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Abstract: Convolutional Neural Networks (CNNs) have been successfully applied in the medical
diagnosis of different types of diseases. However, selecting the architecture and the best set of
hyperparameters among the possible combinations can be a significant challenge. The purpose of this
work is to investigate the use of the Hyperband optimization algorithm in the process of optimizing
a CNN applied to the diagnosis of SARS-Cov2 disease (COVID-19). The test was performed with
the Optuna framework, and the optimization process aimed to optimize four hyperparameters:
(1) backbone architecture, (2) the number of inception modules, (3) the number of neurons in the fully
connected layers, and (4) the learning rate. CNNs were trained on 2175 computed tomography (CT)
images. The CNN that was proposed by the optimization process was a VGG16 with five inception
modules, 128 neurons in the two fully connected layers, and a learning rate of 0.0027. The proposed
method achieved a sensitivity, precision, and accuracy of 97%, 82%, and 88%, outperforming the
sensitivity of the Real-Time Polymerase Chain Reaction (RT-PCR) tests (53–88%) and the accuracy of
the diagnosis performed by human experts (72%).

Keywords: computer-aided diagnosis; COVID-19; deep learning; hyperparameter optimization

1. Introduction

The SARS-Cov2 pandemic has had a worldwide impact [1]. The quantitative Reverse-
Transcription Polymerase Chain Reaction (RT-PCR) is considered to be the gold standard
for diagnosing COVID-19 [2]. Studies show that initial RT-PCR and chest computed
tomography (CT) had comparable diagnostic performance in the identification of suspected
COVID-19 patients [3]. To minimize the potential risk of false-negative RT-PCR results,
chest CT can be applied for clinically suspected patients with this negative initial result [3].
The research in the area of computer-aided diagnosis for COVID-19 is of great importance.
Among the aspects to be investigated, the increment on the efficiency of the health system
in detecting and treating the disease is certainly one of them, during and after the pandemic,
as well.

Although there are several studies focusing on the use of deep learning to support
the diagnosis of COVID-19, as described in Section 1.1, there is still room to improve the
sensitivity of the detection of these methods in order to further reduce the number of false
negative test results and, consequently, increase the chance of successful detection and
treatment of the disease.

The novelty and contribution of this paper are an automatic methodology based on
deep transfer learning and hyperparameter optimization techniques on a publicly available
dataset of CT images for the computer-aided diagnosis for COVID-19.

1.1. Related Works

The use of deep learning in the analysis of medical images, mainly convolutional
neural network (CNN) architectures [4], has brought several advances in the area of
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radiology in recent times [5], efficiently performing tasks, such as diagnosis [6] and seg-
mentation [7]. However, other approaches have also been successful in supporting the
diagnosis of lung diseases, such as, for example, neuro-heuristic methods. Authors in [8]
use a neuro-heuristic method to build a model that is a fusion of two approaches: a neural
network that uses descriptors that are based on the spatial distribution of Hue, Saturation,
and Brightness values to pre-select images from the X-ray of sick patients combined with
a heuristic search to find the pixels that may represent degenerated tissues, reaching an
average accuracy of 79% for the selected dataset. Neuro-fuzzy methods are also used to di-
agnose lung diseases, as in [9], a work in which the authors developed a pulmonary nodule
classifier with 95% accuracy. The proposed classifier contains two sub networks: a fuzzy
self organizing network and Multilayer Perceptron (MLP) in a cascaded way. After the
lung tomography images go through stages of segmentation and enhancement based on
morphological operations, a feature vector is generated to be used as input to the fuzzy
layer, which generates a pre-classification vector that is given to MLP for classification.

Some works have already been developed to support the diagnosis of COVID-19 based
on tomography images. In [10], authors the propose a method that extracts textural and
statistical features from raw CT images and, then, only the best features are selected based
on an optimized genetic algorithm. The selected features are serially concatenated and
later classified while using the Naive Bayes classifier, achieving 92.6% accuracy and 92.5%
sensitivity for SARS-CoV-2 detection based on a public dataset with pneumonia chest
CT scans of 35 subjects diagnosed positive of COVID-19. There are also methods based
on deep learning [11,12]; however, there are still aspects to be improved. In [13] authors
proposed a method based on deep learning to detect COVID-19, community-acquired
pneumonia and second pulmonary tuberculosis on computed tomography images. They
achieved 95.61% sensitivity for COVID-19 using a two pretrained deep learning models to
generate features from computer tomography images, then fuse those features using the
discriminant correlation analysis (DCA) method.

1.2. Convolutional Neural Networks

VGG represents a family of very deep convolutional networks developed by the Visual
Geometry Group at Oxford University. A VGG net is commonly identified by the number
of layers that has trainable parameters. For example, the VGG16 [14] presents sixteen
layers. It is a network of great depth (16 weight layers) that uses an architecture with very
small (3 × 3) convolution filters. VGGs can be considered to be an evolution of classic CNN
networks, such as the LeNet-5 [4] and AlexNet [15].

Inception [16] is a CNN architecture that was developed by Google in 2013–2014. It
is inspired by an architectural concept, called network-in-network [17]. The unique com-
ponents of an Inception network are modules that look like small independent networks,
which are formed by parallel branches. This structure helps the network learn spatial
features separately, which is more efficient than learning them in unity.

ResNet [18] is a network that is based on an element known as residual block. With this
element, it was possible to build a network architecture with even more layers (for example,
101 weight layers).

DenseNets [19], or Dense Convolutional Neural Networks, are convolutional neural
networks that are composed of dense blocks. This type of architecture was proposed aiming
to have fewer parameters and higher accuracy when compared to previous architectures,
such as VGGs and Residual Networks [18].

1.3. Hyperparameter Optimization

The performance of a neural network is directly related to its training [20], a process in
which one seeks to learn the best parameters of the network that minimize a loss function,
given a set of sample data and their corresponding labels. However, before the execution
of the training process, some parameters must be established, such as the architecture of
the neural network, the learning rate, and the optimizer used.
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These parameters are known as hyperparameters and they are generally defined
by machine-learning engineers based on their empirical experience and intuition [21]
developed over time. To make the hyperparameter selection process more efficient, some
techniques have been developed over time, such as the Bayesian method [22] and random
search [23].

More recently, an optimization method, known as Hyperband [24], has been proposed.
This method defines hyperparameter optimization as a pure-exploration non-stochastic
infinite-armed bandit (NIAB) problem, a sequential decision problem, where, at each stage,
one out of infinite non-stochastic arms is pulled and a reward is obtained according to the
chosen sequence.

Hyperband has an approach that seeks to speed up random search through adaptive
resource allocation and early-stopping [24]. In the hyperband, each resource corresponds
to a hyperparameter to be optimized, such as the neural network architecture, number of
layers, or the learning rate allocated to randomly sampled configuration. Hyperband has
shown a performance of one order-of-magnitude greater than existing Bayesian optimiza-
tion methods.

2. Materials and Methods

This section describes the method for building a new artificial neural network to
support COVID-19 diagnosis based on Convolutional Neural Networks (CNN) [25] and
Hyperparameter Optimization [24]. The entire process of building the best diagnostic
model can be organized into three stages: data preprocessing, hyperparameters selection,
and hyperparameter optimization. At the end of this section, the dataset that was used in
the experiments to evaluate the performance of the proposed method is also described.

2.1. Data Preprocessing

Each tomographic exam has a specific number of slices. Each slice corresponds to a
different position of the tomographic scanner over the patient’s body, which represents
a different internal part of the body. In this work, during data preparation (i.e., the
preprocessing stage), the 10 more centrally positioned slices of each used exam were
selected to standardize the number of slices per scan, concentrating the training of the
network on the slices with the greatest potential to present pulmonary area.

When considering the pixel information, the original examination data represented in the
DICOM file on Hounsfield units (HU), it is initially quantified as visible image in 256 levels
of gray (grades or tones between white and black colors) using the CT lung window. More
specifically, a Window Width of 1500 HU and a Window Length of −600 HU are used.

When considering the spatial resolution, or the number of pixels, the original acquired
slices are resized to 224 × 224 pixels and normalized between 0 and 1 to adjust them to be used
as input to the network architectures that were selected for the hyperparameter optimization.

Moreover, the training data subset is submitted to an augmentation process when fed
to the training loop, to increase the size of the dataset and reduce overfitting [26]. In such
an augmentation process, each image is randomly flipped horizontally, and randomly
rotated in the range [−0.2 ∗ 2π, 0.2 ∗ 2π]. Figure 1 presents an example of the augmentation
process that is applied to the training data.
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Figure 1. Data augmentation: (A) original, (B) rotation, and (C) flipping.

2.2. Hyperparameters Selection

Before starting the optimization, it is necessary to select which hyperparameters will
be optimized. In this work, the new idea is to build a neural network to support COVID-19
diagnosis by chaining a backbone CNN network for feature extraction, followed by a set of
Inception modules, and two fully connected layers. In order to achieve the best training
results, four hyperparameters were selected to be optimized in the Hyperparameter Opti-
mization stage: the backbone architecture, the number of Inception modules, the number
of neurons in the fully connected layers, and the learning rate.

Four architecture options were selected for the network architecture. They have
been published recently (i.e., on the last six years) and they are available in the Keras
framework [27]. They are: VGG16 [14], ResNet 101 [18], DenseNet 121 [19], and Inception
V3 [28]. All of them have been pre-trained with Imagenet dataset [29].

Table 1 presents the number of backbone parameters of each of the architectures taken
as the backbone architecture hyperparameter, in this work.

Table 1. Convolutional Neural Network Architectures.

Architecture Number of Parameters (Backbone)

VGG16 14,714,688
ResNet101 42,658,176

InceptionV3 21,802,784
Densenet121 7,037,504

Although the Inception modules can present some structural variations, their original
structure, as introduced by [16] is that illustrated in Figure 2. The inception module is
the building block of the Inception network, with which it is possible, instead of choosing
a convolution with only one filter size, to concatenate convolution layers with filters of
different sizes: 1 × 1, 3 × 3, and 5 × 5. Our proposed architecture will also use inception
modules on the top of the backbone based on one of four architectures mentioned before.
A typical inception block consists of concatenating the output of a convolution layer with
a 1 × 1 filter, with the output of another layer with a 1 × 1 filter followed by a 3 × 3
layer, with the output of another 1 × 1 layer followed by a 5 × 5 layer, and finally a max
pooling layer followed by a 1 × 1 convolution. The 1 × 1 layers, also known as Network in
Network [17], work as a bottleneck before applying a convolution with a larger filter, such
as 3 × 3 or 5 × 5, without increasing too much the computational cost.

Another hyperparameter that was chosen for the optimization stage was the number
of hidden units, or neurons, of the two dense or fully connected layers, at the end of the
neural network. They come before a third and final dense layer with two units that perform
the classification with the softmax activation function. The former two dense layers receive,
as input, the features learned by the convolutional layers and improve the extraction of
other features to help in the image classification task.

The learning rate is the fourth hyperparameter to be adjusted. It corresponds to the
step size, which was used by the optimization algorithm to converge the loss function to a
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minimum value. A low learning rate can take a long time for the algorithm to converge,
while a high learning rate may not lead to the ideal minimum value.

Figure 2. Inception Module.

2.3. Hyperparameter Optimization Stage

One of the main practical problems experienced in any Deep Learning project is
discovering the ideal combination of hyperparameters that minimize or maximize the
objective function [30], considering the different topologies of neural networks that are
available today. Creating a static search space can be a significant challenge if we consider
the large number of parameters combined.

We adopted a framework, called Optuna, to perform the optimization with the Hy-
perband method and test different combinations of hyperparameters [31]. Optuna is an
open-source optimization framework, which allows for us to write complex Deep Learning
experiments quickly, efficiently, imperatively, and dynamically.

There are different optimization software, but the following aspects were considered
when choosing Optuna: (i) open-source software; (ii) Python language; (iii) dynamic search
space; (iv) light enough to run on notebooks—Jupyter Notebook; (v) distributed computing;
(vi) web interface (dashboards); and, (vii) implementation of the Hyperband method.

Optuna is organized into several modules, including Study, Storage, Trial, Sampler,
and Pruner. The Study module is responsible for managing the value of the objective
function for the best set of hyperparameters found, and controlling the optimization
method (Hyperband) and number of tests to be performed (Trial).

The objective function and the search space containing the hyperparameters, backbone
architecture, the number of inception modules, the number of neurons in the fully connected
layers, and the learning rate were previously defined to be used by the Study module.

The Trial module is responsible for monitoring the value of the objective function and
the set of hyperparameters managed by the Study module. In addition to this responsibility,
the Trial module sends information regarding the hyperparameter sets and the values of
the objective function to be stored in the Storage module. This module can store the results
in memory or disk, enabling future recovery.

The Sampler module performs the sampling process of the hyperparameters. The Pruner
module is responsible for pruning and stopping the tests based on their intermediate values
and the previous values that were reported by the Trial module to the Storage module.

In this way, we were able to search for the best hyperparameter configuration, when
considering the objective function defined above and the hyperparameters of interest, re-
sulting in the following configurations: VGG16 based convolutional network, five inception
modules, 128 neurons in two fully connected layers, and a learning rate of 0.0027.

2.4. Dataset

In order to perform the experiments, three public datasets with chest computed
tomography (CCT) exams were combined to build the used dataset with 2175 scans,



Sensors 2021, 21, 2174 6 of 11

in which 856 present diagnosis of COVID-19 and 1319 are of non-COVID-19 cases. It is
worth mentioning that part of the non-COVID-19 samples are not of normal cases, which
is they can present CCT with other diseases, such as fibrosis or lung cancer, which are not
the focus of this work.

The first dataset is the MosMedData [32], from which 1110 scans were obtained. These
exams are from patients distributed in five categories, according to the involvement of the
lung area. The first category, with 254 scans, only contains cases that present normal lung
tissue with no CT-signs of viral pneumonia. The other four categories, with 856 scans, are
cases of COVID-19 with different degrees of severity. In this work, all four categories were
labeled as COVID-19 cases.

The second used dataset was obtained from the LUNA16 challenge [33], which con-
tains 888 chest tomography exams with lung nodules. These scans were labeled as non-
COVID-19 in the context of this work.

Finally, the third set of data included in our dataset is the one built for the challenge
that was promoted by the Open Source Imaging Consortium (OSIC) [34]. This dataset
presents 177 chest CT scans from patients with fibrosis. These scans were also labeled as
non-COVID-19 in the context of this work.

Table 2 illustrates how the dataset of the testing stage of the proposed method is composed.

Table 2. Number of computed tomography (CT) Scans by Source dataset.

Class MosMedData LUNA16 OSIC Total

COVID 856 0 0 856
non COVID 254 888 177 1319

The scan slices of the entire dataset are split into three subsets: training, validation,
and testing. The division is based on a proportion of approximately 70, 10, and 20 percent,
respectively. The result of this division can be seen in Table 3. The data split process was
carefully performed to avoid the data leakage problem, in which data from outside the
training dataset are used to create the model. In this way, no slice of the training subset
belongs to an exam that is present in the test and validation subsets.

Because the total number of scans without COVID-19 is greater than the number with
COVID-19, it is necessary to balance these sets to avoid bias to the majority class during
training and to use an equitable set also for validation and testing. In the training data,
3380 COVID-19 slices are selected at random and then duplicated to be in the same quantity
as the non-COVID-19 slices.

Table 3. Number of Slices After Training, Validation, and Test Split.

Subset COVID non COVID Total

Train 6020 9400 15,240
Validation 840 1230 2070

Test 1700 2560 4260

It is significant to note that each duplicated image will go through the data augmen-
tation process before the training, as described in Section 2.1. Thus, during the training
phase, the CNN will be fed with randomly augmented images instead of identical copies.

In the validation subset, 390 images of slices of non-COVID-19 scans are discarded at
random to match the number of images with COVID-19. With the same goal, 860 slices are
removed at random from the test subset.

Table 4 shows the final distribution of the three subsets that were used in the tests and
their respective proportions, after oversampling train duplicating some of its samples and
undersampling test and validation deleting some of its samples, as described above.
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Table 4. The Number of Slices Used for Training, Validation and Test.

Subset COVID non COVID Percentage

Train 9400 9400 79 %
Validation 840 840 7 %

Test 1700 1700 14 %

3. Results
3.1. Baseline Model

A convolutional neural network was trained without hyperparameter optimization
to be used as a baseline model in order to better evaluate the benefit obtained by using
Hyperband for COVID-19 classification on chest computer tomography. Later, the baseline
results will be contrasted to the model trained using the best hyperparameter configuration
found by Hyperband.

The network chosen for the baseline is a CNN that uses VGG16 backbone with
Imagenet weights for extracting features, a dense layer of 256 neurons at the top, and a
learning rate of 0.001. Rather than choosing a simple convolutional network with few
layers for the classification task, a VGG16 was chosen, a network that has 16 layers and a
backbone, for transfer learning. The VGG16 backbone, the core layers that are responsible
for extracting the features from the images, has approximately 14 million parameters.

In short, the baseline network architecture chosen for the backbone, in itself, already
produces an excellent performance in the COVID-19 chest CT classification task.

The baseline method produced an accuracy of 87%, and COVID-19 classification
sensitivity of 94%. Table 5 presents the results of the classification performed by the
baseline model in the test data.

Table 5. Baseline Results.

Class Precision Sensitivity F1-Score Accuracy

COVID-19 0.82 0.94 0.88 0.87Non COVID-19 0.93 0.79 0.86

3.2. Best Parameter Configuration

The method that was proposed in this article creates an artificial neural network
(ANN), while using hyperparameter optimization, presenting a sensitivity of 97%. The pro-
posed ANN architecture reached an accuracy of 88%, COVID-19 sensitivity of 97%, and F1-
Score of 89%. It is based on the following four hyperparameters that were selected during
the HPO phase: VGG16 [14] base convolutional network, five inception modules [16],
128 neurons in the two fully connected layer, and a learning rate of 0.0027. Table 6 shows a
summary of the results that were obtained in the tests using these hyperparameters.

Table 6. Best Hyperparameters Configuration Results.

Class Precision Sensitivity F1-Score Accuracy

COVID-19 0.82 0.97 0.89 0.88Non COVID-19 0.96 0.79 0.87

Figure 3 shows the confusion matrix of the test results, where it is possible to analyze
the number of true positives, true negatives, false positives, and false negatives.
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Figure 3. Best Parameters Results Confusion Matrix.

The Gradient-weighted Class Activation Mapping (Grad-CAM) [35] is a technique
that involves superimposing a heatmap over the input images of the convolutional neural
network. This heatmap corresponds to a two-dimensional grid with the scores related to
a specific class, indicating how important each area of the image is for the classification
decision of that class.

Figure 4 shows a Grad-CAM visualization for the COVID-19 class with some images
from the test dataset. It is possible to notice that the areas with ground-glass opacities
and consolidations, typical findings in patients with COVID-19 [36], are highlighted in the
heatmap, as indicated by the red outline.

Figure 4. Class Activation Map Visualization.

4. Discussion

This work proposes a novel method to aid medical doctors in the diagnosis of COVID-19,
while using image processing and deep learning techniques, enhanced by hyperparameter
optimization [37], applied in the analysis of chest computed tomography (CCT) images.

As stated by [38], the sensitivity of RT-PCR was reported to be modest (53–88%).
At the same time, the human-level sensitivity and accuracy of CT are 97%, and 72%,
respectively [39].

The network that was designed by the method introduced in this paper achieved
82%, 97%, and 88%, respectively, on precision, sensitivity, and accuracy for the detection of
COVID-19. This demonstrated etter sensitivity than RT-PCR, considered the best test for
the detection of COVID-19 in the initial phase of the disease, and superior performance
to CT analysis undertaken by human specialists in specificity and accuracy. In addition,
the proposed use of hyperparameter optimization improved the baseline in all metrics.

The proposed approach is capable of making inferences in real-time, with low cost and
better sensitivity and specificity than manual methods. It is mainly based on Convolutional
Neural Networks (CNN) to classify CCT images [11].

By analyzing the Confusion Matrix, it is important to highlight the 97% sensitivity in
detecting actual COVID-19 cases (1,648 out of 1,700 test cases). Regarding the non-covid-
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cases, even though 359 cases were misclassified as COVID-19, most of these cases are not
normal and they present other diseases, such as fibrosis or lung cancer.

According to the Radiological Society of North America (RSNA) [40], the worldwide
shortage of radiologists is a crucial issue. Artificial Intelligence that is applied to medical
image analysis plays an essential role in the radiologists’ workflow. The artificial neural
network that was proposed by this work can be used by radiologists to support them in
the diagnosis of COVID-19, accelerating, and improving this process.

The techniques that were developed by this work can also be adapted and tested to
support the diagnosis of other lung diseases, such as tuberculosis and common pneumonia.

The proposed method already uses a smart combination of image processing tech-
niques and neural network architectures. However, other methods involving deep learning,
such as extracting features learned by convolutional networks as input to recurrent neural
networks [41,42], to take advantage of the temporal characteristic of tomography exams,
should be jointly studied and tested to produce a better classification.

The use of the cross-validation technique is important in evaluating machine learning
model accuracy. Although it requires higher computational costs, it is subject to less
variation, because it uses the entire training set; therefore, in future studies, we will focus
on this statistical method to improve the evaluation of our approach.

Additionally, as an evolution of the work, we will consider the evolution of the
technique to classify the cases of COVID-19 according to the severity of the case, which is
relevant information for the treatment of the disease.

5. Conclusions

A computerized technique is proposed in this work for the prediction of SARS-Cov2
disease from the CT scans. The method achieved high accuracy and better sensitivity
to COVID-19 (97%) when compared to the performance of human specialists and the
sensitivity that was accomplished by the methods presented in other papers.

Based on the performance of the proposed method, it can be used by radiologists to
provide a quick and effective diagnosis of the disease, reducing the impact of the high
severity cases on the healthcare system.
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