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Abstract: Urban rail transit (URT) systems are often regarded as the backbone of their respective city.
The evolutionary features of URT systems have attracted much attention in recent years, but their
evolution and their distinct function in contrast to other transit modes have seldom been investigated,
especially quantitatively from the perspective of work–residence separation. Accordingly, we propose a
framework for exploring the evolution of URT topological networks and demand-weighted networks,
comparing the different impacts of all transit modes on work–residence separation. In this study, a URT
passenger flow assignment model was formulated on the basis of travel cost function and an improved
logit model was proposed that takes into account the heterogeneity of passengers. This model was used
to generate a section load, which is regarded as a weight and able to reflect the residents’ demand for
travel by URT. Then, the fractal dimensions for a non-weighted network and demand-weighted network
are proposed and their indications for transportation explained. Finally, the Beijing Subway System
(BSS) is used as a case study by employing fifty years of network data and ten years of smart card data.
Using fractal approaches, the different characteristics illustrated by the two networks were investigated
and the reasons behind the observed patterns explained. In addition, the spatial features of the rail
network, in terms of fractal indictors, were compared with population distribution and urban mobility
for all modes, extracted from phone data as a proxy. Thus, the relationship between the residents’ travel
demand and traffic supply can be revealed to some extent. The main finding of this work is that demand
must be taken into account when analyzing the fractal features of a transport network, lest the demand
side be separated from the supply and important issues missed such as inconsistencies between demand
and supply. Additionally, the role of rail transit in work–home imbalance can be investigated in the
context of urban mobility for an entire city.

Keywords: urban rail transit; fractal approaches; improved traffic assignment model; spatiotemporal
evolution; travel demand and traffic supply

1. Introduction

Public transportation plays an important and indeed indispensable role in daily com-
muting in almost all cities [1–3]. Due to the saturation of ground transport, urban rail transit
(URT) systems are preferred by many metropolises to reduce traffic congestion because of
their high speed, large capacity, energy efficiency, and use of urban non-surface space [4–6].
Moreover, URT systems can promote the development of a city and even reshape urban
structure such as by enhancing or mitigating work–residence separation. The topological
network of URT systems and their coverage can be seen as the transportation infrastructure
supply from an urban planner’s point of view, with the network traffic flow of URT systems
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representing the demand side [7–9]. Increasing traffic demand drives the extension of
the URT system, with the new rail lines generating still further demand. The different
evolutionary features of topological networks and demand-weighted networks (topological
networks loaded by station and section demand) can reflect the supply–demand matching
level and the different stages of city growth. However, on a complex rail network, section
load cannot be easily retrieved because many Origin-Destination (OD) pairs have more
than one reasonable path, and different passengers may prefer different paths. To obtain
a relatively accurate section demand between two adjacent stations, a traffic assignment
model, often some type of multinominal logit model (MLM), is consistently adopted in
the literature, however, passenger heterogeneity is seldom considered. Furthermore, the
parameters used in the path choice model are normally calibrated against stated prefer-
ences derived from questionnaire data, which might not conform well to real life. Thus,
we used Bayesian inference as a more reliable alternative to the traditional questionnaire
survey method, with an Markov chain Monte Carlo (MCMC) algorithm used to improve
calculation efficiency. In terms of estimated sectional passenger flow, URT development
level has been well analyzed using fractal approaches.

There are several methods for evaluating the evolutionary features of a URT. As
the fractal approach is an effective way of describing fragmented anthropogenic objects
and obtaining scale-independent results [10,11], we used it to assess the evolutionary
features of a non-weighted URT network and a transit-weighted network. Fractal concepts
were proposed by Mandelbrot [10], and several definitions of fractal dimensions have
been introduced to describe fractality in a quantified way, with application to an urban
transport network following nearly a decade later. Benguigui [12] first identified the
fractal features of an urban transport network and carried out case studies on the London
Underground, Paris Metro, Moscow Metro, and Rhine Subway (Germany). Batty [13,14]
linked transport analysis to urban geography on the basis of fractal dimensions, after
which fractal approaches have been widely applied to different parts of cities including
the city center [15], the whole scope of a city [16], and conurbations [11]. Different modes
of transport have also been analyzed using fractal methods including traditional surface
transport [15], subway [16], and the whole public transport network. Several urban issues
are discussed in the research in relation to transport networks such as the complexity
and space filling capacity of urban transport networks [17], city morphology [18], and
the consistency of transportation and the built-up environment [19]. As this study goes
beyond these considerations, with fractal characteristics unable to be properly described
using only one fractal dimension, multifractals [19–21] were seen as an extension for
complicated fractal structures. The existing literature is devoted chiefly to the structure
of a transport network without demand on it, with no research addressing the fractal
features of a transit network for its entire life from both a topological network perspective
and a demand-weighted network perspective. In addition, fractal comparison has rarely
been made of an all-mode transit network with respect to work–residence separation
within a city. This study focused on the different evolutionary fractal features of a rail
topological network and a rail demand-weighted network. Various conclusions have been
suggested relating to the dynamic interactions between rail network development and
urban expansion. Moreover, the fractal dimensions of URT mode and all modes in Beijing
have been calculated to further explore the work–residence separation problem, which has
also seldom been addressed in the literature.

Then, a precise and reasonable traffic assignment model is used as the basis for
comprehensive analysis of fractal features. Traffic assignment is first introduced to the
urban surface network [22]. However, as URT use has increased, traffic assignment of
subway systems has drawn increasing attention. This study discusses improvements to
passengers’ generalized travel cost function, probability determination for path choices, and
calculation efficiency. To capture the passengers’ more complicated path choice behavior
in the real world, various stochastic factors and uncertainties have been introduced such
as passengers’ preferences [23], crowding or service level [24], and transport network
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familiarity. In recent years, research concentrating on the generalized cost function has
turned to passengers’ heterogeneity, with several assignment models proposed based on
passenger clustering [25,26]. However, the socioeconomic attributes of passengers are
hard to access, constraining further investigation of the stochastic assignment method.
Fortunately, thanks to the widespread use of automatic fare collection (AFC) systems
in URT systems, abundant travel information recorded in smart card data (SCD) can be
collected. Furthermore, passengers’ spatial and temporal attributes can be derived by
mining SCD. Accordingly, an improved traffic assignment model can be devised. Thus,
topic model was chosen to distinguish the passengers’ heterogeneity, with K-means used
to acquire passenger clustering for calculation of the path-chosen probability. As dynamic
traffic assignment for the URT system requires high levels of accuracy and efficiency, an
effective machine mining method, Bayesian inference [27,28], was adopted to calibrate the
parameters of the utility function. Moreover, the passenger attributes already discussed
could be used as the input data to differentiate parameter calibration for each passenger
clustering. When assessing data of large scale and computational complexity, the MCMC
algorithm is selected for its efficiency and accuracy [29].

A public transportation system, especially in big cities, always contains multiple modes.
Thus, a single trip could comprise several modes of transport trip–leg. In this study, we
further investigated the ways in which URT affects city structure and the different roles that
URT systems play in thee spatial imbalance of workplaces and residences, compared with
the overall mobility of a whole city. Distinct characteristics of different modes determine
the attraction of different passengers to each mode and also reveal or even affect the city’s
urban structure in different ways. However, because quantitative measures are rarely devoted
to investigating this issue, it should be enlightening to compare the travel features of rail
riders using the fractal dimensions of a demand-weighted network, in contrast to that of
urban mobility as a whole. To this end, mobile phone base station data were used as a
proxy for population distribution and whole-city mobility, serving as a benchmark against
which to reveal the distinct features of the rail transit network and its effects on urban
development. The main contributions of this study are as follows: (i) An improved traffic
assignment model that takes into account the spatiotemporal characteristics of passengers
is introduced. (ii) A fifty-year time span fractal analysis of a rail topological network and
a ten-year time span fractal analysis of a demand-weighted rail network are carried out,
revealing long-term evaluation patterns of a rail network with or without passenger load. (iii)
A comprehensive investigation of fractal features for rail transit in Beijing from the perspective
of work–residence separation is provided, allowing assessment of the dynamic interaction
between transportation infrastructure supply and urban growth.

The remainder of this paper is organized as follows. In Section 2, the proposed method
is formulated. In Section 3, the materials and methods for this study are described, a case
study presented, and results and findings analyzed and discussed. Conclusions and future
work are discussed in Section 4.

2. Materials and Methods

In this section, the AFC system and mobile phone data are briefly introduced, and the
fractal dimensions are presented in detail. In particular, the URT passenger flow assignment
model was formulated to classify URT passengers, revealing thee residents’ travel demand
by URT and pointing to the evolutionary rule of BBS.

2.1. Automatic Fare Collection (AFC) Systems

The automatic fare collection (AFC) systems are an important part of URT, which can
not only provide passengers with convenient, humanized services such as a quick and
easy ticket checking process, but also providing operators with an automatic management
platform containing ticket production, ticket sales, ticket inspection, financial, statistical
analysis, audit and other functions. As displayed in Figure 1, a typical AFC system consists
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of five hierarchical levels: AFC cleaning center (ACC), line computer (LC), station computer
(SC), station level equipment (SLE), and smart cards and tickets.
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The smart ticket and card contain an integrated circuit (IC) clip (a type of microsensor)
inside, so if a passenger touches a smart ticket or card to a turnstile when boarding or
alighting, the sensor in the turnstile will record and respond some necessary information
such as card code, boarding/alighting station, boarding/alighting time, and some other
useful information. Then, this information will be transmitted to the SC, LC, and finally to
the CC. Meanwhile, the AFC data do not contain the passenger’s private information such
as passenger’s name, age, occupation, etc. Therefore, this does not invade people’s privacy.

The AFC system can not only be employed by operators to calculate the fares from
passengers directly, but the massive data collected by AFC system can also help researchers
to detect the urban mobility structure and travel demand of residents.

2.2. Mobile Phone Data

The mobile phone data applied in this paper contained two types of datasets. The first,
which presents ODs between different geographic coordinate points at different times for a
single day, contains detailed information about the individual passengers’ trips including
time, latitude and longitude of origin, latitude and longitude of destination, and ODs. The
second presents the numbers of people per geographic points at different times on a single
day including accurate time, latitude and longitude of geographic coordinate points, and
numbers of people.
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2.3. Fractal Dimensions
2.3.1. Volume Dimension

Along with economic and urban development, urban mobility demand fluctuates
around a certain value in a period [30]. In a circular area of radius r, load level in a
topological network and in a demand-weighted network can be defined, respectively, by

S(r) = CS ∗ rDS (1)

V(r) = CV ∗ rDV (2)

where S(r) and V(r) represent the number of stations and their total demand, respectively,
within the area of radius r; CS and CV are constant coefficients; DS and DV are the station
dimension and volume dimension using the fractural method, respectively.

The volume dimension DV depicts the supply level change from the city center to
the surrounding areas. Using the derivative transform, the spatial attenuation formula for
demand-weighted network volume is obtained by

ρ(r) ∝ rDV−d (3)

where d is the Euclidean dimension d = 2. If DV < 2, the density distribution of trans-
portation supply decreases from the city center to the suburbs, with capacity decreasing
gradually. If DV = 2, the distribution of capacity is homogeneous. If DV > 2, the network
has a heterogeneous density distribution, which is common in multicenter cities.

For a detailed reflection of demand density distribution, inbound passenger flow and
outbound passenger flow are used to define the inflow volume dimension Din

V and outflow
volume dimension Dout

V , respectively,

Vin(r) = Cin
V ∗ rDin

V (4)

Vout(r) = Cout
V ∗ rDout

V (5)

where Vin(r) and Vout(r) are the cumulative flow volume in each circular area with radius
r of inflow and outflow, respectively.

2.3.2. Traffic Impedance Dimension

The sectional passenger flow and interstation distance can reflect the efficiency and
accessibility of a transport network. The distance dij between two stations i and j is
denoted as the real distance between two stations. The traffic impedance dimension in
terms of interstation distance Dd

I is defined in Equation (6), and the impedance dimension

represented by sectional flow D f
I is defined in Equation (7),

Id(r) = Cd
I ∗ rDd

I (6)

I f (r) = C f
I ∗ rD f

I (7)

where Id(r) is the cumulative interstation distance in each circular area with radius r and
I f (r) is the cumulative sectional passenger flow in each circular area of radius r.

Rail lines are normally bidirectional: upstream and downstream, both predefined.
For detailed description of flow direction, upstream passenger flow and downstream
passenger flow are used to define the upstream volume dimension and the downstream
volume dimension, respectively,

Vup(r) = Cup
V ∗ rDup

V (8)

Vdown(r) = Cdown
V ∗ rDdown

V (9)
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where Vup(r) and Vdown(r) is the cumulative flow volume in each circular area with radius
r of upstream and downstream, respectively.

2.3.3. Branch Dimension

Volume dimension DV represents the URT network’s capacity and the traffic impedance di-
mension’s accessibility. The connection relationship is fully represented by these two dimensions’
indicators, but because the development level of the network structure itself is not captured, the
branch dimension is introduced to describe the complexity of the network structure. The subway
lines can be divided into branches, with branch dimension DB defined as

B(r) = CB ∗ rDB (10)

where B(r) is the number of branches in the circular area described by radius r. The larger
B(r), the more branches of lines and the better the URT network supply.

2.3.4. Fractal Dimension Consistency Index

Passenger flow and the topological network interact in a URT system. To examine the
interrelation of topological structure and passenger flow, the fractal dimension consistency
index γ is chosen for quantitative analysis [31],

γ =

 1− |DS−Din
V |

Din
V

, DS ≤ 2Din
V

0, DS > 2Din
V

(11)

where DS is the station dimension and Din
V is the inflow volume dimension. The larger the

value of γ, the greater the consistency between the network supply and the demand of
passenger flow.

2.4. Subway Passenger Flow Assignment

To acquire reliable sectional passenger flow data, an effective dynamic traffic assign-
ment method is proposed that takes into account the passengers’ heterogeneity.

2.4.1. Passenger Clustering

The temporal and spatial characteristics of passengers are indicators of passenger hetero-
geneity and can be considered for passenger clustering. The temporal features are represented
by the travel days within a period for as long as possible considering data accessibility—at
least a month. Regular passengers can be selected by trip frequency. The spatial features
are characterized by spatial consistency based on the diversity of the station visited. The
proportion of the most frequent origins for each passenger can be calculated by

PR =
mi,max

∑n
i=1 mi

(12)

where mi,max is the travel time of the most frequently visiting origin station; n is the total
travel time of all origin stations for one passenger; and mi is the travel time for origin
station Oi. We took passengers with PR > α(α > 0) as regular travel passengers for the
following study.

For the regular travel passengers, a topic model and K-means were adopted for
further clustering. Like the irregular passengers, they were classified as one clustering,
with application of the clustering method not needed. First, the topic model was used to
calculate the probability distribution of travel regularity for each passenger. In this study,
each passenger can be regarded as a document containing a large number of words, which
reflect the characteristics of the passengers’ time of station entry such as Friday at 10 a.m.
The number of trips of passengers at different times indicates the corresponding topic,
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representing the probability of passengers’ preferring to travel at different times, whether
morning, midday, or evening. The formulas for the topic model are described as

z ∼ M(1, π) (13)

u|z ∼ M(D, βz) (14)

p(u) = ∑
z

p(z)
D

∏
d=1

p(ud|z) (15)

where z denotes the topic; π the proportion of topic distribution; M the polynomial distribu-
tion; D total travel frequency for one topic; and β weekly travel regularity distribution for
one topic; Equation (15) expresses the Expectation-Maximum (EM) algorithm and allows
calculation of π, β.

Based on the topic model, the probability distributions of each passenger for different
topics can be calculated, reflecting the probability distributions that correspond to each
passenger’s various travel time patterns. Then, the probability distribution of different
travel patterns of each passenger is taken as its eigenvalue, with the K-means algorithm
used to cluster passengers.

2.4.2. Passenger Travel Generalized Cost Function

Passenger path choices are affected by various factors, so that full consideration of
impact factors, and reasonable quantification of them, is essential to the path choice model.
We chose traveling time cost, interchange time cost, URT network familiarity, and degree
of congestion as the key factors. For one OD pair rs, for a passenger in class n, the set of
possible paths is Krs

n , with the total cost of path k expressed as

Drs
k,n = Crs

k,n + εrs
k,n

= γ ∑
l

Tl
rs,k + ∑

i
El,m

i,n + εrs
k,n

= γ ∑
l

∑ Tl
i,j ∗ δrs

ij,k ∗ (1 + Y(xw))+

∑
i

αn ∗ (ers
i,k)

βn ∗
(

wl,m
i,n + 0.5 ∗ fm

)
∗ ϕrs

i,k ∗ ηrs
l,k ∗ ηrs

m,k + εrs
k,n

(16)

where Crs
k,n is the quantitative cost, which consists of in-vehicle time ∑

l
Tl

rs,k and interchange

time ∑
i

El,m
i,n ; εrs

k,n is the stochastic cost error; and interchange time ∑
i

El,m
i,n comprises walking

time wl,m
i,n and waiting time 0.5 ∗ fm ( fm is the headway, and assuming most of the service are

regular). Walking time is obtained through field research, which is affected by station type,
differences in transfer mode, transfer distance, and transfer height, whereas waiting time is
calculated by headway, as obtained from the Beijing subway map. ers

i,k is the accumulative
interchange time of OD pair rs for path k at station i; αn and βn are the parameters needing
estimation; δrs

ij,k, ϕrs
i,k, ηrs

l,k, ηrs
m,k represent the affiliation relationship between sections or inter-

change stations or lines and path k, with a value of 1 indicating that the foregoing segments
belong to path k; and Y(xw) denotes the degree of congestion, producing the expression

Y(xw) =


0, xw ≤ pn

A
(

xw−pn
pn

)η
, pn < xw < pc

A
(

pc−pn
pn

)η
+ B

(
xw−pc

pn

)ψ
, xw ≥ pc

(17)

where xw is the actual load of each vehicle; pn is the number of seats; pc is the rated load
factor of each vehicle, when xw is smaller than pn, which means there are seats for all
passengers and the influence of congestion degree is 0; when xw is larger than pn and
smaller than pc, it means that the degree of congestion is a little high; when xw is larger
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than pc, it means that the degree of congestion is very high; A and η are the coefficients
for average level congestion (second situation), B and ψ are the coefficients for serious
congestion (third situation).

Perceived interchange time and path preference differ for different classes of passen-
gers. Combined with the subway operating parameters C, the time-allowable deviation
coefficient σ, the time coefficient in vehicle γ, the transfer time coefficient α, β and the
joint distribution of prior probability can be denoted as π(C, σ, γ, α, β), the conditional
probability as p(Γ|C, σ, γ, α, β) and the posterior probability distribution of each parameter
as π(C, σ, γ, α, β|Γ). By comparing actual time set Γ with the theoretical time for each
class of passenger, the parameters were calibrated step by step. The theory of Bayesian
inference [18,19] is denoted as

π(C, σ, γ, α, β|Γ) ∝ p(Γ|C, σ, γ, α, β)π(C, σ, γ, α, β) (18)

Assuming that all parameters are independent of each other, the posterior distribution
theoretical solution of each parameter could be represented as

π(C, σ, γ, α, β|Γ) ∝

∏
w∈W

(
∏

Γ∈Tw

(
∑

r∈Rw

h(Γ|r, C, σ, γ, α, β) fw(r|C, σ, γ, α, β)

))
× π(C)π(σ)π(γ)π(α)π(β)

(19)

With regard to the arithmetic solution of the posterior distribution, the large volume
of passenger flow data must be processed and several parameters calibrated. Accordingly,
the algorithm MCMC [20] was chosen as a time-saving and computerized capacity feasible
method. The MCMC algorithm comprises three stages: Metropolis–Hasting sampling,
Markov chain analysis, and error analysis.

2.4.3. Acquisition of Sectional Passenger Flow

Using the passenger clustering and parameter estimation method, passengers’ general-
ized travel cost function for each class of passengers was determined. Adopting MLM [32],
the choice of each effective path was determined as

prs
k,n =

exp
(
−θCrs

k,n/Cmin

)
∑p∈Kn

rs

(
−θCrs

p,n/Cmin

) k ∈ Kn
rs, n ∈ N (20)

where Cmin denotes the least cost among all the effective paths’ costs and θ is the network
familiarity level of the passengers.

Then, the passenger flow of each path f rs
k,n is estimated:

f rs
k,n = qrs

n ·prs
k,n (21)

Finally, the cumulative f rs
k,n is defined as the sectional passenger volume xa:

xa = ∑
r

∑
s

∑
k

f rs
k ·δ

rs
a,k (1) (22)

2.5. The Hybrid Model

The model combination of subway passenger flow assignment and fractal dimensions
was proposed to extract the relationship and evolutionary rule connecting the residents’
travel demand and traffic supply. The flow chart of this hybrid model is displayed in
Figure 2 and all variables are summarized in Table A1 (see Appendix A).
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3. Empirical Study
3.1. Data Collection

In this study, we used BSS smart card data to extract the urban mobility demand of
BSS. In addition, mobile phone location data were used to derive the proxy travel demand
for the entire city. Each of the datasets is described as follows.

3.1.1. BSS Smart Card Data

Six weeks of BSS smart card data recorded by automatic fee collection (AFC) systems
were collected for each year during 2009 to 2018. The data included smart card ID, entry time,
exit time, entry station, and exit station. Data were collected each day for the period from
5 a.m. to 11 p.m. The corresponding record numbers for each year are presented in Table 1.

Table 1. BSS data description.

Year Date Records

2009 14 December~20 December 33,589,115

2013 4 March~10 March 34,224,238

2015 21 December~27 December 33,458,698

2016 19 December~25 December 33,581,774

2017 18 December~24 December 32,478,975

2018 18 September~24 September 32,558,423

The AFC data utilized in this paper only contains passengers who use smart card and
does not contain other payments such as paper-ticket, NFC solutions, APP, etc. However,
the percentage of passengers using smart cards is different in different lines and different
stations, according to the data analysis results, which shows that the average percentage
of passengers using smart cards was almost 70%, which means that the AFC data can
reflect the general passenger flow of Beijing URT. Meanwhile, adopting AFC data may
underestimate passenger demand due to fare evasion in some cities [33], however, there are
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security and gate systems for each station in Beijing URT systems, and it is well-staffed, so
the number of fare evaders is low and cannot make a big difference to the research results.

3.1.2. Mobile Phone Data

BBS demand does not give the whole picture of urban mobility in Beijing. It is difficult,
if not impossible, to collect the data for all transport modes, but mobile phone data provides
an alternative. Mobile phone data for 10 August 2016, were collected and used in this study
to extract the entire travel demand in Beijing.

3.2. BSS Data Processing

The geographical subway lines and subway stations were acquired via the Baidu Map
API. The BSS network was visualized in the GIS platform via embedded vector plotting. When
processing AFC data, we found that some AFC data had errors such as missing some necessary
data, however, the number of these incorrect data was very small and could not influence the
research results. Therefore, we deleted these wrong data in the BSS data processing. Then,
boarding and alighting demand for each station were retrieved directly from AFC data. Using
the traffic assignment method, sectional passenger flow was also obtained.

Taking the BSS travel data from 29 February to 3 April 2016 as an example, passengers
who traveled more than six days in five weeks were regarded as regular travelers, who
accounted for nearly 80% of total passengers on weekdays and 60% on weekends. For
the spatial feature analysis, we took passengers with PR > 0.3 to be regular passengers
(accounting for 87.6%). Using the topic model, we calculated the probability distributions
of each passenger for nine topics, obtaining the results shown in Figure 3a. According
to Figure 3a, fewer than 1% of passengers covered only one topic, whereas the passen-
gers covering four topics were the most numerous; passengers covering all nine topics
accounted for 14%. The results show that almost all passenger travel was diverse and
related to multiple topics. Passenger clustering results using the K-means algorithm are
shown in Figure 3b, indicating that all passengers can be divided into seven clusters by
their probability distribution of different travel time patterns. Parameter estimations are
presented in Table 2. Using MLM, the demand for each section can be generated to allow
for application of the fractal model.

The geographical distribution of the sectional passenger flow is visualized in Figure 4a,
with fractal dimensions calculated using GIS and Oracle. Considering the BSS as an
undirected- and weighted-network, we applied the Dijkstra algorithm to calculate the
network’s shortest path length between each pair of stations from 2016 to 2018. Among all
stations, the lowest average shortest path length appeared at Tiananmen West Station and
was chosen as the center of all rings, as shown in Figure 4b.
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Sensors 2021, 21, 2179 11 of 21

Table 2. Parameter results.

Passenger Class γ αn βn θ

Class 1 0.90 1.53 3.97 4.45

Class 2 1.33 3.68 3.01 3.87

Class 3 1.16 0.79 1.72 3.51

Class 4 1.19 0.84 1.64 3.12

Class 5 1.21 0.42 1.85 6.85

Class 6 1.11 3.98 3.77 2.16

Class 7 1.15 1.87 2.66 1.88
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3.3. Fractal Analysis of BSS
3.3.1. Station and Volume

For the BSS, station dimensions, total volume, entry volume, and exit volume were
respectively calculated using Equations (1)–(10). Figure 5 shows ln(r) and ln(S(r)) for
different years, with the blue dotted lines denoting Beijing’s six ring roads.

This shows that the non-scale area is expanding from the inside of the third ring road
to the fifth ring road (points scattered along a straight line), consistent with increases in
station dimension DS (slope of the straight line) for the BSS network.

Figure 6 summarizes the volume dimension DV . All volume dimensions for each
year were less than 2, indicating that demand density decreased from the city center to the
suburb area, with demand commensurately lower in the suburbs than in the city center.
This points out that suburb area could become a focus of government urban planning in
the future such as tourist industry, breeding industry, etc.

The volume dimension DV in BSS was a bit lower than that of the London Under-
ground and Paris Metro (around 1.7) [12], indicating that they are at different stages of
development. We also observed a fluctuation in the indicators of the demand-weighted
network from 2009 to 2018, and the non-scale area within the fourth ring underlines a gap
between URT topology and rail transit demand.
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3.3.2. Traffic Impedance

Using the subway traffic assignment model and the OD matrix, we acquired the
section load of each link between each adjacent station pair including the upstream and
downstream flows. These sectional loads were incorporated in the dimension calculation.
Figure 7 shows the interstation distance D f

I .
An increasing trend of interstation distance without section load could be observed,

indicating that the accessibility of the whole network increases with time. Note that this
indicator was close to 2 within the fifth ring road, implying that the accessibility in the city
center was well developed in its network structure. The interstation distance dimensions
D f

I were all below 2 out of the fifth ring road, indicating that the density of the BSS network
decreased from the center to the suburbs.
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Taking into account the section load on the link produced the results shown in Figure 8,
which demonstrated the same trend but a lower dimension than without demand. Such a
result is common for a mono-centered city, in which the majority of demand is concentrated
in the center area.
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3.3.3. Branch Dimension

The branch dimension DB is used to evaluate the URT network’s development level.
The higher the branch dimension, the more complicated the network and the greater the
accessibility. Figure 9 shows the results for various years.

As revealed by ln(B(r)), increasing amounts of urban area are being covered by the
BSS, and the fractal characteristic is becoming more and more obvious with time, having
grown from 1.53 in 1987 to 1.86 in 2018.
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3.3.4. Fractal Dimension Consistency Index in BSS

Using Equation (11), Figure 10 shows the fractal dimension consistency index γ
for each year. The consistency index γ was close to 1, indicating that the supply of
transportation is strongly related to the demand of passenger flow. Furthermore, the
index increased monotonically before 2015, peaking in 2015 before hitting its low point in
2016. The locations of newly built subway lines contributed to this pattern. Before 2015,
construction of URT lines emphasized more than the city center. As the network matured
in the city center, the focus began shifting toward remote suburban areas, with as many as
three suburban lines opening at the end of 2015. The implications are twofold. First, these
lines attracted very low demand, with a large train headway, especially at their opening.
The low load level generates inconsistency between supply and demand. Second, these
lines increase the suburban accessibility, attracting more residents to downtown areas,
thereby increasing the spatial heterogeneity of demand. Thus, the consistency indicator
decreased in 2016. As newly opened suburban lines cultivated demand, and thanks to the
implementation of decentralizing policies in Beijing, residents even traveled to suburban
areas for work. These inconsistencies were mitigated as time passed.
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3.4. Analysis of Urban Travel Demand from Mobile Phone Data

Rail demand was used in the foregoing analysis, but is only part of the overall picture
of urban mobility. To further investigate the role of rail in the residents’ daily transport, we
must consider the whole picture. As collecting demand for all modes is quite difficult, we
used demand extracted from mobile phone data as a proxy. Taking 2016 as an example, we
estimated the population distribution of the whole city and derived travel demand using
mobile phone data.

As shown in Figure 11a, the urban population is distributed mainly outside the fourth
ring road at the start of morning peak, scattered along the subway lines. In contrast, at the
start of the evening peak, as shown in Figure 11b, the population is concentrated inside
the fourth ring road and distributed along the subway lines. Such observations indirectly
demonstrate that the BSS plays a major role in work–residence separation and has a strong
gathering and guiding effect on passenger flow.
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Figure 11. Population distribution (a) from 7 a.m. to 8 a.m. and (b) from 5 p.m. to 6 p.m.

Based on mobile phone data, Figure 12 shows ln(V(r)) for two peak periods in the
day, the morning (7–10 a.m.) and evening (5–8 p.m.) peaks. The volume dimension DV
from 8 a.m. to 9 a.m. was almost the same as from 9 a.m. to 10 a.m. The change rate of
the volume in the morning peak was faster than that of the evening peak, demonstrating
that the commuting period in the morning peak was more concentrated than that in the
evening peak. For the evening peak, ln(V(r)) increased gradually, demonstrating that the
residents returned to their dwellings after work within a longer time span.

The ODs derived from the mobile phone data could help directly demonstrate spatial
travel demand, revealing an evident trend of traveling from the outside city to the center of
the city. Figure 13 shows the corresponding geographical OD distributions for the morning
peak (7–10 a.m.).
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Figure 13. OD distribution in the morning peak, for (a) origin and (b) destination.

This shows that the origins were concentrated mainly in the suburb areas, whereas
the destinations were distributed mainly in the center of the city during the morning peak.

According to Figure 14, for the morning peak origin and evening peak destination,
the volume was similar to that of the population distribution. It can be inferred that
the morning mobility origins of most urban residents are in the home, regardless of
their occupation. Much as for the morning–evening comparison results of population
distribution, it can be concluded that the imbalance between employment and housing is
dramatic in Beijing.

We extracted urban resident distribution and traffic demand from mobile phone data.
Different transport modes play different roles in transportation supply, and their volume
dimensions should be compared from the perspective of fractal analysis.
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Figure 14. Volume dimension of mobile phone ODs.

3.5. Comparing BSS with Travel Demand Based on Mobile Phone Data

Figure 15 shows an obvious commuting pattern for subway passengers. Some typical
residential areas are evident in Figure 15a such as TianTongYuan, ShengMingKeXueYuan,
and XiErQi, and some work locations are identifiable in Figure 15b such as GuoMao,
DaZhiMen, and XiZhiMen.
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Figure 15. The density distribution of metro passengers (morning peak): (a) origin and (b) destination.

As Figure 16 shows, the volume dimension DV for morning peak origin and evening
peak destination in BSS was larger than that of the population and the total OD pairs
extracted from phone data. Furthermore, the volume dimension of the morning peak
destination and the evening peak origin was lower than that of the population and total
OD pairs. It can be concluded that subway-related mobility demand is more unbalanced
than the average level of all modes, as reflected in the phone data. Due to the rail service’s
speed, residents can choose to live far from their workplace, so that the subway system
actually increases work–home imbalance.
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4. Conclusions and Discussion

In this study, we proposed a fractal model with which to extract the relationship and
evolutionary rule connecting resident travel demand and traffic supply using multisource
data. We first presented a fractal model for addressing both the topologic network and the
transportation demand on it. These methods can be used to reveal the level of development,
volume capacity, accessibility, and consistency of the morphology network and the demand
network. To acquire the sectional demand that is the input for fractal analysis, we further
proposed a stochastic traffic assignment model based on passenger clustering. Using public
transportation network data for Beijing, China, we presented a detailed analysis based on
the proposed model. Furthermore, to investigate the role of BSS on overall urban mobility
in Beijing, we extracted the population distribution and OD data from mobile phone data.
We compared the fractal characteristics of a rail network with demand as a weight and the
fractal features of proxy urban mobility based on phone data. Our results show that the
transit network reveals more information than the topological network alone, especially in
the context of network development. Comparison of the results of BSS and of using phone
data as a proxy illustrates the role of rail transit in urban mobility. The main conclusions of
this study thus include the following:

i. Passenger flow is considered for comprehensive investigation of URT effectiveness.
Demand-weighted network analysis reveals more information about the evolution
of URT and its correspondence to urban mobility than a purely topological network.

ii. Non-scale area and self-similarity of the URT network in both the topological and
the demand aspects is seen in Beijing’s public transportation systems, along with a
nonlinear area in the log coordinates—namely, fractal degradation in the early years
of URT growth. In addition, for the topological network, nearly all of the fractal
dimensions is increasing. However, when demand is taken into account, irregular
fluctuations can be seen for some fractal dimensions, revealing inconsistencies in
URT demand and supply that offer network work planning insights unable to be
captured by pure physical network analysis.

iii. Using phone-based population distribution data as a benchmark, the travel pattern of
rail transit and its implications for urban mobility can be investigated and compared
through fractal analysis. Different transit modes have markedly different roles in
catering to commuting demand. URT normally plays a leading role because of its large
capacity and exclusive right of way, and it actually increases job–work separation.

Some other aspects could be further investigated in future studies including the
following: (1) The volume dimensions mentioned in this paper cannot depict the different
development levels of a network in various directions within one fractal unit. The box-
count dimension [34] could provide complementary descriptions for directional analysis
of URT and urban expansion. (2) The fractal dimension calculated at the city scale of
each transport mode is not accurate enough to provide detailed information or allow
further comparison. In this paper, we used the passenger flow density distribution of each
transportation analysis zone (TAZ) as supplementary information to offer additional detail,



Sensors 2021, 21, 2179 19 of 21

but the information provided by the density distribution is limited to use for comparison
with the fractal dimensions. Thus, calculation of fractal dimensions at the TAZ level could
be conducted in future studies.
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Appendix A

Table A1. Summary of all variables.

Variables Meanings

S(r) Number of stations

V(r) Cumulative flow volume

DS Station dimension

DV Volume dimension

Din
V Inflow volume dimension

Dout
V Outflow volume dimension

Vin(r) Cumulative inflow volume in each circular area with radius r

Vout(r) Cumulative outflow volume in each circular area with radius r

dij Distance between two stations i and j

Dd
I Traffic impedance dimension in terms of interstation distance

D f
I

Impedance dimension represented by sectional flow

Id(r) Cumulative interstation distance in each circular area with radius r

I f (r) Cumulative sectional passenger flow in each circular area of radius r

Vup(r) Cumulative flow volume in each circular area with radius r of upstream

Vdown(r) Cumulative flow volume in each circular area with radius r of downstream

Dup
V Upstream volume dimension

Ddown
V Downstream volume dimension

DB Branch dimension

B(r) Number of branches in the circular area described by radius r

γ Fractal dimension consistency index

Crs
k,n Quantitative cost

∑
l

Tl
rs,k In-vehicle time

∑
i

El,m
i,n Interchange time
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Table A1. Conts.

Variables Meanings

εrs
k,n Stochastic cost error

wl,m
i,n Walking time

fm Headway

ers
i,k Accumulative interchange time of OD pair rs for path k at station i

Y(xw) Degree of congestion

xw Actual load of each vehicle

pn Number of seats

pc Rated load factor of each vehicle

Γ Actual time set
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