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Abstract: Unmanned Aerial Vehicles are expected to create enormous benefits to society, but there
are safety concerns in recognizing faults at the vehicle’s control component. Prior studies proposed
various fault detection approaches leveraging heuristics-based rules and supervised learning-based
models, but there were several drawbacks. The rule-based approaches required an engineer to
update the rules on every type of fault, and the supervised learning-based approaches necessitated
the acquisition of a finely-labeled training dataset. Moreover, both prior approaches commonly
include a limit that the detection model can identify the trained type of faults only, but fail to
recognize the unseen type of faults. In pursuit of resolving the aforementioned drawbacks, we
proposed a fault detection model utilizing a stacked autoencoder that lies under unsupervised
learning. The autoencoder was trained with data from safe UAV states, and its reconstruction loss
was examined to distinguish the safe states and faulty states. The key contributions of our study
are, as follows. First, we presented a series of analyses to extract essential features from raw UAV
flight logs. Second, we designed a fault detection model consisting of the stacked autoencoder and
the classifier. Lastly, we validated our approach’s fault detection performance with two datasets
consisting of different types of UAV faults.

Keywords: Unmanned Aerial Vehicle; fault detection; anomaly detection; unsupervised learning;
autoencoder

1. Introduction

The Unmanned Aerial Vehicle (UAV) has developed in recent years, pursuing a
wide range of applications, such as traffic surveillance [1], delivery [2], or environment
exploration [3]. The UAVs perceive the flying environment with embedded sensors, receive
commands from the base station or autonomous flight algorithm, and fly toward the
destination by providing inputs to control the vehicle’s components. However, UAVs are
evaluated as yet to be actively utilized in society due to safety and reliability concerns.
One of the safety concerns is regarding cybersecurity [4]. UAVs go out of control if the
communication signals are intruded by malicious attackers, and the UAV would fail to
stabilize its body in the air. Not only the fault caused by cyberattacks, the fault on physical
components such as the aileron also makes the UAV go out of control. As the occurrence
of a fault on UAVs creates a tremendous amount of damage, a fault detection model is
definitely required for the sake of safety and reliability [5,6]. Following the aforementioned
safety concerns, the industry and academia have studied a fault detection model to identify
the occurrence of a fault on the UAV.

The early studies on UAV fault detection are rule-based approaches [7–9]. Early
researches scrutinized that fault patterns are logged in a system log of the UAV and es-

Sensors 2021, 21, 2208. https://doi.org/10.3390/s21062208 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0760-8807
https://doi.org/10.3390/s21062208
https://doi.org/10.3390/s21062208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062208
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062208?type=check_update&version=1


Sensors 2021, 21, 2208 2 of 17

tablished fault detection rules. Because the engineer can set the fault detection model by
setting a fault detection rule on the system, these rule-based approaches were advantageous
in implementation. However, rule-based approaches had several limits to be deployed in
the real-world, as described in [10]. First, rule-based approaches’ fault detection perfor-
mance was not precise enough as the model fails to identify fault which was not modeled
by rules. Second, the engineer should update detection rules for each type of system failure,
and it created a particular resource consumption on model maintenance. In pursuit of re-
solving the aforementioned drawbacks of rule-based fault detection approaches, academia
and industry sought improved approaches with better detection performance and less
maintenance effort.

A fault detection method that is based on analytical models using signatures can be a
part of that research. The approach allows the detection model to predefine features that
are associated with the signature for known patterns of cyberattacks. The signature-based
detection method is far more advantageous for maintenance than the rule-based approach,
which requires specific rules for all behaviors one-by-one [5,11]. Shoufan et al. [12] devised
authentication for UAV flight command data, called Behaviometric. The study considered
the combinations of the flight command set and the UAV’s behaviors as signatures, and
then used them to detect malicious commands from the attackers. However, this technique
has the disadvantage of only being applicable for known fault patterns. When considering
the limitations of diverse approaches, the learning-based method of detection models is a
big resonant with research.

Rcent progress in machine learning and neural networks has opened a novel approach
to UAV fault detection [13–15]. As machine learning and deep neural network models can
effectively learn the distinctive pattern of fault with unexpected inputs on the UAV [16],
past researches cast the fault detection task as a binary classification problem between
fault and safe status. The proposed studies acquired a flight dataset, which is finely
labeled along with the type of faults. They trained the detection model in a supervised
manner and achieved precise fault detection performance. These supervised learning-
based approaches resolves the drawbacks of rule-based approaches and signature-based
approaches by effectively identifying the faults on the UAV, including unknown security
threats [17]. The learning-based approaches did not necessitate rules to every type of faults
and accomplished a precise detection performance.

Although the supervised learning-based methods achieved a precise fault detection
performance, there existed drawbacks for real-world application. Zhou et al. [18] intro-
duced weakly supervised learning due to the following drawbacks. First, supervised
learning-based methods require heavy effort in finely-labeled dataset acquisition. Be-
cause learning-based fault detection models are trained in a supervised manner, the model
requires an engineer to provide the data and labels as a pair. The engineer should collect
log data, which include faults during the flight, but we analyzed whether this dataset
acquisition step requires a resource consumption. Second, the supervised learning-based
models cannot identify faults if the fault is not trained during the model training step.
Because the trained model only learned the pattern of faults included in the training dataset,
the model might fail to recognize a novel type of faults.

This study proposes a fault detection model utilizing an autoencoder, one of the
representative unsupervised learning models. First, we only trained the autoencoder with
flight data under safe states to let the model learn safe UAV states’ patterns. Note that the
training stage employs an unsupervised learning paradigm, as it requires a single class
of data: safe UAV states. The trained model was scrutinized to produce the distinctive
reconstruction loss between safe states and faulty states. The well-trained model was
expected to produce low reconstruction loss with safe state data. On the other hand, we
expected the trained model to generate a large reconstruction loss with faulty states’ data
because the faulty states’ pattern is not learned. We figured out that this distinctive level of
reconstruction loss between safe states and faulty states can be a significant cue of fault
detection and examined our approach through a series of experiments.
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As an expansion of the study proposed in [19], the contributions of our study are
as follows:

• When considering the flight as a part of a cyber physical system (CPS), many concerns
that are related to the cybersecurity on the system have been raised, according to
Sanchez et al. in [20]. We proposed a series of analyses to extract an essential set of
features from raw log-level flight data and validated that the set of features represents
a distinct pattern between safe states and faulty states. The details are shown in
Section 3.3.

• We established a fault detection model leveraging an autoencoder by only training the
safe state data. The proposed design of the fault detection model, which is described
in Section 3.4, let the engineer evade an effort of finely-labeled dataset acquisition.
Moreover, the model can identify unseen types of faults, despite the pattern of faulty
states not being trained.

• We examined the detection performance of the proposed approach with two types of
UAV fault datasets, as specified in Section 3.1. One dataset consists of flight logs under
the fault occurrence that is derived by cyberattacks, and the other dataset includes
flight logs under the fault from the failure of physical components. Throughout
the experiments, the proposed fault detection approach validated the capability of
identifying faults that are caused by cyberattacks with no recovery measures and
physical component failure with recovery measures. The experimental results are
shown in Sections 4.3 and 4.4.

2. Literature Review

In this section, we reviewed prior studies on fault detection approaches for the UAV,
where faults occurred at the system’s control components. Our study set the fault detection
model’s scope that identifies failures on the control component, not the vehicle’s physical
components. Following the type of used algorithm in the study, previous works were
categorized into three categories: rule-based approaches, supervised learning approaches,
and unsupervised learning approaches.

2.1. Rule-Based UAV Fault Detection

Early studies of fault detection employed heuristics-based rules to capture distinct
characteristics of faulty states from safe states. Note that the early researches focused
on fault detection that was caused by intrusions from malicious attackers. Mitchell and
Chen [7] led a pioneering study of developing behavior UAV rule-based intrusion detection
systems (BRUIDS). Sedjelmachi et al. [8] conducted studies to detect faults that were
caused by attacks on the ad-hoc network of UAVs. They proposed a lightweight Intrusion
Detection System (IDS) that detects integrity attacks and Denial of Service (DoS) attacks fast
in such situations. The IDS minimized the overhead of the communication network and
showed precise fault detection rates. Muniraj et al. [9] proposed a framework to recognize
faults from cyber-physical attacks targeting UAVs. They investigated the UAV’s sensors to
determine which sensors were vulnerable to specific attacks and established the particular
diagnosis rules on the detection system. The simulated experiments were conducted with
GPS spoofing attacks, and the detection process classified an input state of the UAV as
faults when sensors responded to the request in a distinctive manner. In the context of
early studies on UAV fault detection, rule-based approaches achieved promising detection
performance and provided a concrete motivation to the following studies.

2.2. Fault Detection with Supervised Learning

Previously-illustrated fault detection approaches identified faults that were caused by
cyberattacks through establishing particular detection rules on UAV behaviors or sensor
states. However, these approaches contained a drawback that rule-based approaches
could not capture the unknown type of faults, and it required engineers to establish new
rulesets for the new type of faults or attacks. In pursuit of improving this drawback, data-
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driven fault detection systems were proposed. The data-driven fault detection approaches
have utilized a supervised learning paradigm that leans on UAV states’ pattern from the
finely-labeled dataset.

Bronz et al. [13] proposed a system that detects faults in real-time in the in-flight
state of UAV. The detection system utilized Support Vector Machine (SVM), which is
one of the machine learning algorithms known to be effective on classification problems.
The suggested fault detection approach had the advantage of defending the false alarm by
reflecting the possibility of geometric errors in small UAVs in the detection. Arthur [14]
studied a fault detection method to identify anomalies from signal spoofing and jamming
attacks on lightweight UAVs. UAVs perform a self-analysis and self-detection under the
proposed fault detection scheme while using the multi-class SVMs with significant features
that were identified through the self-taught learning (STL) algorithm. Kim et al. [15] used
machine learning techniques to detect faults from cyberattacks, such as sensor spoofing.
They identified the issue that learning-based detection models require a large amount of
data and attempted to increase data using a generative adversarial network (GAN).

2.3. Fault Detection with Unsupervised Learning

While the supervised learning-based approaches achieved significant fault detection
performance, the supervised paradigm requires well-labeled data. Furthermore, the su-
pervised learning-based detection approaches cannot identify the unseen type of faults, as
the model did not learn their pattern. To resolve these drawbacks, recent researches with
learning-based detection systems utilized unsupervised learning with unlab5678eled data.
The fault detection system solves a binary classification problem between the safe state
and faulty state, leveraging unsupervised learning. A primary paradigm of unsupervised
fault detection cast the problem into anomaly detection to identify safe states only and then
classify any other abnormal patterns as faulty states.

Xia et al. [21] presented an UAV faults detection model employing a semi-supervised
paradigm. First, they established a stacked denoising autoencoder (SDA) and trained the
model with unlabeled data to learn the flight data patterns. Second, they trained a classifier
in a supervised manner with a few labeled dataset. Throughout experimental analyses,
they showed the use of a trained autoencoder as a feature extractor contributed to the
fault detection performance. Still, the proposed approach highly relied on a supervised
manner. Whelan et al. [22] defined fault detection task as a novelty-based detection. They
conducted research using various one-class classifiers, including One-class SVM (OC-SVM),
Autoencoder, and Local Outlier Factor (LOF). Note that the LOF was the only unsupervised
learning-based algorithm. The motivation behind their use of the classifier was that the
supervised learning-based approaches might not be efficient enough in situations where
the fault’s landscape depends on activated payloads or sensors change and labeled data
acquisition encounters challenges. The LOF was a density-based method for detecting the
novelty on the unlabeled input data. They experimented with fault cases demonstrated
precise detection performance. Khan et al. [23] pursued unsupervised learning, and their
UAV fault detection system was based on the distance between state vectors at safe states
and faulty states. They intended to detect attacks without requiring much prior knowledge
of how changes in data by attacks. The learning models that were used in the research
were one-class SVM and distance-based models, including the Gaussian mixture and
Mahalanobis distance models. They exploited time-series sensor data to catch abnormal
data from the clustered distributions.

3. Proposed Methodology

This section illustrates a series of analyses illustrating how we designed the fault
detection model with unsupervised learning. Following the literature review illustrated in
a prior section, our study is primarily motivated by unsupervised learning only approaches.
The fault detection model contained two parts: the encoding phase with model training
and the thresholding phase that classifies an input between the safe state and the faulty
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state. Figure 1 visualizes the proposed fault detection model’s overall structure. Starting
from the dataset acquisition, we elaborate how an essential set of features are established,
and the autoencoder is utilized to identify faultystates from safe states.

Figure 1. The overall structure of the proposed fault detection model. During the encoding phase,
we acquired safe flight logs and extracted feature vectors from the logs, and trained the autoencoder
to scrutinize safe flight patterns. During the thresholding phase, our approach takes a validation
feature vector that is acquired from the validation flight logs, provides the input to the autoencoder,
and acquires the reconstruction loss. If the reconstruction loss is larger than the particular threshold,
then our approach identifies the Unmanned Aerial Vehicle’s (UAV’s) fault.

3.1. Dataset Acquisition
3.1.1. Description

Throughout the study, we analyzed the consideration of various faulty circumstances
would contribute to the development of a robust UAV fault detection model. In order
to examine our approach’s effectiveness in various faulty situations, we categorized two
types of fault from the prior studies described in Section 2: fault without recovery measures
and the fault with recovery measures. Following these fault types, we utilized two types
of UAV fault detection datasets: the UAV Attack (UA) dataset and AirLab Failure and
Anomaly (ALFA) dataset. We illustrated the description of datasets below.

UA dataset: Fault from Cyberattacks without any recovery measures. The UA
dataset consists of the quadcopter’s raw flight logs and the fault occurred from cyber-
attacks to the UAV system. The UA dataset contains a quadcopter flying in a simulated
environment. The dataset simulates a flight scenario that the quadcopters flew with control
inputs from the base station’s Autopilot commands, and the related control components,
such as the elevator or engines activate following the provided command. The dataset
includes system logs along with a flight on the simulator, which follows a conventional
jMAVSim setup. The UA dataset contains three types of flight logs: safe flight, flight
under DoS attack, and flight under GPS Spoofing attack. We analyzed that the UA dataset
describes severe faults on the system as the UAV got down and crashed to the ground
without any recovery measures after the cyberattack. This study employed the UA dataset
to identify the fault on the UAV when the recovery measure is not activated after the fault
happened. Note that the UA dataset includes annotations on UAV states between the safe
state and the faulty state. We utilized flight logs under the safe state during the encoding
phase, which trains the model under the unsupervised learning paradigm. During the
thresholding phase, which performs an inference, we utilized flight logs from both safe
states and faulty states to measure the detection performance. The detailed description of
the UA dataset is illustrated in [22].
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ALFA dataset: Fault from Control Component Failure with recovery measures. The
ALFA dataset is a fixed-wing UAV’s raw flight logs, and control component failures cause
the fault. The failures on the fixed-wing UAV’s control components are the incapacity
in rudder, aileron, elevator, and engine. While the UA dataset contains flight logs in a
simulated environment, the ALFA dataset provides a flight log in real test flights with
actual control component failure. Note that experimental real-world flights are performed
at the airport in Pittsburgh, the United States. The ALFA dataset provides five types of
flight logs: safe flight, a flight under failures at the aileron, rudder, engine, and the elevator.
Note that the human safety pilot provided adequate recovery measures to the UAV after
the physical component failure happened. Throughout the study, we utilized the ALFA
dataset to recognize faults when the UAV still flies, but included a fault on the system body.
Note that [24] describes the detailed description of the ALFA dataset.

3.1.2. Ground Truth Confirmation

The ground-truth confirmation is the first and foremost step before a fault detection
model establishment. We labeled every log in safe flights in both the UA dataset and ALFA
dataset as ‘safe’ because there exists no failure during the flight. For the faulty flight data,
both the UA dataset and ALFA dataset provided a timestamp when the fault happened to
the UAV so that the labels on the logs before the fault happened became ‘safe’ and logs
after the fault happened labeled as ‘fault’. Note that the sanity of ground truth on the
dataset was clarified and assured before implementing the fault detection model.

3.2. Feature Selection

The raw flight logs recorded in UAVs include a wide range of features. We categorized
various features into five categories: Location, Position & Orientation, Internal Measure-
ments, System Status, and Control. The descriptions of each category are described below.

• Location: a set of features related to the location of the UAV. A particular coordinates
of the location is described along with the GPS

• Position & Orientation: a set of features related to the position and the orientation of
the UAV.

• Internal Measurements: a set of features extracted from the Internal Measurement
Units (IMUs).

• System Status: a set of features related to the system management, such as on-
board sensors.

• Control: a set of features illustrating an input toward the actuator

Our data-driven fault detection approach’s key assumption is that features that are
measured from each UAV component presumably include distinct patterns of faulty states
distinct from safe states. Our approach aims to learn safe UAV states’ characteristics from
these features during the encoding phase and recognize any abnormal patterns as faults
during the thresholding phase. While these raw flight logs include patterns of UAV states,
several missed features or non-essential features exist for fault detection. To evade a curse
of dimensionality and extract essential information for fault detection, the feature selection
process was crucial in designing an input feature vector. Based on the aforementioned
analogy, we established two rules for the feature selection step: hardware generality and
sensor stability. From the raw features of the dataset, the selected features were those not
filtered by both rules.

Rule 1: Hardware Generality. The rule of hardware generality aims to eliminate the
features that are unique in particular UAV hardware. We evaluated that a fault detection
model should be easily implemented regardless of the hardware. Suppose a feature that
only exists at a particular UAV is employed in our detection model. In that case, the model
cannot be applied to other UAV types as the feature does not exist. Therefore, every unique
feature that only exists at a particular type of UAV was excluded. As a representative case,
the feature related to an actuator control was not selected, as the control input varies with
the UAV type. For instance, a control input to the actuator differs at the quadcopter and
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the fixed-wing UAV; thus, the related features harm the hardware generality. Under the
consideration of this rule of hardware generality, we excluded feature in the category of
Location and Control on this study and focused on the physical properties of the UAV
during the flight.

Rule 2: Sensor Stability. The second rule for the feature selection is sensor stability.
Suppose the case where a particular feature is frequently not recorded during the flight.
The feature vector’s lost value lets the feature vector include a NULL value, which becomes
an obstacle to the model training and fault detection during the flight. Furthermore,
suppose another case where a particular feature does not change at all during the flight.
The tranquil features do not provide any meaningful information to detect faults on the
UAV, but rather increase the curse of dimensionality; thus, we decided to eliminate this
tranquil feature. Throughout the consideration of sensor stability, every feature that satisfies
the following conditions concluded not being included.

• Condition 1: the feature contains any Null value during the flight.
• Condition 2: the feature does not change at all during the flight.

We applied the aforementioned feature selection rules to every feature at raw flight
logs in both the UA dataset and ALFA dataset. We resulted in the list of selected features in
Tables 1 and 2 for the UA dataset and the ALFA dataset, respectively. Note that the number
of features at the UA dataset is larger than the ALFA dataset, as the UAV dataset generated
enormous raw flight logs on the simulator while the AlFA dataset recorded the flights in
the real world.

Table 1. Features extracted from the UAV Attack (UA) dataset.

Category Feature Name Description

Position & Orientation Local Position (x, y, z) Local position of the UAV in the local coordinate frame
along with the axis x, y, z, respectively

Ground Speed X Ground X speed toward the latitude, positive north
Ground Speed Y Ground Y speed toward the longitude, positive east
Ground Speed Z Ground Z speed toward the altitude, positive down

Roll A roll angle
Pitch A pitch angle
Yaw A yaw angle

Roll Speed An angular speed at the roll
Pitch Speed An angular speed at the pitch
Yaw Speed An angular speed at the speed

Relative Altitude An altitude above the home position
Local Altitude An altitude in the local coordinate frame

Quaternion (1, 2, 3, 4) Quaternion component of w, x, y, z, respectively

IMUs Acceleration (x, y, z) An acceleration at axis x, y, z, respectively
Angular Speed (x, y, z) An angular speed around axis x, y, z, respectively
Magnetic Field (x, y, z) A value of magnetic field at axis x, y, z, respectively

Absolute Pressure An absolute pressure at the UAV
Pressure Altitude A value of the altitude calculated from the pressure

System Status Temperature A temperature of the battery
Air Speed Current indicated airspeed
Heading Current heading in a compass units scaled in 0 to 360
Throttle Current setting of the throttle scaled in 0 to 100

Climb Rate Current level of the climb rate
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Table 2. Features extracted from the ALFA dataset.

Category Feature Name Description

Position & Orientation Velocity (x, y, z) Measured velocity of axis x, y, z, respectively

IMUs Angular Velocity (x, y, z) An angular velocity at axis x, y, z, respectively
Linear Acceleration (x, y, z) A linear acceleration at axis x, y, z, respectively

Magnetic Field (x, y, z) A value of magnetic field at axis x, y, z, respectively
Fluid Pressure A value of the pressure using fluid pressure sensors

System Status Temperature A temperature of the battery
Altitude Error An error value of current altitude
Airspeed Error An error value of current airspeed

Tracking Error (x) A tracking error at x axis
WP Distance A distance between ideal location and current location

3.3. Feature Engineering

We employed feature engineering processes to transform flight logs into the feature
vector after we selected the essential features. The feature engineering includes two sub-
steps: the feature scaling and timestamp pooling.

3.3.1. Feature Scaling

The feature scaling step is designed to unify the range of values at each feature.
Because individual features are recorded in a different magnitude of the scale, we expected
that a fault detection model consisting of deep neural networks would become confused
easily during the parameter optimization. The Min-Max scaling function elaborated that
is in Equation (1) was utilized in the study to scale each feature under the same scope
between 0 and 1.

Xscaled =
Xi −Min(Xi)

Max(Xi)−Min(Xi)
(1)

3.3.2. Timestamp Pooling

After each feature’s scale became unified, the scaled flight logs necessitate the process
of transformation into the fixed size. When we consider input to the fault detection model,
the input should be a feature vector in a fixed size that describes the UAV’s status at the
particular timestamp. However, individual features are recorded in the UAV in different
periods; thus, flight logs cannot be directly transformed into the feature vector as an input.
Figure 2 illustrates the problem. Referring to Figure 2, the feature A, B, and C are recorded
in different periods to the UAV at the same time window. Suppose the case where we
transform these features during a particular time window. As the length of features varies
during the same time window, the number of data points at each feature is 6, 9, 3 for
the feature A, B, and C, respectively. The number of feature values during a single time
window should be the same, but the current flight logs cannot earn this requirement.

Figure 2. Flight logs before timestamp pooling. Along with the feature type, there exists a different
number of values during a single time window. As the model receives a fixed-size input, timestamp
pooling is required to transform the flight logs into the fixed-size feature vector.
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We utilized timestamp pooling to resolve the different length of each feature during
a single time window. The timestamp pooling method randomly selects a single data
point during a fixed time window. We extracted a random feature value and assumed
that the selected value could represent the feature during the time window. The time
window was set as 250 milliseconds, and timestamp pooling was applied to every feature.
Figure 3 illustrates the result of timestamp pooling at the example case. Each feature is
represented with a single value during a time window; therefore, flight logs transform into
the feature vector in a fixed size. The feature vectors lie under the same scale and same
shape; thus, it resulted in the processed feature vector being provided as an input to the
fault detection model.

Figure 3. Flight logs after timestamp pooling. We selected a single representative value during the
particular time window to make each feature includes the same number of value. The timestamp
pooling transforms flight logs into the fixed-shape feature vector during a single time window; thus,
the produced feature vectors can be provided to the model.

3.4. Fault Detection Model
3.4.1. Autoencoder

Based on the processed feature vector, we established a fault detection model lever-
aging the autoencoder. The autoencoder is a deep neural network that encodes the input
feature vector and decodes to reconstruct the given feature vector. The autoencoder’s
encoding part optimizes its parameters to produce a representation vector, including the
feature vector’s essential characteristic. The decoding part optimizes its parameters to
reconstruct the given input feature vector from the produced representation vector. A loss
function is set as the difference between the original input vector and reconstructed vector;
thus, minimizing the loss allows the autoencoder learn to compress the input feature vector
as a representation vector [25]. This study utilized a stacked autoencoder, where multiple
layers of neurons are stacked at both the encoder and decoder. A single layer of neuron
computes a linear operation to the input vector and applies the activation function of the
ReLU to add non-linearity to the model [26].

For the sake of clarified elaboration on the model, we mathematically described a
single layer of the encoder, a single layer of the decoder, a loss function (reconstruction loss),
and the objective function at Equations (2)–(5), respectively. For the terms that are used in
the equations above, e() and d() imply the encoder and the decoder, respectively. x denotes
the input feature vector that is provided to the encoder, r denotes the representation vector
provided to the decoder. W and b denote the weights and biases of the linear operation,
and ReLU implies a non-linear activation function proposed in [26]. θ denotes the overall
parameters of the encoder and decoder, and fθ denotes the overall model consisting of the
encoder and the decoder. y implies the ground-truth vector for the model, which is equal
to the given input feature vector (x), following the unsupervised learning paradigm.

When considering Equations (2) and (3), a single layer of the encoder and the decoder
takes an input vector, performs a linear operation with weights (W) and biases (b), and re-
sults in an output vector after applying the ReLU function as an activation. Because the
ReLU is a non-linear activation function, we expect that it empowers the model to scruti-
nize patterns that exist at the feature vector effectively [26]. Equation (4) implies a mean
squared error between an input vector and the reconstructed vector. Note that n denotes
the number of layers at the encoder and decoder, and the model consists of stacked encoder
layers and the decoder layers under the same number. Equation (5) illustrates the model
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training objective that aims to let the stacked autoencoder finely understand the underlying
feature dynamics of the UAV states and reconstruct the given input without much loss. We
set the optimal parameters of the model as θ∗, which minimizes the total loss at the given x
from the dataset D. Please check all letters and keep them with same expressions. such as
italic or normal.

Encoder : e(x) = ReLU(Wencoderx + bencoder) (2)

Decoder : d(r) = ReLU(Wdecoderr + bdecoder) (3)

Loss : L(x, y) = ||fθ(x)− y||2 where fθ(x) = dn(en(x)) (4)

Find θ∗ s.t. θ∗ = argminθ( ∑
x∈D

L(x, y)) (5)

3.4.2. Encoding Phase: Learning the Pattern of Safe States

Our fault detection model’s key motivation is as follows: the stacked autoencoder
trained only with safe flights would produce a different level of reconstruction losses
between safe states and faulty states. Because the training phase is provided the feature
vectors from the safe flights, the autoencoder naturally learns safe flights’ patterns only.
The parameters of the autoencoder are optimized to encode and decode the safe states,
but not optimized to produce a proper representation of faulty states. In other words,
the trained autoencoder yields low reconstruction loss when we provide a feature vector of
safe states but results in larger reconstruction loss on the feature vector of faulty states. We
analyzed that this disparity on the reconstruction loss between safe states and faulty states
can be a useful cue of fault detection. Therefore, the autoencoder was trained with feature
vectors from safe flights only to achieve the aforementioned cue of the fault detection. Note
that we did not use any feature vectors from the faulty flight log, but we only utilized
feature vectors from safe flight logs during the encoding phase, which trains the model.

3.4.3. Thresholding Phase: Fault Detection

Last but not least, we identified faulty states during the validation phase by setting a
particular threshold level. By setting a particular level of threshold, our inference was that a
given input feature vector was a fault if the reconstruction loss of the vector becomes larger
than the threshold. On the other hand, we classified a given input feature vector as a safe
state when the vector’s reconstruction loss stays lower than the threshold. Assuming that
the autoencoder is properly trained, this simple approach of thresholding the reconstruction
loss can effectively identify faulty states during the inference phase. Note that the fault
detection performance might vary along with different threshold levels; therefore, the fault
detection method successfully resolved the aforementioned problem, as illustrated in the
following section.

4. Experiments
4.1. Experiment Takeaways

We clarified experimental takeaways that describe research questions to examine
with a series of experiments. The key experiment takeaways of our study are illustrated
below. While our previously-proposed study [19] employed a single dataset, note that
we extended the prior work by employing another dataset where recovery measures are
followed after the fault happened.

• Fault Detection on the Flight without Recovery Measure.
Suppose that the case when the UAV cannot provide an adequate recovery measure
after the fault happened. The UAV system goes out of control and it might fail to
balance its body in the air. In this case, a fault detection model should identify the
occurrence of a fault on the UAV and notify the proper supervisor. The UA dataset
describes a fault without automatic recovery measures that are caused by cyberattacks;
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thus, we employed the UA dataset in this experiment takeaway to examine whether
the proposed model can identify faults from safe states.

• Fault Detection on the Flight with Recovery Measure.
Suppose that the case when the automatic recovery module provided adequate re-
covery measures to the UAV body when the physical component failure happened.
As UAVs’ crash creates enormous damage, modern UAVs have the ability of self-
recovery to use an alternative physical component or land on the ground safely when
the physical component failure happened. In this case, a fault detection model shall
identify the fault and report to the supervisor, even if the UAV still maintains the
flight in the air. Because the ALFA dataset illustrates a fault with automatic recovery
measures caused by a physical sensor failure, we utilized the ALFA dataset in this
experiment takeaway to validate whether our approach recognizes faults.

4.2. Evaluation

As we set a particular threshold during the inference phase, our model’s detection
performance would vary along with the level of threshold. The evaluation metrics should
resolve this problem to evaluate the model performance, regardless of the threshold level;
thus, the Area Under the Curve (AUC) at the Receiver Operating Curve (ROC) is chosen as
a key evaluation metric. The ROC curve is a probability curve that takes a false positive
rate on the x axis and a true positive rate on the y axis. It graphically shows a different level
of detection performance along with threshold levels. The AUC implies the area under
the ROC curve, and it represents a classification performance on various threshold levels
in a numeric measurement. The higher AUC measurement represents the model solving
the classification task better. Because the AUC numerically describes the classification
performance, we employed the AUC as a key evaluation metric to illustrate the fault
detection performance for various threshold levels.

4.3. Fault Detection on the Flight without Recovery Measures

We examined the first experiment takeaway, which asks the fault detection perfor-
mance at the flight with faults under no recovery measures. First, the training set consisted
of feature vectors that are extracted from the safe flight only. We trained the autoencoder
with the aforementioned training set to let the model learn the pattern of safe UAV states.
Second, two test sets took feature vectors that were derived from the flight with the fault
from GPS spoofing attack and DoS attack, respectively. The flight log under the fault
contains both safe states and faulty states; thus, the fault detection model solved a binary
classification task between the safe state and fault. We provided this test set to the trained
autoencoder and acquired the reconstruction loss. Finally, the fault detection performance
was evaluated along with various threshold levels with the AUC level. Note that Table 3
describes the test set’s configuration and the fault detection performance on each test case.

We analyzed whether the proposed fault detection approach precisely identified faults
of GPS spoofing and DoS attacks from safe states. In pursuit of discovering the underlying
reason for the performance, we reduced the high-dimensional feature vectors of both safe
and faulty states into the 2D space with t-sne [27], as visualized in Figure 4. The distribution
of feature vectors of faulty states formed a cluster that differs from safe states. We interpret
the proposed set of features on the UA dataset to effectively describe the unique pattern of
safe states and faulty states. The autoencoder would not confuse safe feature vectors from
the faulty feature vectors due to their distinct distribution; thus, it empowered a precise
fault detection performance. Throughout the experimental results on the UA dataset, we
examined the experimental takeaway that our fault detection model can recognize faults in
the flight where the recovery measure is not provided to the UAV after the fault happened.
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Table 3. Fault detection result on the flight without any recovery measures. Our approach achieved
significant fault detection performances in both fault types.

Fault Type Number of Safe Logs Number of Faulty Logs AUC

GPS Spoofing Attack 2368 41 0.9969
DoS Attack 6203 45 0.9632

(a) GPS Spoofing Attack (b) DoS Attack

Figure 4. The distribution of dimensionality-reduced feature vectors from the safe states and faulty
states vary on the two-dimensional (2D) space. The different distribution of both states implies the
set of used features effectively describes each state’s pattern. We interpret this distinct distribution
between safe states and faulty states empowered the autoencoder to effectively focus on patterns of
safe UAV states; therefore, our approach could achieve precise fault detection performances in the
UA dataset.

4.4. Fault Detection on the Flight with Recovery Measures

We also examined whether the proposed fault detection model precisely recognizes
faulty states when the automatic recovery measures are applied after the fault happened.
The training set consisted of feature vectors that are extracted from the safe flight and
trained the autoencoder with the aforementioned training set. The test set was configured
to be composed of four types of fault from physical component failures: rudder failure,
elevator failure, aileron failure, and engine failure. Note that each test set includes both
safe states and faulty states. We provided these four test sets to the trained autoencoder
and extracted the reconstruction losses. Following the evaluation metric, the AUCs of the
fault detection results were calculated and are denoted in Table 4.

Table 4. Fault detection results on the flight with recovery measures. Our approach accomplished
significant performances in detecting failures on the rudder and elevator, but required further
improvements in identifying failures on the aileron and the elevator.

Fault Type Number of Safe Logs Number of Fault Logs AUC

Rudder Failure 207 345 0.9321
Elevator Failure 253 355 0.8076
Aileron Failure 263 545 0.7509
Engine Failure 199 297 0.7646

When referring to Table 4, the fault detection model achieved promising performance
on test sets of rudder failure and elevator failure. On the other hand, the detection per-
formance on test sets of aileron failure and engine failure required an improvement to
be deployed in the real world. We scrutinized the reason for different detection results
from the distribution of feature vectors in test sets. In the same dimensionality reduction
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approach with t-sne, the feature vectors of each test set turned into 2D space and visualized
them. Figures 5 and 6 show the visualized results.

(a) Rudder Failure (b) Elevator Failure

Figure 5. The distribution of dimensionality-reduced feature vectors from the safe states and faulty
states vary on the 2D space. The different distribution of both states implies the set of used features
effectively describes each state’s pattern. We analyzed how the lesser adjoined distribution between
safe states and faulty states contributed to precise fault detection performance.

(a) Aileron Failure (b) Engine Failure

Figure 6. The distribution of dimensionality-reduced feature vectors from the safe states and faulty
states vary on the 2D space. The duplicated area consists of feature vectors from safe states and faulty
states imply that the fault detection model would confuse the identification of faulty states from
safe states. We analyzed this adjoined distribution between two states hampered our approach to
accomplish a promising detection performance.

In Figure 5, feature vectors of safe states and faulty states distribute distinctly; thus,
we analyzed the proposed detection model produced large reconstruction losses on faulty
states, while it produced lower reconstruction losses on safe states. On the other hand,
Figure 6 illustrates the distribution of safe states and faulty states at aileron failure and
engine failure was not as effective as rudder failure and elevator failure. Although safe
states and faulty states are divided, there commonly exists a duplicated area between
two states. This duplicated area implies that particular feature vectors look similar in the
model’s point of view; thus, the model would confuse faulty states and safe states under
the given set of features. Along with the analysis on feature distribution of four test sets,
we found that the proposed set of features at the ALFA dataset can contribute to the fault
detection model in a particular way; however, there is a room for improvement in achieving
better detection performance.
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4.5. Analogy

Throughout the series of analyses with two experiment takeaways, examining the
fault detection task is more challenging when the recovery measure is applied after the
fault happened. The fault detection task can be comparatively easy when the recovery
measure is not provided after the fault occurs. The faults derived from cyberattacks let the
UAV go out of control without adequate recoveries; thus, the UAV would fail to sustain
its flight and shudder in the air or even start to fall down to the ground. We estimates
this severe damage caused by the absence of recovery measures highlighted the pattern of
faulty states and contributed to precise detection performance.

On the other hand, analyzing the fault detection task becomes harder when the
recovery measure is applied to the UAV. As the recovery measures let the UAV sustain its
flight in the air, our inference headed to the fact that the set of proposed features were not
perfect enough to identify faults from the UAV that holds recovery measures. The recovery
measures at least prevent the UAV from a severe problem, such as a crash to the ground.
However, there still exists a necessity for fault detection to assure safety and reliability
to understand the UAV’s state as correctly as possible. In a nutshell, our fault detection
approach resulted in effectively identifying the faulty states when the UAV is not prepared
with recovery measures, but it requires room for improvement when the recovery measure
is embedded into the vehicle body.

5. Discussions

Throughout the study, we examined the proposed approach achieved a promising
performance on fault detection tasks. Nevertheless, our approach requires further contem-
plation on deploying the detection model into real-world UAVs. The detailed elaborations
of room for improvement are as follows.

5.1. Improving the Fault Detection Performance

The proposed approach necessitates the extended study of improving detection perfor-
mances. First, we expect a further extension of features to elevate the detection performance.
Along with the series of analyses, we discovered that the proposed set of features could
describe the distinct pattern of safe states and faulty states. While the study employed the
UAV’s physical properties as features, further study might utilize network properties that
are recorded during the communication between the UAV and base station for the fault
detection task. We especially discovered that fault occurrences with recovery measures are
more challenging for the detection model with features describing the physical properties
of the UAV. The exploratory analyses on the change of network properties would provide
a new set of features for performance elevation.

Second, we infer that further variations of the autoencoder would contribute to better
fault detection performance. The feature dynamics in a single timestamp were meant to
illustrate the UAV’s state. The focus of the dynamics might move to other types of features,
such as the sequential features of the flight. Because the flight logs are recorded sequentially,
the expected pattern is also sequential, which effectively demonstrates a difference between
safe states and faulty states. We expect that the input feature vector can be transformed
in a sequential manner, and the stacked autoencoder can be changed into the sequential
autoencoder leveraging recurrent neural networks [28]. Under the paradigm of utilizing
unsupervised learning, we expect that further studies can design the fault detection model
to scrutinize distinct patterns between safe states and faulty states on the UAV.

5.2. Computation Overhead on Real-World UAVs

We expect that the proposed approach shall be examined on real-world UAVs to
measure the computation overhead during the inference phase. The fault detection model
would be implemented in the UAV and classify the state between the safe states and faulty
states. A computing device with Graphical Computing Units (GPUs)—which is employed
in our study—was capable enough to perform binary classification on the test set. However,
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the proposed detection model might create a particular burden of computation overhead
on real-world UAVs’ computing environment. We analyzed whether the following studies
on our research would be better examined if the computation overhead is measured during
the real-world flight.

5.3. Comparative Analysis with the Prior Studies

We analyze our fault detection model’s key takeaways to be more specifically high-
lighted when illustrated with previously proposed approaches. Suppose the case when an
engineer should establish a fault detection model for the UAV. Among various fault detec-
tion studies, the engineer would choose an adequate methodology considering the UAV’s
specifications and status quo. We infer that a comparative study of our fault detection ap-
proach with previous works can better provide the model’s advantages and disadvantages.
Therefore, the engineer can refer to the study to figure out the optimal choice of research to
implement a fault detection model. Under the benchmark datasets and accurate ground
truths, we shall implement previously-presented fault detection approaches and compare
the detection performance.

6. Conclusions

In pursuit of a wide range of benefits to society, UAV technology has been highlighted
for decades. Although the UAV enables various applications in society, there exists a con-
cern on the safety and reliability. Because UAVs’ fault can cause severe damage, the fault
detection system on the UAV is highly required before the UAVs are integrated into society.
In response to the aforementioned necessity, prior studies proposed rule-based approaches
and supervised learning-based approaches. The suggested approaches achieved a signifi-
cant fault detection performance; however, rule-based approaches required engineers to
update rules whenever finding new types of fault. The supervised learning-based methods
necessitated engineers to acquire a finely-labeled dataset to train the detection model,
conferring the burden of data acquisition effort. Furthermore, both of the approaches
include a common limit that the model can only identify faults trained during the training
phase, but fails when novel types of faults are provided to the model.

In this study, we cast the fault detection task as anomaly detection and proposed a
fault detection approach leveraging unsupervised learning to resolve prior approaches’
limits. The contributions of our work is provided, as follows. First, we proposed a series
of analyses to extract an essential set of features from raw flight logs to identify faulty
states’ distinct patterns from safe states. Second, we established a fault detection model
that consisted of the stacked autoencoder and trained the model with feature vectors
extracted from safe flights. During the inference phase, we expected that the trained
model produces a large reconstruction loss on faulty states, and a lower loss on safe
states, as the model only understands the pattern of safe states. Finally, we analyzed
the difference of reconstruction loss as an effective cue of fault detection and examined
our approach’s promising performance in two datasets. While our previous work [19]
established a conceptual proposition on fault detection, this study extended prior work by
employing an additional dataset and illustrated the detection performance with a proper
evaluation metric.

Along with the previously-proposed architecture of real-world fault detection in
UAVs [29], we expect that our approach can be easily integrated into the system. Suppose
the scenario where a UAV communicates with the base station to receive control commands.
We analyzed whether the proposed fault detection approach can recognize UAV’s faulty
states by receiving state information from the vehicle or the base station, producing the
reconstruction loss from the trained autoencoder, and thresholding the produced loss as
compared to the preset threshold. If the UAV navigates autonomously without communi-
cations from the base station, we expect that our approah can be embedded to the vehicle
and diagnose itself regarding the existence of faults during the flight. By extending our
study on detection performance improvement and examining computation overheads, we
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expect the proposed fault detection model to contribute to acquiring the benefits of UAV
in society.
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Austria, 24–28 October 2016; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

16. Iannace, G.; Ciaburro, G.; Trematerra, A. Fault diagnosis for UAV blades using artificial neural network. Robotics 2019, 8, 59.
[CrossRef]

17. Ciaburro, G.; Iannace, G. Improving Smart Cities Safety Using Sound Events Detection Based on Deep Neural Network
Algorithms. Informatics 2020, 7, 23. [CrossRef]

18. Zhou, Z.H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2018, 5, 44–53. [CrossRef]

https://doi.org/10.21227/00dg-0d12
https://doi.org/10.1184/R1/12707963.v1
https://doi.org/10.1184/R1/12707963.v1
http://dx.doi.org/10.1007/s11036-018-1193-x
http://dx.doi.org/10.1016/j.conengprac.2011.03.002
http://dx.doi.org/10.1109/TSMC.2013.2265083
http://dx.doi.org/10.1109/TSMC.2017.2681698
http://dx.doi.org/10.1109/ACCESS.2019.2924410
http://dx.doi.org/10.1145/2976749.2978388
http://dx.doi.org/10.3390/robotics8030059
http://dx.doi.org/10.3390/informatics7030023
http://dx.doi.org/10.1093/nsr/nwx106


Sensors 2021, 21, 2208 17 of 17

19. Park, K.H.; Park, E.; Kim, H.K. Unsupervised Intrusion Detection System for Unmanned Aerial Vehicle with Less Labeling Effort.
In International Conference on Information Security Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 45–58.

20. Sánchez, H.S.; Rotondo, D.; Escobet, T.; Puig, V.; Quevedo, J. Bibliographical review on cyber attacks from a control oriented
perspective. Annu. Rev. Control 2019, 48, 103–128. [CrossRef]

21. Xia, M.; Li, T.; Liu, L.; Xu, L.; de Silva, C.W. Intelligent fault diagnosis approach with unsupervised feature learning by stacked
denoising autoencoder. IET Sci. Meas. Technol. 2017, 11, 687–695. [CrossRef]

22. Whelan, J.; Sangarapillai, T.; Minawi, O.; Almehmadi, A.; El-Khatib, K. Novelty-based Intrusion Detection of Sensor Attacks on
Unmanned Aerial Vehicles. In Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks,
Alicante, Spain, 16–20 November 2020; pp. 23–28.

23. Khan, S.; Liew, C.F.; Yairi, T.; McWilliam, R. Unsupervised anomaly detection in unmanned aerial vehicles. Appl. Soft Comput.
2019, 83, 105650. [CrossRef]

24. Keipour, A.; Mousaei, M.; Scherer, S. Alfa: A dataset for uav fault and anomaly detection. Int. J. Robot. Res. 2020.
25. Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In JMLR Workshop and Conference Proceedings, Proceedings

of the ICML Workshop on Unsupervised and Transfer Learning, Bellevue, WA, USA, 2 July 2011; JMLR Proceedings: Fort Lauderdale,
FL, USA, 2012; pp. 37–49.

26. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375
27. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
28. Medsker, L.R.; Jain, L. Recurrent neural networks.Recurrent neural networks. Des. Appl. 2001, 5, 213–215.
29. Oubbati, O.S.; Atiquzzaman, M.; Ahanger, T.A.; Ibrahim, A. Softwarization of UAV networks: A survey of applications and

future trends. IEEE Access 2020, 8, 98073–98125. [CrossRef]

http://dx.doi.org/10.1016/j.arcontrol.2019.08.002
http://dx.doi.org/10.1049/iet-smt.2016.0423
http://dx.doi.org/10.1016/j.asoc.2019.105650
http://dx.doi.org/10.1109/ACCESS.2020.2994494

	Introduction
	Literature Review
	Rule-Based UAV Fault Detection
	Fault Detection with Supervised Learning
	Fault Detection with Unsupervised Learning

	Proposed Methodology
	Dataset Acquisition
	Description
	Ground Truth Confirmation

	Feature Selection
	Feature Engineering
	Feature Scaling
	Timestamp Pooling

	Fault Detection Model
	Autoencoder
	Encoding Phase: Learning the Pattern of Safe States
	Thresholding Phase: Fault Detection


	Experiments
	Experiment Takeaways
	Evaluation
	Fault Detection on the Flight without Recovery Measures
	Fault Detection on the Flight with Recovery Measures
	Analogy

	Discussions
	Improving the Fault Detection Performance
	Computation Overhead on Real-World UAVs
	Comparative Analysis with the Prior Studies

	Conclusions
	References

