
sensors

Article

Performance Evaluation of the Highway Radar Occupancy Grid
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Abstract: The quality of environmental perception is crucial for automated vehicle capabilities. In
order to ensure the required accuracy, the occupancy grid mapping algorithm is often utilised to
fuse data from multiple sensors. This paper focuses on the radar-based occupancy grid for highway
applications and describes how to measure effectively the quality of the occupancy map. The
evaluation was performed using the novel grid pole-like object analysis method. The proposed
assessment is versatile and can be applied without detailed ground truth information. The evaluation
was tested with a simulation and real vehicle experiments on the highway.

Keywords: occupancy grid; fusion; automotive; perception; evaluation

1. Introduction

Almost all automotive perception systems require a stationary representation of the
environment around the vehicle. One of the most popular modelling frameworks is the
occupancy grid map [1,2]. The occupancy grid is a multi-dimensional spatial lattice, where
each cell stands for an independent portion of space [3]. The task of this environmental
model is to calculate the probability that each grid cell is either occupied or free based on
sensor observations.

In the automotive perception software stack, the occupancy grid is an intermediate
step, which combines and accumulates sensor information over time and applies different
methods to filter noise. Based on the output grid, components such as localisation [4,5],
path-planning [6] and scene recognition [7,8] make decisions about future vehicle actions.

Both the development of the occupancy grid algorithm and the decision-making
process require a measure of quality for the computed grid maps. The evaluation of a map
is currently often carried out by visual inspection, leading to highly subjective results [9,10].
Another evaluation method for the occupancy grids is using cell-wise binary comparisons
with the reference maps [11–13]. This approach is useful in grid development; nonetheless,
it already contains a decision-making binarisation process, which may alter the results of
the assessment.

The third type of occupancy grid evaluation technique is the detection and monitoring
of specific grid object representations. This category of quality measurement is suited for
specific grid applications.

In the literature, there are metrics for object tracking [14] and for collision risk esti-
mation [15,16]. In the object extraction steps of these methods, the occupancy grid must
be carefully analysed and compared with accurate scene descriptions. This limits their
application to only well-described test scenarios or to precisely labelled experimental data.

The aforementioned methods of occupancy grid evaluation require accurate and
dense ground truth. The data collection and labelling will contribute to the overall cost of
algorithm verification. This article proposes a novel approach for grid object representation
that can be used with a sparse scene description. Moreover, the reference information used
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in the procedure can be easily obtained from an independent parallel perception setup,
thereby limiting the effort required for the implementation of new algorithm versions.

The occupancy grids can be applied to many environments and sensor setups. One
possible application is a radar occupancy grid for highway applications.

A highway is a high-speed, multi-lane road with separate carriageways for the two
directions of traffic, separated from each other by a dividing strip not intended for traffic.
The road does not have any level crossings with any other road, railway track, tramway
track or footpath and is reserved for specific categories of road motor vehicles [17]. Such
conditions lead to a restricted operational domain of perception systems in terms of
exposure to crossing vehicles or animals. This limits the region of perception interests only
to the front and rear road areas, which can be defined as a lateral corridor.

Radar sensors are commonly used for the realisation of intelligent transportation
systems to monitor, track and manage vehicular traffic on roads, and for the mapping and
localisation of vehicles [18–20]. In general the radar sensor guarantees a robust performance
for vehicle localisation, especially in adverse weather conditions (e.g., rain, snow or fog).
The type of radar varies according to the frequency band and the modulation method.
Among various radar sensors, in the series automotive applications only small millimetre
wave radar sensors are used due to their good performance capabilities and excellent price
competitiveness [21].

Despite the above advantages of previous works, radar detections may receive noise
from various sources; hence, in order to filter them, a decay method together with free
space determination must be involved. Free space modelling extracts information on
non-occupied space from sensor detections. It is commonly computed as a ray cast to the
detection. The other filtering method—decay—introduces the forgetting factor to the grid
map, enabling the efficient limitation of occupancy map overconfidence [22,23].

The main contributions of this work are therefore the design and analysis of an
occupancy grid evaluation method; we provide an overview of the filtering capabilities of
the algorithm. The proposed assessment method is able to work on sparsely distributed
ground truth information, and thus requires little labelling effort in order to compute the
map quality factors. Within the article, the proposed metrics are analysed in the context of
a simulation and a real-world setting.

Several types of occupancy grid filtering methods are presented in Section 2. In
Section 3, key performance indicators (KPI) are proposed and defined. The experimental
setup and simulation research methodology are presented in Section 4. The filtering
capabilities of the occupancy grid algorithm are examined alongside simulation data in
Section 5. The experimental results are described in Section 6. A summary and development
possibilities are given in Section 7.

2. Related Work

The occupancy grid algorithm commonly deals with heterogeneously noisy detec-
tions. Detection positioning uncertainty is a sum of multiple factors, such as different
transport delays of measurement messages; host positioning uncertainty; sensor mounting
inaccuracy; and finally, the detection accuracy itself. Each of these factors contributes to
the final detection representation on the occupancy grid. Moreover, the perception sensors
are vulnerable to type I errors (false positives), which results in reporting detections which
do not represent any real object.

In order to deal with this noise, the occupancy grid algorithm applies various filtering
methods. Firstly, in order to reproduce uncertainties, the algorithms develops different
sensor models. Free space determination minimises the impact of single-shot false posi-
tives. Finally, the probability decay might be applied to limit the overconfidence of other
filtering methods.
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2.1. Occupancy Grid Framework

The occupancy grid is a way to represent the environment around a vehicle, so it needs
the defined coordinate system of the host; in this case a derivative of the ISO 8855:2011
standard on vehicle dynamics is applied. Following this norm, a right-hand-sided occu-
pancy grid coordinate system can be defined. An example of the occupancy grid is shown
in Figure 1.

The environment’s representation on the grid is discrete, although the vehicle is
moving and turning in the real, continuous world. In order to eliminate discretisation
errors which would occur if the map were to be rotated, the host performs its motions
relative to the grid with a fixed orientation [24].

World
frame

y

x
z

y

x

z

Grid
frame

Vehicle
frame

Figure 1. Coordinate systems used to position the occupancy grid in the world frame.

Moreover, since the host may turn on the map, the occupancy grid has to be a square to
ensure constant representation of the area in front of the vehicle. This condition implicates
that the grid resolution in both dimensions is equal and cells are squares [25].

2.2. Sensor Modelling

Each occupancy grid input sensor has unique properties, which can be utilised to
extract more information about the environment. The sensor modelling part of the occu-
pancy grid algorithm aims to improve the accumulation procedure of transferring as much
information as possible from the detection model to the occupancy grid. The sensor model
has to take into account all types of uncertainties present in the occupancy grid. Usually in
the experimental setup, many uncertainty characteristics are not directly measurable and
the sensor model has to approximate the overall grid detection uncertainty, not only the
sensor parameters itself.

The modelling can be performed via forward or inverse sensor modelling. Forward
methods optimise the occupancy distribution based on accurate physical models of sensors.
This type of modelling requires a lot of computational power and is not considered in the
presented evaluation analysis.

The second type of modelling—the inverse sensor model—spreads the detection
point into the occupancy probability based on probabilistic distribution. This type of
representation is commonly employed in occupancy grid algorithms. Sensor models may
be differentiated based on the number of dimensions in which the distribution is computed.

The simplest and most widely utilised sensor model is the zero-dimensional hit-point
model (Figure 2a). Its distribution assigns full occupancy probability to the cell where the
detection is located, and no evidence to other cells. This model is widely exploited due to
its minimal computational and implementation requirements.

One-dimensional models approximate distribution in range or cross-range directions
only (see Figure 2b). This type is best suited for the sensors, where most of the occupancy
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distribution is allocated along the radial or axial lines. It offers medium computational
complexity, and the probability values might be computed with exact precision.

Two-dimensional probability models compute the occupancy distribution in Cartesian
or polar coordinates around the detection (Figure 2c). The probability value is usually
approximated as a Gaussian distribution with the constraint that the sum of all evidence
should be equal to the detection’s existence probability [22].

(a) (b) (c)

Figure 2. Types of sensor models: (a) hit point; (b) 1D model along the detection range direction; (c) 2D approximation of
detection uncertainty. Darker areas represent cells with higher probabilities.

2.3. Free Space Determination

Free space modelling exploits the fact that range sensor detections provide information
not only about the obstacle but also about empty areas along the space traversed by
detection. This determination is developed by casting rays to the detections. The traversed
space is then updated to increase the free space probability along the ray.

This type of filtering is extensively utilised for Lidar occupancy grids, where the
overall detection density is higher [26]. The ray casting technique in such application leads
to Moiré artefacts, or false free space determination.

This article implements the triangle ray casting method presented in prior research [27],
which solves the problem of artefacts by using a wider area for updates. Every cell in the
triangle ray is filled with the same value, thereby forming a uniform free space probability
distribution.

2.4. Decay

The third filtering option of the occupancy grid is the decay. It artificially diminishes
the evidence on the entire grid over time. The key limitation of sensor and free space
modelling is the simplification of many physical dependencies—the algorithm assumes
data completion and cell independence. During the process of integrating multiple pieces
of evidence, hidden dependencies are omitted. Consequently, the results quickly become
overconfident [22]. In order to deal with the problem, the exponential information decaying
procedure is applied. This increases the uncertainty of grid cells while preserving the
overall variance of the map. The exponential decay is described as:

p(t + ∆t) = (p(t)− 0.5) · e−
∆t
τ + 0.5 (1)

where p(t) is probability of the cell at time t; ∆t is the time elapsed between two decay
operations; and τ is the mean lifetime, i.e., the time after only ≈36.7% of the evidence
remains in the cell.

The behaviour of the decay depends on the update rate of the occupancy grid. The
example process of decaying for both occupied and free cells for various τ values is depicted
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in Figure 3. The decay always tends towards the most uncertain probability value which is
0.5 for the Bayesian inference method.
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Figure 3. Decaying process of the occupied cell with p = 0.9 (solid lines) and free cell p = 0.1
(dotted lines) for different mean lifetimes. The decay is applied with 10 Hz frequency.

The overconfidence of occupancy modelling may be handled using different methods,
other than the exponential decay mentioned above [22]. Nonetheless, in order to limit the
possible parameter space, the presented evaluation analysis covers only the impact of the
constant exponential decaying factor on the occupancy grid.

3. Definition of Key Performance Indicators (KPI)

The occupancy grid algorithm is a comprehensive solution which can be tuned to
the desired application by a plurality of calibration factors, ranging from grid size and
resolution, through to different sensor modelling possibilities and decay mean lifetime
adjustment. The development and tuning of the algorithm require reliable metrics to
measure the quality of the map.

A common approach for the evaluation of a map is visual inspection combined
with the algorithm’s expert knowledge. Nonetheless, this strategy often leads to highly
subjective results [9,10]. In order to enable the systematic validation of the occupancy map,
binary classification KPIs such as false positive rate, precision and recall are applied against
the reference ground truth map. Nevertheless, this classification can be performed only
when the ground truth is available. Determining complete ground truth for a stationary
environment poses major practical challenges. Such metrics can be conveniently applied in
the simulated scenarios [13]. Application of continuous classification KPIs, such as a map
score and covariance, also does not give satisfactory results [11]. As presented in [11], the
existing quality measures from robotics are not adequate for automotive applications. The
different goals in robotic and vehicle mapping limit the quality of an automotive map from
a robotic viewpoint.

Another approach for the evaluation of a grid map is the extraction of specific object
representations and validation of their quality. This approach was first proposed by [10] for
robotic applications. The procedure was extended into automotive applications by [15,16]
for collision risk estimation and by [14] for grid-based object tracking. Nonetheless, previ-
ous evaluation methods are applicable only for specific test drive scenarios.

The proposed assessment method is based on the extraction of specific grid object
representations. Landmarks used by the method should be common and easily distin-
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guishable from the surrounding occupancy. On highways, static objects such as barriers,
vegetation, signs and others can be captured on the grid if encountered.

The evaluation criteria are met for signs and guardrails, whose metal poles effectively
act as single scattering centres for radar. Those pole-like objects generate circular or elliptical
grid map representations, as presented in Figure 4 for signs, bollards or even guardrails.
For guardrails (Figure 4c), all the detections are reflected from the poles supporting the
guardrail, not from the railing itself, resulting in the characteristic dotted line of occupancy.

1m 1m 1m

(a) (b) (c)

Figure 4. Examples of the occupancy grid representations of highway pole-like objects with corresponding video frames:
(a) traffic bollard; (b) sign; (c) guardrail. The occupancy grid is generated using a single automotive-graded radar located in
front of the vehicle.

Other object representations also might be used as evaluation metrics for the occu-
pancy grid; however, they would require a complex assessment procedure. If the object
has a complicated shape (as buildings and vegetation do), the grid representation will be
different, based on the object’s angle of incidence. Moreover, arbitrarily shaped objects
might be subject to occlusions which make the assessments even harder.

The specifications of a pole and its representation make it an ideal candidate for the
evaluation reference point. The pole’s representation will be independent of the vehicle’s
relative direction. Furthermore, poles are one of the most common objects in the highway
environment. They are also clearly visible for other sensors, such as Lidars, which makes
the reference mapping easier.

The grid representation of a pole should preserve the number of objects from the
real world, limit their variance and maintain the object’s shape. In order to meet these
requirements, the pole-like object’s representation must be compact, circular and occupy
the finest space. These attributes are the basis of a KPI definition.
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3.1. Compactness

Compactness describes whether the pole’s image on the occupancy grid can be ex-
pressed as one solid and convex object. Compactness measures the density of a repre-
sentation and in image processing may be called the solidity of an object. A measure of
compactness can be obtained as a ratio of the object’s area to the area of a convex hull of
the object (2).

Compactness =
Area

Convex area
(2)

where Area is the number of occupied cells classified for the object and Convex area is the
number of cells which lie within the convex contour around the selected occupied cells.

For evaluation purposes, every updated cell is taken into account; the convex hull size
is computed over the measured pole representation area. Visualisation of this KPI measure
is presented in Figure 5a.

If the compactness of the representation is close to zero, the object is sparse. In this
case, it might be separated into multiple objects by clustering or contour algorithms. The
best value of compactness should be as close to 1 as possible. This KPI must use some
arbitrary threshold to identify the cell cluster and to compute compactness. Computation
of this KPI value is a validation check enabling further quality assessment.

(a) Compactness calculation schematic.
Black cells are occupied. In green is the computed
convex hull.

b

a

(b) Area and circularity (eccentricity) ellipse.
Blue lines mark major (a) and minor (b) ellipse axes.

Figure 5. Schematic visualisation of key performance indicators (KPI).

3.2. Area of Object Representation

KPI compactness measures an object’s area as a number of classified cells. Such area
approximation, however, does not consider individual cell probabilities and can be used
only for rough object validation and not for the estimation of the object’s variance.

The pole-like object representation on the occupancy grid plane is generated by
radar scattering centres located in the pole’s section. Hence, the grid object may be
approximated as a Gaussian distribution. The estimated pole variance is measured as the
area of distribution stretching over the σ range.
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The mean value of the Gaussian distribution is computed as a weighted centroid (3)
taking into consideration cell probabilities.

µw =

N
∑

i=1
(wi · xi)

N
∑

i=1
(wi)

(3)

where:
N —number of selected object’s cells;
wi—i-th cell probability;
xi —i-th cell coordinate.

Having a calculated mean value, the covariance matrix may be obtained. For area
and further circularity measurement, however, only the information about distribution
eigenvectors is required. Eigenvectors might be computed as weighted standard deviation
values in orthogonal directions (4). The angle of distribution orientation is found by
numerical optimisation.

σw =

√√√√√√√√
N
∑

i=1

(
wi · (xi − µw)2)

(M− 1)
M

N
∑

i=1
(wi)

(4)

where M is the number of cells with non-zero weights.
The approximated distribution area for given standard deviations is an ellipse with

major and minor axes equal to computed values (Figure 5b). The variance represents an
area of the ellipse stretching over the σ range (5).

Area of occupancy = π · σa · σb (5)

where σa is the standard deviation over the semi-major axis of the fitted distribution, and
σb is the standard deviation over the semi-minor axis. In order to minimise the pole-like
object representation spread, the variance value should be minimised as well. The KPI
value represents the area within 1σ level set representing only 68.27% of the object. In order
to cover at least 95.45%, the value should be multiplied by 4.

3.3. Circularity

The circularity factor describes how well the occupancy grid algorithm preserves
the shape of the pole-like object. The third KPI value is computed by measuring the
approximated Gaussian distribution’s eccentricity (6).

Circularity =

√
1−

σ2
b

σ2
a

(6)

The perfect circle eccentricity value is 0; thus, the circularity should be minimised to
get the best grid map quality.

4. Experimental Setup

The highway environment triggers a restricted set of use cases of automotive per-
ception. This type of road usually provides lack of cross traffic, good accessibility of HD
maps and accurate GPS positioning available in the open sky [17]. All these features may
simplify the automated vehicle system to perceive only the road corridor.

The occupancy grid depicts the entire surrounding area of the vehicle, so the KPI
values should not be measured in one point. As the grid accumulates information, the
best accuracy is expected near to the host or for the obstacles already passed by the host.
Depending on the algorithm’s application, various parts of the map have distinct evaluation
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priorities. For example, the front part of the map is crucial for planning modules to assess
the correct road situation.

In the highway environment, the area with short lateral distances from the vehicle
contains most of the relevant occupancy information. The evaluation focuses on the
front sensing segment of the map and analyses how the quality changes with variable
longitudinal distance from the vehicle.

The occupancy grid algorithm implementation was developed based on [23,28]. Grid
map size was selected as 150× 150 m with a cell resolution of 0.2 m based on previous
highway grid parameter reviews [25]. The sensor models were designed using dual
architecture, as presented in [27]. The occupancy grid vehicle was moved to the rear border
to ensure a minimum of 100 m of mapping in front of the vehicle.

The occupancy grid algorithm quality depends on multitude of parameters. To verify
whether the proposed assessment method is correct, the number of tunable criteria have to
be minimised.

The vehicle position and motion characteristics’ uncertainties have an impact on the
occupancy grid performance. To simplify error analysis, it is assumed that the host position
is known and accurate. This condition is trivial for simulations; however, to maintain it
also in the real world experiments, a high precision global positioning system (GPS) and
an inertial measurement unit (IMU) are used for the vehicle localisation.

In the automated vehicle, multiple radars were mounted to ensure full coverage
around the vehicle. Nevertheless, this article focuses only on the area in front of the vehicle,
thereby limiting the sensor set to only front sensor and simplifying the calibration set.
Besides that, the evaluation procedure might be applied also on the multi-radar occupancy
grid with the consideration of the synchronisation uncertainty.

The radar sensor used was an automotive grade frequency-modulated continuous-
wave radar sensor operating in millimetre-wave bandwidth. Radars available in the
commercial automotive market operate with around 50 ms update rates and produce on
average 60–150 detections (point targets) from the sensed field of view [29].

4.1. Simulation

In order to test the performance of the evaluation method under strictly controlled
conditions, a simulated scenario has been prepared.

The simulation has been designed using the Driving Scenario Designer toolbox available
in Mathworks MATLAB. The structure of the simulation was simplified to a minimum to
limit the calibration parameters and to optimise evaluation time. It mimicked the highway
scenario conditions: the host moved with a velocity of 30 m/s, which corresponds to
108 km/h, on a straight road. The only obstacles in the scenario were rectangular poles
with dimensions of 10× 10× 100 cm. One of these obstacles in the simulation view is
presented in Figure 6.

For testing purposes, the simulated vehicle was equipped with an ideal range sensor
with a 360◦ field of view. As the grid size was 150 m, the pole was present on the grid for
around 5 s (based on host velocity). The common radar sensor generated a detection scan
every 50 ms and the pole of size 10× 10× 100 cm was represented by 1–2 detections in
the scan. This means that a maximum of 100 detections can be collected and stored on the
occupancy grid from one sensor when driving near the pole.
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pole

(a)

(b)

Figure 6. Highway simulation with a single pole: (a) bird’s-eye view; (b) ego-centric view.

4.2. Real World Experiments

The experimental setup consisted of an automotive grade radar mounted on the front
bumper of the vehicle. The standard deviation of the reported detection’s position was
taken to be σr = 0.3 m for range and σφ = 1◦ for azimuth.

The experimental data were collected on a highway where the speed limit ranged
from 100–130 km/h. The vehicle position and motion parameters were obtained using
high precision GPS and an IMU unit. For evaluation purposes, small pole-like objects
were extracted from the occupancy grid by comparing the camera-captured images and
a satellite map of the area. For identified poles, KPIs were calculated. The results of the
evaluation are presented in Section 6.

5. Simulation Results

The ideal pole object after accumulation occupied up to two cells on the occupancy
grid (see Figure 7a). The generated ideal detections were used to simulate different noise
conditions with variance of the experimental sensor (σr = 0.3 m and σϕ = 1◦). In order
to imitate false positive readings, the confidence level of detections was lowered to 90%,
meaning that one detection could produce at least 0.9 occupancy evidence probability.
Due to the application of random detection spread on only around 100 detections, a single
simulation run might generate sparse distribution of the pole on the occupancy grid
(Figure 7b). In order to visualise the distribution of occupancy grid representation, the
simulations were repeated 10 times, and averaged results are depicted in Figure 7c. On top
of the accumulated data, the centroid and variance are presented in Figure 7d.



Sensors 2021, 21, 2177 11 of 22

1m

(a) Simulation with ideal input

1m

(b) Simulation with noised input

1m

(c) Ten simulations averaged

1m

Centroid
Variance

(d) Estimated Gaussian distribution

Figure 7. Occupancy grid representations of the pole using a simple hit point sensor model with
disabled filtering methods. Each snapshot presents the pole located laterally 10 m to the right side of
the vehicle, captured when the host was 10 m longitudinally from the pole.

5.1. Characteristics of the Occupancy Grid Data Accumulation

An occupancy grid accumulates incoming sensor data over time to compute the most
reliable estimate of the environment. The accumulation itself, however, may lead to over-
confidence of estimates and noise amplification. The accumulation only approach is useful
solely for noise level estimation and is used to verify how the defined key performance
indicators behave in different conditions.

The first experiments performed on the grid included disabled decay and free space
modelling, which uses a 0D (hit point) sensor model. The output pole images are presented
in Figure 7.

As the host moved towards the test pole, more data became available. The KPIs were
measured as a function of the longitudinal distance to the vehicle, highlighting the data
accumulation process.

The defined key performance indicators were first tested with several lateral pole
locations. This simulation aimed to measure whether the assessment can be applied to a
variety of pole-like object positions in the environment. The results presented in Figure 8
show similar behaviour for all lateral positions. The pole offsets were tested up to 25 m
laterally because most of the relevant occupancy grid information in the evaluated highway
scenario was limited to a ±25 m lateral corridor. This means that the presented framework
can be utilised for a range of lateral positions and the results will be comparable to each
other.



Sensors 2021, 21, 2177 12 of 22

The analysis of grid performance starts with the compactness metric. The value ranges
from 0.15 to 0.35, which means that the raw object representation is not compact (see
Figure 8a). The variance originating from noisy detections (σr = 0.3 m and σϕ = 1◦) results
in a representation surface of 1.5–2 m2. The result generated by ideal detections had a
variance of around 0.3 m2, which matches the grid discretisation error. The circularity of
the ideal object was estimated at 0.87 due to two-cell representation. Even without any
filtering, the estimated object variance slightly reduced closer to the vehicle, due to the fact
that as the range decreased, the azimuth noise declined and the object shrunk (Figure 8b).
For all tested pole positions, the circularity KPI was close to 1, which means that the object
was far from a circular shape (Figure 8c).
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(c) Circularity
Figure 8. The key performance indicators computed for the accumulation-only grid configuration. The scaling of this figure
is the same for all ensuing simulation KPI plots, for easier value comparison.

Various tested pole lateral positions did not show significant differences in KPI values.
As a representative example, the pole located 10 m laterally from the left side of the vehicle
was selected for further evaluation.

The following tuning procedure successively applied more filtering methods to ob-
serve changes in the KPI values.

5.2. Impact of the Sensor Modelling Type on the Pole Representation

The simulation experiments were performed on the same data as previous runs with
the sensor model configured to mimic sensor uncertainty values (σr = 0.3, σϕ = 1◦). The
KPI values represented as a function of a longitudinal distance to the vehicle are presented
in Figure 9.

Regarding grid snapshots for distinct types of modelling techniques (Figure 10), the
area of object representation increased significantly, which is also visible in Figure 9b. This
was an expected behaviour, because further filtering methods handle an indistinct pole
representation only if the pole image is compact. As presented in Figure 9a, the solidity of
the grid object was high for both 1D azimuth and 2D sensor models. Circularity values
for each model were still close to 1 meaning that the objects were far from circular (see
Figure 9c).

For the radar with specified uncertainty characteristics, both 1D azimuth and 2D
sensor models may be applied. Nevertheless, comparing 1D azimuth and 2D Gaussian grid
snapshots, the 2D sensor model delivered smoother results (Figure 10b,c. More complex
modelling utilised for the two-dimensional distribution can encode more information
in cell occupancy probabilities and may yield better results after further filtering steps.
Based on that observation, for the next parameter’s evaluation, the 2D probability model
was selected.



Sensors 2021, 21, 2177 13 of 22

0 20 40 60 80 100
Longitudinal distance to the pole, m

0

0.2

0.4

0.6

0.8

1

C
om

pa
ct

ne
ss

 o
f t

he
 p

ol
e 

re
pr

es
en

ta
tio

n

0D - point
1D - range
1D - azimuth
2D - Gaussian

(a) Compactness

0 20 40 60 80 100
Longitudinal distance to the pole, m

0.5

1

1.5

2

2.5

3

A
re

a,
 m

2

0D - point
1D - range
1D - azimuth
2D - Gaussian

(b) Area

0 20 40 60 80 100
Longitudinal distance to the pole, m

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
irc

ul
ar

ity
 o

f t
he

 p
ol

e 
re

pr
es

en
ta

tio
n

0D - point
1D - range
1D - azimuth
2D - Gaussian

(c) Circularity
Figure 9. The key performance indicators computed for the various sensor modelling approaches for the pole moving 10 m
laterally at a time. The scaling of this figure is the same as that of all other simulation KPI plots.

1m

(a) 1D Range

1m

(b) 1D Azimuth

1m

(c) 2D Gaussian
Figure 10. Averaged occupancy grid representations of the pole using different sensor models. Each snapshot presents the
pole located 10 m from the left side of the vehicle, captured when the host was 10 m away longitudinally.

5.3. Impact of the Free Space Determination on the Pole Representation

Free space modelling is intended to eliminate mostly false positives and sharpen the
vehicle’s immediate surroundings. The free space gain factor is defined as the maximum
value of free space probability assigned for cells updated in the free space determina-
tion process.

The free space simulation results are presented in Figures 11 and 12. Simulations were
launched with a 2D Gaussian sensor model for the pole moved by 10 m laterally. The free
space gain factor is represented in percent, which denotes how much of the evidence was
introduced for every ray cast. For example, a 2% gain means that in every fusion step the
probability of 0.49 was fused into the cell (7).

p(2%) = 0.5− 0.5 · 2% = 0.49 (7)

The KPI plots are split into two sections: Figure 11 depicts lower free space gains, while
Figure 12 represents higher gain values. For all tested free space factors, the compactness
value was close to 1, meaning that the object’s solidity did not degrade due to ray casting
(Figures 11a and 12b). The circularity value slightly increased with growing free space
gain, but the change was negligible (Figures 11c and 12c).
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The main impact of free space determination is visible in the variance KPI measure.
For the smaller free space gain, the estimated object area contracted (Figure 11b). The
higher free space gains, however, resulted in increasing object variance (Figure 12b). For
high-gain free space, even a single ray may disrupt the occupancy estimation and decrease
the peak value significantly, as presented in the snapshot in Figure 13c.

The estimated minimum variance of the object was observed between 2 and 5%
free space gains. The lower and higher gains resulted in larger pole representations, as
presented in the snapshots in Figure 13. As the optimal for the further evaluation, 2% gain
was selected.
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(c) Circularity
Figure 11. The key performance indicators computed for the set of lower free space probability gains for the pole moved by
10 m laterally per step with the application of a 2D Gaussian sensor model. The scaling of this figure is the same as that of
all other simulation KPI plots.
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Figure 12. The key performance indicators computed for a set of higher free space probability gains for the pole moved by
10 m laterally per step with the application of a 2D Gaussian sensor model. The scaling of this figure is the same as that of
all other simulation KPI plots.
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1m

(a) Ray casting with 1% gain

1m

(b) Ray casting with 2% gain

1m

(c) Ray casting with 10% gain

Figure 13. Averaged occupancy grid representations of the pole using different free space evidence gains with a 2D Gaussian
sensor model. Each snapshot presents the pole located 10 m from the left side of the vehicle, captured when the host was
10 m awawy longitudinally.

5.4. Impact of the Decay Factor on the Pole Representation

The simulations for the third evaluated filtering method—decay—were performed
similarly to previous ones. The decay factor is driven by the mean lifetime (λ) value. It is
estimated that the larger the λ, the slower the decay, which decreases probabilities.

The results for different decay factors show some interesting traits (see Figure 14). Inde-
pendently of decay mean lifetime, compactness was always preserved and remained high
(Figure 14a). As decay sped up, the area of the pole representation decreased (Figure 14b).
Decay, however, was only applied to decrease fusion overconfidence, and higher values
may result in object placement instability. This could be observed for λ = {0.1 s, 0.2 s, 0.5 s}:
the area plots are no longer monotonic with increasing longitudinal distance.
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Figure 14. The key performance indicators computed for the different values of decay mean lifetime for the pole moved by
10 m laterally.

Decay also decreases object representation eccentricity, leading to a significantly
improved circularity factor (Figure 14c). Nonetheless, for low mean lifetimes of λ =
{0.1 s, 0.2 s}, circularity plummeted to a value of 0.4 at a distance of 15 m from the vehicle.
The object snapshot became circular, as presented in Figure 15a; however, almost all
occupancy evidence was eradicated. This means that too fast of a decay may lead to the
removal of significant grid evidence.
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Slower decay factors λ ≥ 0.7 s also decrease the object representation area and
circularity, but in a more subdued manner. The KPI plots for those values are monotonous,
meaning that decay does not remove vital object evidence. The grid pole representation
snapshots are presented in Figure 15.

As the optimal decay for that grid setup, a value of λ = 0.7 was selected. This value
offers fair area and circularity reduction. The impact of the decay factor is still significant;
however, the output object is compact and can be easily extracted with minor variance, as
presented in Figure 15b.

1m

(a) Decay with λ = 0.2 s

1m

(b) Decay with λ = 0.7 s

1m

(c) Decay with λ = 2.0 s

Figure 15. Averaged occupancy grid representations of the pole using different decay mean lifetimes with a 2D Gaussian
sensor model. Each snapshot presents the pole located 10 m from the left side of the vehicle, captured when the host was
10 m away longitudinally.

5.5. Combination of Filtering Methods

Having analysed the impact of each filtering method, the final results may be pre-
sented. Figures 16 and 17 depict the simulated KPI values and snapshots of each selected
method’s parameters.

The unfiltered data presented in the snapshot in Figure 17a are characterised by low
compactness of the pole object representation. Visual analysis of the snapshots between
the unfiltered case and the grid with an enabled 2D Gaussian sensor model (Figure 16a,b)
shows that the measured variances of those two instances should be comparable. As men-
tioned before, however, the low solidity of unfiltered data impairs further KPI measures,
making them unreliable. The variance and circularity computations are applicable only if
the object representation compactness is close to 1.

The application of the 2D Gaussian sensor model makes the pole object representation
fully compact, although the estimated variance is high (Figure 17b). In order to lower the
discrepancy, the decay and free space determination methods were applied. Ray casting
with a gain of 2% decreases the pole area evenly for all longitudinal distances from the
vehicle. Conversely, decay with a mean lifetime of λ = 0.7 s rapidly lowers variance for
shorter ranges. Decay also lowers the circularity value, making the output pole more
circular (Figure 17c).

The combination of decay and free space determination yielded the lowest estimated
area of the grid object, reaching around 1 m2 at a 10 m distance (Figure 16b,c). The
circularity of the grid objects was around 0.85. These numerical results are closest to the
ideal object area of 0.4 m2 and its circularity of 0.87.

The application of combined filtering and decay methods lowers the occupancy
probability on the resultant grid. Nevertheless, reduced cell confidence does not mean
lack of occupancy grid quality. The ray cast and decayed snapshot presented in Figure 17e
reaches the occupancy probability value of 0.67. This level of confidence is enough for most
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decision-making processes. Moreover, computing the occupancy probability over cells
within the 1σ range, depicted as an ellipse, gives almost certain occupancy in this area.
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Figure 16. The key performance indicators computed for the simulation data for different variants.
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(e) Ray-casting 2% and Decay 0.7 s

Figure 17. Averaged occupancy grid representations of the pole using different filtering methods. Each snapshot presents
the pole located 10 m from the left side of the vehicle, captured when the host was 10 m away from the pole longitudinally.
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6. Experimental Evaluation

The experimental evaluation was performed based on the parameters tuned in the
various re-simulations presented in Section 5. The vehicle drove on a highway with an
average velocity of 25 m/s. In this scenario, multiple signs and bollards were selected
and evaluated. The measured KPI values from one sample sign are presented in Figure 18.
Snapshots of one of the poles for each variant are presented in Figure 19.
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Figure 18. The key performance indicators computed for the experimental data for different variants.
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Figure 19. Occupancy grid representation of the pole in the experimental data. The presented snapshots are raw grid data
without averaging.
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The experimental results show similar trends as in the simulation outcomes. The
initial hit-point-based occupancy grid exhibits a poor compactness value, invalidating the
variance and circularity scores for that variant. As presented in Figure 19a, it should not be
estimated as a Gaussian distribution.

The application of a 2D Gaussian sensor model makes the pole appear solid (Figure 19b),
but the variance is also high.

The addition of decay filtering decreases the area and makes the pole shape more
circular. Conversely, the ray casting itself can reduce the area of the object for closer ranges.
The combination of decay and ray casting yields the best results over the largest range of
distances. For distances closer than 40 m from the pole, the object representation had an
estimated area lower than 1 m2, and circularity reached 0.7 (see Figure 18b,c). These results
are close to the ideal object variance of 0.27 m2 and supersede the ideal circularity of 0.87.

The pole-like objects are not the only obstacles visible on the occupancy grid. A
larger part of the grid is depicted in Figure 20. The image presents a screenshot of a short
road-works section with high bollard concentration (Figure 20). The image from a web
camera serves as a visual reference only. In the initial hit point, occupancy grid detections
are scattered in the environment (Figure 20a). The proposed approach with tuned free
space and decay shows that false positives in front of the vehicle are filtered out effectively
(Figure 20b). Moreover, in the filtered output, two separate bollards close to the vehicle
may be separated, which cannot be done using the basic hit point approach (Figure 20d,e).

(a) (b) (c)

10m10m (d) (e)1m 1m

Figure 20. Experimental results for single radar occupancy grids: (a,d) hit point sensor model without decay and ray casting;
(b,e) decayed and ray-cast grid with the Gaussian 2D sensor model. Image (c) shows the vehicle surroundings captured by
the in-vehicle reference web camera.

7. Conclusions and Further Work

The occupancy grid algorithm is a powerful perception tool for modelling the envi-
ronment around a vehicle. Nevertheless, the required mapping quality cannot be achieved
without proper tuning (compare Figure 20a,b).
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This article proposes a novel evaluation procedure based on pole-like object represen-
tation. The landmarks required for the method to run can be easily accessed using other
sensors providing information about poles close to the vehicle (e.g., traffic sign recognition
from a camera or HD maps). The required accuracy and quality of ground truth informa-
tion are limited (constrained to object identification on the grid) and do not have to match
the grid representation perfectly. Future work might consider evaluation of the grid quality
against complex objects if the ground truth for them will be easily accessible.

Both simulation and experimental results show that the main occupancy grid filtering
capabilities can be tuned using the proposed framework. The quality was measured by
both visual inspection and three different KPI values describing the compactness, variance
and shape of the object. The simulation results show that proper sensor modelling ensures
the grid object’s compactness. Decay and free space determination help to reduce the
overall variance of the estimated objects. From the available parameter space, only selected
areas provide a stable occupancy grid. Both simulation and experimental results showed
that the lower free space probability and moderate speed decay improved the overall
occupancy grid quality.

The presented results are applicable so far to the front region of the occupancy grid
(covered by front sensor). The evaluation procedure must be applied to the multi-radar
occupancy grid with consideration of the synchronisation uncertainty to determine cali-
brations valid for the entire grid. The noise generation tool-chain takes into consideration
only detection noise with a zero mean property. Other types of uncertainties such as
host positioning uncertainty and sensor mounting misalignment should also be tested to
determine their influences on the grid map.

The proposed object representation approach to occupancy grid quality assessment
is a promising framework. The advocated evaluation method is based on the estimation
of continuous occupancy probability and is almost free of decision-making processes.
Moreover, it can be applied to any type of grid inference framework, whose representation
may be converted into occupancy probabilities, such as those dictated by the Bayesian
or Dempster–Shafer evidence theories. The procedure does not require full ground truth
knowledge, and object extraction may be performed by other sensors. Several types of
extracted objects can be defined for various applications and constitute a tool ensuring the
required quality of the occupancy grid mapping method.
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