy of the HMI that is, as NI increases the obtained accuracy improves, and vice versa.
This is due to the fact that a higher number of intensifications implies a larger number of
epochs for the ensemble average and, therefore, the P300 becomes easier to detect. As a
consequence, a higher classification accuracy means longer response times.

From Figure 9a it can be observed that, for the 1-by-1 paradigm, Subjects 3 and 5
achieved their highest accuracy with 40 NI at 72 s. A significant improvement can be seen
for Subject 2, who reaches 100% accuracy at 27 s with only fifteen intensifications, and
for Subject 8, who achieves a stable 100% accuracy at 30 NI. Subject 6 also achieves a
stable accuracy with 30 intensifications, but with poorer results. Conversely, for Subjects
1, 4 and 9, all or almost all the possible intensifications are needed to achieve a high and
stable performance. In the case of the row/column paradigm (Figure 9c, lower results
are obtained and more time is required to achieve the best performance. Subject 7 is
the only one that shows an improvement over the 1-by-1 paradigm. Subject 2 exhibits
excellent results, but slower response time than for the 1-by-1 paradigm. Subject 3 also
reaches a good accuracy, but the other three subjects do not show a stable behaviour, since
their performance drop even when the elapsed time and the number of intensifications
increase. Therefore, it becomes difficult to determine which specific response time offers
the best accuracy.

(a) (c)

(b) (d)

Figure 9. Accuracy obtained for each participant as a function of the elapsed time from the start of the
intensifications. (a,c) correspond to P300-based experiments while (b,d) correspond to blink-based
experiments. The left column (a,b) shows the results for the 1-by-1 paradigm and the right one (c,d)
depicts the results for the row/column paradigm.
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Blinking experiments can be also analyzed in order to evaluate the response time of
the system. In this case, the delay in the response is also dependent on the number of
intensifications performed for each stimulus. It should be noted that, for these experiments,
every time the target stimulus is presented, the user must blink in order to communicate
its selection to the HMI. Therefore, the higher the NI, the larger the response time and
the number of blinks required to select the target element. We must take into account
that if a very low number of blinks is employed for this purpose, the false positive rate
will increase, since non-voluntary blinks can be misinterpreted as control signals sent by
users. If the number of blinks needed to pick the target is higher (e.g., two or three blinks),
the interface can employ a double or triple verification system and non-voluntary blinks
will probably not be interpreted as voluntary control signals. Therefore, for EOG there also
exists a trade-off between response time and reliability, since a large number of blinks for
target selection implies a longer response time and a lower false positive rate.

Figure 9b,d show the accuracy of the HMI obtained for EOG experiments as a function
of NI and the response time. Figure 9b shows the results for the 1-by-1 paradigm and
Figure 9d those corresponding to the row/column paradigm. For both cases, some subjects
achieve their highest accuracy with one and two intensifications and no improvement
is produced when using the maximum NI. However, it can be observed that for one
intensification (i.e., only 1 blink for target selection), several subjects show a lower accuracy
due to non-voluntary blinks mistaken as control signals. Therefore, two intensifications
seem the most suitable option, since mistakes produced by non-voluntary blinks can be
avoided and the response time of the system is kept low.

5. Discussion

In this study, we have developed an HMI for environmental control using a single-
channel recording system. The P300 potential and eye blinks are compared as control
signals in order to determine which one offers the best performance in terms of accuracy
and response time. The home elements to be controlled are displayed in a GUI following a
matrix-form and presented to users using two different stimulation paradigms: (1) home
elements are intensified one by one or (2) all the elements of the same row/column are
jointly intensified at the same time. Both interfaces, either the P300-based interface or the
blink-based interface, employ only one input channel of the same EEG device to capture
the brain/eye user’s activity. In addition, the GUI to show the stimuli is fully configurable
and able to implement both paradigms. Thus, both interfaces exhibit similar cost and
complexity for their respective implementations in real environments.

Practical and real applications of the HMIs will differ among users according to
their degree of muscular control. The P300-based HMI does not require voluntary muscle
activation for controlling and communicating with external devices. Thus, their immediate
users will be those who suffer a complete locked-in state with a loss of all motor control
or whose remaining control is easily fatigued or otherwise unreliable. This user group
includes totally paralyzed patients due to, for example, terminal stages of ALS or brainstem
stroke, or users suffering from movement disorders that abolish motor control caused by,
for example, cerebral palsy [1]. For these patients, even the most simple HMI for turning
on/off a home device is a valuable tool [7]. However, most potential users have better
conventional options for communication. For example, those who retain control of only a
single muscle, such as the eyelids, can use it to send control signals in a faster and more
accurate way than that provided by EEG-based HMIs [7]. The results presented in this
study agree with this statement, as shown in Table 3 and Figure 9, where it is apparent that
the blink-based interface offers shorter response times and similar or higher accuracy in
classification than the P300-based HMI.

The subjects of this study, all able-bodied with no motor disabilities, indicated their
preference for the blink-based interface since it is not as mental-demanding and time-
consuming as the P300-based interface. Moreover, they also pointed out they felt with
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greater control over the system when using blinks as control signals, by marking the target
element with voluntary and conscious actions.

From the EEG recordings, depicted in Figure 7, it is apparent that the latency of the
P300 potential varies for each subject. As has been already studied [64], individual differ-
ences on the P300 latency are related to mental function speeds and cognitive capabilities,
such that a shorter latency corresponds to a higher cognitive performance [65,66]. More-
over, the P300 latency is reduced with children and increases with normal ageing [64,67,68].
It can also be observed in Figure 7 that the P300 potential appears clearly with the 1-by-1
paradigm, especially for the three first subjects, while for the row/column experiments the
P300 curve generated by the target stimulus does not show big differences with respect
to other stimuli. A possible explanation for this behaviour is the human perceptual error
produced by targeting adjacent rows and columns [26]. According to this phenomenon,
when rows/columns adjacent to desired elements are intensified, they also elicit a P300
potential, which can be confused with the one elicited by the target element. As a conse-
quence, as shown in Table 3, the row/column paradigm offers a classification accuracy
significantly lower than that obtained by the 1-by-1 paradigm, where all the participants
achieve an accuracy above 75%.

Notable differences can also be observed between both paradigms regarding time
responses, shown in Figure 9, in which the 1-by-1 paradigm shows a more stable behaviour
and, with 45 s, five of the nine participants are above 70%. All of the subjects were above
70% for 81 s.

On the other hand, for the blink detection experiments, the results achieved by both
stimulation paradigms are very similar, only varying for three of the subjects and with a
close average accuracy of 97.22% for the 1-by-1 paradigm and 98.61% for the row/column
paradigm (see Table 3). Moreover, since the number of possible stimuli for the row/column
paradigm (6) is lower than for the 1-by-1 one (9), the response time for row/column will be
shorter, as shown in Figure 9. This response time can be further reduced if we analyze the
reaction time of each participant that is, the elapsed time from the presentation of the target
element to the corresponding user blink. In our experiments, the time between the onset of
the intensification of one element and the onset of the next one is fixed to 1 s (see Table 2).
However, if the reaction time of a particular subject is faster, the period between two
consecutive intensifications can be reduced and, consequently, the final response time of
the system will be shorter. Figure 10 shows a box plot of the reaction times for all the blinks
performed by the subjects across all the blinking experiments. On each box, the average
response time is marked as the central red line and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the maximum
and minimum reaction time not considered as outliers. The outliers are individually
plotted using the ‘+’ symbol. The median response time for all the subjects is below 0.55 s,
and no blink exceeds 0.85 s, so the period between two consecutive instensifications could
be reduced by at least 0.15 s, which would also decrease the overall response time of
the system.
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Figure 10. Box plot of the reaction times for all the blinks performed by the subjects across all the
blinking experiments. On each box, the average response time is marked as the central red line and
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the maximum and minimum reaction time not considered as outliers. The outliers are
individually plotted using the ‘+’ symbol.

The proposed HMIs should be implemented in an IoT environment for smart-home
control using the shortest response times while providing a high reliability of the system.
Practical applications of an HMI and their implementation in real environments are strongly
conditioned by their response times and accuracies [7]. Table 4 shows the shortest response
time for both stimulation paradigms and control signals while keeping an average accuracy
higher than 80%. Note that, for the blink-based experiments, although the results achieved
by the minimum number of blinks are higher than 80%, they are not taken into account
due to their sensitivity to non-voluntary blinks, which could badly influence the final
performance of the HMI. Both stimulation paradigms offer a similar accuracy, but shorter
response times are achieved for the row/column paradigm, so it is the most suitable option
for a blink-based HMI. Conversely, for the P300 experiments, the row/column paradigm
does not achieve an 80% of accuracy, so the 1-by-1 paradigm, with a response time of 63 s
and an accuracy of 80.36%, is the preferable option.

The proposed HMI systems can be used for non-critical applications where short
response times are not required. The objective of these interfaces is to control basic functions
of home devices, such as on/off switching of lights or raising/lowering window blinds.
Thus, ensuring that the system performs the correct action is more important than providing
a fast response.

Table 4. Response time for both stimulation paradigms and control signals that provides an average
accuracy higher than 80%. For the blink-based experiments, the minimum number of blinks are not
taken into account due to their sensitivity to non-voluntary blinks.

P300 Blink

1-by-1 Row/Column 1-by-1 Row/Column

Accuracy (%) 80.36 No value 97.22 98.61
Response time (s) 63 No value 18 12
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6. Conclusions

We have developed an environmental control HMI using a low-cost and open-hardware
recording device that captures EEG and EOG signals from one single input channel. For this
purpose, eye blinks and the P300 potential are assessed and compared in order to determine
which is the most suitable control signal for the HMI implementation. A fully configurable
GUI has been developed for stimuli presentation and two stimulation paradigms were
evaluated: the elements to be controlled are intensified one by one, or all the elements of
the same row/column are jointly intensified at the same time. The obtained results show
that the blink-based HMI using the row/column paradigm offered the best performance in
terms of accuracy and response time. However, this interface requires voluntary muscle
activation for controlling the eyelids movement, which could be a limitation for some po-
tential users of the interface. In this case, the P300-based HMI using the 1-by1 stimulation
paradigm proved to be the most reliable and suitable option. The analysis of the response
times obtained by each system shows that the proposed HMIs can be used for non-critical
applications where short response times are not required.
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NS Number of Stimuli
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