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Abstract: Semantic segmentation, which refers to pixel-wise classification of an image, is a fundamen-
tal topic in computer vision owing to its growing importance in the robot vision and autonomous
driving sectors. It provides rich information about objects in the scene such as object boundary,
category, and location. Recent methods for semantic segmentation often employ an encoder-decoder
structure using deep convolutional neural networks. The encoder part extracts features of the im-
age using several filters and pooling operations, whereas the decoder part gradually recovers the
low-resolution feature maps of the encoder into a full input resolution feature map for pixel-wise
prediction. However, the encoder-decoder variants for semantic segmentation suffer from severe spa-
tial information loss, caused by pooling operations or stepwise convolutions, and does not consider
the context in the scene. In this paper, we propose a novel dense upsampling convolution method
based on a guided filter to effectively preserve the spatial information of the image in the network.
We further propose a novel local context convolution method that not only covers larger-scale objects
in the scene but covers them densely for precise object boundary delineation. Theoretical analyses
and experimental results on several benchmark datasets verify the effectiveness of our method.
Qualitatively, our approach delineates object boundaries at a level of accuracy that is beyond the
current excellent methods. Quantitatively, we report a new record of 82.86% and 81.62% of pixel
accuracy on ADE20K and Pascal-Context benchmark datasets, respectively. In comparison with the
state-of-the-art methods, the proposed method offers promising improvements.

Keywords: computer vision; convolutional neural networks; deep learning; pixel-wise classification;
semantic segmentation

1. Introduction

Image semantic segmentation, which corresponds to pixel-wise classification of an
image, is a vital topic in computer vision. It provides a comprehensive scenery descrip-
tion of the given image, including the information of object category, position, and shape.
Semantic segmentation has an extensive array of applications ranging from scene under-
standing to self-driving cars and robot vision. Early methods that relied on hand-crafted
feature extraction have been quickly superseded by deep learning technology [1]. The
breakthrough of deep learning on various high-level computer vision tasks such as image
classification [2,3] and object detection [4,5] has motivated computer vision scholars to ex-
plore the capabilities of such algorithms for pixel-level labeling problems such as semantic
segmentation. The key advantage of deep learning approaches over the traditional one
is their ability to learn rich representations for the problem at hand, i.e., automatic pixel
labeling of an image in an end-to-end fashion instead of using manual feature extraction,
which normally requires domain expertise and often too much fine-tuning to make them
work in a particular scenario. Adapting convolutional neural networks (CNNs) for the task
of semantic segmentation allows us to obtain rich details of object categories and scene
semantics in an image.
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Recent state-of-the-art methods employ an encoder-decoder structure for image se-
mantic segmentation. The encoder part is a fully convolutional network (FCN) used to
extract features at different resolutions. The decoder part, which is often termed as a
“deconvolution”, is used to gradually upsample the feature maps obtained by the encoder
into a semantically segmented output image. The FCN proposed by Shelhamer et al. [6]
is arguably the first deep learning model designed for the task of image pixel-wise clas-
sification. The network is adapted from previous image classification networks such as
AlexNet [7], VGGNet [8], and GoogLeNet [9]. The FCN replaces the last fully connected
layers of image classification networks with convolutional layers to build an end-to-end
trainable architecture for semantic segmentation. The network is able to take any arbitrary
input image size and produce a predicted image with a resolution that corresponds to
the size of input image. SegNet [10] uses FCN as an encoder and introduces a trainable
decoder to gradually upsample feature map(s) obtained in the encoder part. Detailed object
boundaries are recovered in the decoder path while the weights of the upsampling kernels
are initialized using bilinear interpolation. SegNet achieves tremendous improvement
in image semantic segmentation; however, the method is subject to severe loss of spatial
information caused by pooling operation or convolution with stride and misses structure
to utilize contextual semantics in the scene.

DeepLab [11] proposes atrous (also known as dilated) convolution and employs it
in the last convolutional layers of FCN in an attempt to preserve spatial information in
the network. The size of receptive field of view can be expanded using different dilation
rates while the computational cost can be maintained constant as the dilation rates does
not produces any overhead. DeepLabv2 [12], DeepLabv3 [13], and DeepLabv3+ [14]
are extensions of DeepLab that employ atrous spatial pyramid pooling with conditional
random field, parallel atrous convolution, and encoder-decoder with separable atrous
convolutions, respectively. The DeepLab variants also poorly preserve spatial information
of the image in the network. Figure 1a depicts the network structure of DeepLabv3+. As it
can be seen, the spatial information in the image is lost in the first 4 convolution blocks.

In this paper, we attempt to solve the problem of spatial information loss caused by
pooling operations or convolutions with stride in a semantic segmentation network. In
particular, we aim to solve this problem in the backbone of the network. We believe that
the input high-resolution image contains rich fine-grained details that are crucial to be
maintained in a semantic segmentation network. Hence, we propose a novel dense upsam-
pling convolution (DUC) method based on guided filter to preserve the spatial information
of the image in the network. The DUC upsamples the low-resolution feature map into a
high-resolution feature map by propagating fine-grained details from the high-resolution
image into the low-resolution feature map. Moreover, the semantic representations of
the intermediate convolutional layer are concatenated with the output of the upsampling
convolution feature map in order to produce denser high-resolution feature representation.
We also address lack of structure to utilize representations in network. Benefiting from
our proposed upsampling method, we further propose a novel dense local context (DLC)
convolution method. We build the DLC module based on dilated convolution and it is able
to effectively extract contextual information of objects in the scene. In comparison to spatial
pyramid pooling proposed in DeepLab, our DLC can extract much denser contextual
information and produces much larger receptive field of view to cover not only large-scale
objects in the scene but also covers them densely.



Sensors 2021, 21, 2170 3 of 16
Sensors 2021, 21, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. Overview of DeepLabv3 network architecture (a), implementation of guided filter layer 

over DeepLabv2 (b), and illustration of DUpsampling module employed after the last layer of 

DeepLabv3 (c). 

In summary, the contributions of this paper are as follows: 

1) We propose a novel upsampling convolution method to preserve the spatial infor-

mation of the image in the network. The DUC is able to propagate fine-grained struc-

ture details from the input high-resolution image into the low-resolution feature map 

in an end-to-end trainable fashion. 

2) To incorporate the object’s local contextual information into the network we develop 

a novel dense local context convolution method based on dilated convolution. The 

proposed method extracts dense contextual information using dilated convolutions 

in parallel and cascade with different dilation rates. 

3) The proposed methods boost the performance of baseline networks for semantic seg-

mentation in terms of pixel accuracy and mean intersection over union and outper-

form the state-of-the-art methods. 

The remainder of this paper is organized as follows: Section 2 provides a comprehen-

sive related literature review on semantic segmentation. The proposed method and theo-

retical analyses are described in Section 3. Section 4 presents the experimental setting and 

evaluation metrics with an empirical investigation on the effectiveness of the proposed 

method. In Section 5 we report qualitative and quantitative results and compares them 

with state-of-the-art methods. We present our conclusions in Section 6. 

2. Related Works 

Semantic segmentation is an active domain of research supplied by numerous chal-

lenging datasets [15–18]. Before the advent of deep learning technology, the best perform-

ing approaches relied heavily on manual extraction of features to classify pixels of an im-

age independently. Generally, a patch of image is fed into a classifier, i.e., boosting [19], 

support vector machine [20], or random forest [21], to predict the probability of a class in 

center pixels. Improvements have been made by using richer information from local con-

text [22] and structured prediction techniques [23,24]. However, the performance of these 

methods has always been compromised due to their limited expressive power of features. 

In the last few years, the deep learning technology that is used for image classification has 

been quickly transferred to the image semantic segmentation. Semantic segmentation in-

cludes both segmentation and classification, which raises the question of how to combine 

these two complicated tasks together. 

The first family of deep learning-based approaches for semantic segmentation uti-

lizes a cascade of bottom-up image segmentation, followed by deep-learning based region 

classification. For example, the bounding box proposals and masked regions suggested in 

[25] and [26] are used in [27] and [28] as inputs to a CNN for the pixel classification pur-

poses. Similarly, Mostajabi et al. [29] rely on superpixel features for pixel-wise prediction. 
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In summary, the contributions of this paper are as follows:

(1) We propose a novel upsampling convolution method to preserve the spatial informa-
tion of the image in the network. The DUC is able to propagate fine-grained structure
details from the input high-resolution image into the low-resolution feature map in
an end-to-end trainable fashion.

(2) To incorporate the object’s local contextual information into the network we develop
a novel dense local context convolution method based on dilated convolution. The
proposed method extracts dense contextual information using dilated convolutions
in parallel and cascade with different dilation rates.

(3) The proposed methods boost the performance of baseline networks for semantic
segmentation in terms of pixel accuracy and mean intersection over union and out-
perform the state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 provides a compre-
hensive related literature review on semantic segmentation. The proposed method and
theoretical analyses are described in Section 3. Section 4 presents the experimental setting
and evaluation metrics with an empirical investigation on the effectiveness of the proposed
method. In Section 5 we report qualitative and quantitative results and compares them
with state-of-the-art methods. We present our conclusions in Section 6.

2. Related Works

Semantic segmentation is an active domain of research supplied by numerous challeng-
ing datasets [15–18]. Before the advent of deep learning technology, the best performing
approaches relied heavily on manual extraction of features to classify pixels of an image
independently. Generally, a patch of image is fed into a classifier, i.e., boosting [19], support
vector machine [20], or random forest [21], to predict the probability of a class in center
pixels. Improvements have been made by using richer information from local context [22]
and structured prediction techniques [23,24]. However, the performance of these methods
has always been compromised due to their limited expressive power of features. In the
last few years, the deep learning technology that is used for image classification has been
quickly transferred to the image semantic segmentation. Semantic segmentation includes
both segmentation and classification, which raises the question of how to combine these
two complicated tasks together.

The first family of deep learning-based approaches for semantic segmentation utilizes
a cascade of bottom-up image segmentation, followed by deep-learning based region clas-
sification. For example, the bounding box proposals and masked regions suggested in [25]
and [26] are used in [27] and [28] as inputs to a CNN for the pixel classification purposes.
Similarly, Mostajabi et al. [29] rely on superpixel features for pixel-wise prediction. Even
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though these approaches delineate sharp boundaries delivered by a good segmentation,
they cannot recover from any of its errors.

The second family of work relies on using convolutionally computed features for
dense image labeling and joins them with segmentations that are obtained independently.
Among the first, Farabet et al. [30] apply CNNs at multiple image resolution and then
utilize a segmentation hierarchy to smooth the prediction results. Later, Krähenbühl and
Koltun [23] proposed skip layers and concatenated the computed intermediate feature
maps within the CNNs for pixel classification. Further Caesar et al. [31] proposed pooling of
the intermediate feature maps using regional areas. These works still utilize segmentation
algorithms that are disjointed from the CNN classifier’s results, thus risking commitment
to a premature decision.

The third family of works use CNNs to directly provide dense category-level pixel
labels, which makes it possible to even discard segmentation altogether [32]. The deep
learning-based segmentation approaches directly apply CNNs to the whole image in a
fully convolutional fashion by transforming the last fully connected layers of the previous
image classification networks into a fully convolutional layer. In order to deal with object
boundary delineation, SegNet uses an end-to-end trainable encoder-decoder structure
where the encoder extracts feature maps at different resolutions and the decoder gradually
upsamples the extracted features for pixel-wise prediction.

Recent work attempts to deal with the spatial localization problem and the aggre-
gation of local context feature in the network. In the original encoder-decoder structure,
several stages of pooling or convolution with stride in the encoder part reduces the spatial
resolution for efficient computing performance. However, these operations eliminate the
fine-grained structures such as object boundaries and edges in the image. For example,
as shown in Figure 1a, DeepLabv3+ applies several dilated convolutions on the output
of the last convolution layer containing very low fine-grained details of the original im-
age. This information loss is caused by convolution with stride and pooling operations in
the network. As a result, the spatial pyramid pooling performs poor multi-scale feature
extraction on the image. In an attempt to solve the problem of the spatial information,
Wu et al. [33] proposes a trainable guided filter in the network. As shown in Figure 1b,
the guided filter jointly upsamples the output feature maps of the encoder by transferring
structural details of the high-resolution input image into the low-resolution feature map of
the last convolutional layer. In spite of improved segmentation performance, the guided
filter layer bears extra computational cost in the network which makes it hard to train on
large datasets. Similarly, Tian et al. [34] propose data-dependent upsampling approach to
replace the traditional sequential decoder with a trainable data-dependent decoder. The
data-dependent decoder works well in segmentation of classes with larger pixel distribu-
tion in the image. Their network fails to produce sharp delineation of object boundaries
for small objects in the scene. The network structure of data-dependent upsampling is
depicted in Figure 1c.

Our work is inspired by these networks. We extend them further by proposing a
novel upsampling convolution and local context convolution method. In the upsampling
convolution, we propagate the dense edges and saliency information of the high-resolution
input image to the low-resolution feature map and further concatenate it with the feature
representations coming from the intermediate layer in an end-to-end trainable fashion. In
the context convolution, we extract dense contextual representations of objects in the scene
using different dilated convolutions in parallel and cascade form.

3. Proposed Method
3.1. Joint Upsampling

Before we introduce our proposed DUC method, we revisit the joint upsampling
procedure. Among many popular upsampling filters, guided filter [35] stands out the
crowd owing to its simplicity, robustness, and fast speed. A guided filter is an edge-
preserving smoothing operator that can produce an output image while transferring
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structural details of the input image itself or a different image. Given a high-resolution
guided image Ih and a low-resolution target image Il , guided joint upsampling aims to
generate a high-resolution output image Oh by transferring structural details from guided
image Ih. Assuming that Oh is a linear transform of Ih in a square window wk centered at
the pixel k, then it can be formally defined as:

Oi
h = ai

k Ii
h + bi

k, ∀i ∈ wk (1)

where (ak, bk) are assumed to be constant coefficients in the local square windows, wk, and
i indicates the ith pixel of the image. The linear model ensures that the high-resolution
output image has an edge only if the guidance image has an edge, because ∇Oi

h = ai
k∇Ii

h.
To specify the model coefficients (ak, bk), a constant from Il is required. The model

outputs Oh by subtracting some unwanted components from Il , such as noise or texture:

Oi
h = Ii

l − ni (2)

A cost function is used to minimize the difference between Oh and Il , while preserving
the linear model in Equation (1). After computing (ak, bk) for all local square windows, wk,
in the image, the high-resolution output image Oh is computed as:

Oh = ai × Ii
h + bi (3)

where × denotes element-wise multiplication and (ai,bi) are the coefficients averaged over
all windows overlapping i.

The actual guided filter is used as a post-processing operation. It is not differentiable
and thus cannot be trained in an end-to-end manner with the FCNs. To boost the perfor-
mance of the FCN for upsampling, Xu et al. [36] propose edge-aware filters by transforming
the simple guided filter into a learnable layer, which enables both the guided filter layer
and the FCNs to be trained simultaneously by providing direct guidance from the high-
resolution image. We build our dense upsampling method based on this work and then
employ a DLC module to incorporate rich semantic details to improve the performance of
semantic segmentation network.

3.2. Dense Upsampling Convolution (DUC)

We propose a novel DUC method based on a guided filter to preserve the spatial
information of the image in the network as shown in Figure 2. The DUC upsamples
a low-resolution feature map to a high-resolution feature map by transferring spatial
details of high-resolution image into the low-resolution feature map. As the computational
graph of the DUC method depicted in Figure 3 shows, a transformation function of g(I)
is used to generate the guidance maps of Gh from the high-resolution input image. The
transformation function g(I) includes a two-layer pointwise (1× 1) convolutional block
consisting of a normalization layer in between and a rectified linear unit (ReLU) activation
function. The guidance maps are lightweight image representations that transfer the
object boundary and edge information. We employ a convolution layer with stride 4 to
process the Gh to produce an output equivalent to the size of Gh, where the spatial size
of Gh corresponds to the size of the intermediate feature map Im. A dilated convolution
is employed on the low-resolution feature map Il to extract feature representations of Il .
The guided representations of Gh and feature representations of Il are fed into a pointwise
convolution. Following the Equation (3), the pointwise convolution produces coefficients
of ai and bi. We choose the pointwise convolution owing to its robust feature extraction
capability and the reduction of parameters in the network. It is also possible to use any other
standard convolution other than the pointwise convolution. In the last stage, a bilinear
interpolation is used to upsample the obtained guidance map with the low-resolution
feature map, thereby yielding an output size that commensurate to the intermediate layer
features of Im.
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upsample the low-resolution feature map into a high-resolution feature map by transferring structural details from the
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Figure 3. Computational graph of the proposed dense upsampling convolution (DUC) method.

In order to propagate denser spatial details into the network, we further concatenate
the output of the bilinear interpolation with the feature maps flowing from the intermediate
layer (Im). Consequently, the final output feature map attains a size that is equivalent to
the size of feature map in the C3 (Convolutional layer 3) of the model. In Figure 2 we show
the complete implementation of DUC module in the baseline network. Notably, the DUC
module is trainable in an end-to-end fashion, thus it can learn features from scratch. The
proposed DUC solves two closely related problems. (1) It solves the problem of spatial
information loss, which is caused by pooling or convolution with stride, by transferring
fine-grained details from the high-resolution input image into the low-resolution feature
map of the last convolution layer. (2) It recovers the missing salient information regarding
the object’s boundary by concatenating feature representations from the intermediate layer.
The proposed DUC can be implemented with any CNN network. In our experiments, we
employ DUC with ResNet [3] using different depths of [52,101,152, and 269] and report
the results.

3.3. Dense Local Context (DLC) Convolution

Objects in the scene prevail in small or large scales, making it difficult to extract the
proper feature representation needed for semantic segmentation. To overcome this problem,
DeepLab proposes an atrous spatial pyramid pooling (ASPP) module and applies it using
different dilation rates on the output convolutional layer of the encoder and fuse the final
output to attain multi-scale feature representations. Atrous convolution can exponentially
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enlarge the receptive field (RF) of a convolution kernel. Let d and k denote the dilation rate
and kernel size of the atrous convolution layer, respectively. Then the equivalent RF size of
the kernel is obtained as proposed in [11] as Equation (4).

RF = (d− 1) × (k− 1) + k (4)

DeepLab employs ASPP in parallel using dilation rates d = 6, 12, 18, and 24. How-
ever, ASSP implementation is associated with the following issues. Firstly, it is not dense
enough to capture features of large-scale objects in difficult scenes. Secondly, as shown
in Figure 1a, ASPP is employed after the last layer of the encoder which produces a
low-resolution feature map (1/16 size of the original image). At this stage, the spatial
information of the image is lost by a factor of 16, thus ASPP fails to extract rich feature of
the image. For example, assuming an image with a size of 512× 512, height and width,
respectively, ASSP is applied to the feature map with a reduced spatial resolution size of
32× 32. This produces a poor multi-scale feature extraction. Thirdly, the implementation
of ASPP with a dilation rate (d) of 24 is ineffective for low resolution images. Based on
Equation (3), ASPP with the dilation rate of 24 enlarges the RF size to 49, which is larger
than the feature map size obtained at the last convolutional layer (feature map = 32).
Partially, we solve this problem with the previously proposed DUC method. The DCU
produces relatively higher resolution feature by upsampling the output feature map of the
last convolutional layer with the fine-grained details from the high-resolution input image.

We further employ a DLC module based on DenseASPP [37] to replace the ASSP
module of the DeepLabv3. In a closely related line of research to our work, Ding et al. [38,39]
propose context contrasted local (CCL) model as an alternative to ASPP for multi-level
feature extraction. Notably, our method is not only different from the approaches used
in CCL but also outperforms it (ref. Section 5). As an example, CCL uses a combination
of local (delicate) convolution and an atrous (coarse) convolution in parallel to extract
multi-scale feature map in the network. In contrast, DLC combines the benefits of parallel
and cascade atrous convolutions to produce larger RF and achieves denser multi-scale
features of objects in the scene. Suppose there are two convolutional layers with the filter
size of K1 and K2. Then the new RF can be achieved from the stack of these two convolution
layers as Equation (5).

K = K1 + K2 − 1 (5)

Following Equations (4) and (5) CCL with the atrous convolution rate of [d = 3, 6, 12, and 18],
and four local convolutions of size (3 × 3) produces a relatively small receptive field of
view (i.e., RF = 49), whereas DLC with the same atrous convolution rate of [d = 3, 6, 12, and 18]
assembles a much larger receptive filed view (i.e., RF = 79). This enables DLC to cover
not only larger objects in the scene but also covers them densely for better segmentation
results. Figure 4 presents the architecture of the proposed DLC.

The upsampled feature map obtained from the DUC is fed into a 1× 1 convolution
layer to reduce the number of parameters in the network. Thereafter, the feature maps of
size “1/8×” are convolved with several atrous convolutions using dilation rates of 3, 6,
12, and 18, respectively. The output of each dilated convolution is further concatenated
with the input of the next dilated convolution with a larger dilation rate. Compared to
DenseASPP, we use a 1 × 1 convolution before the input of each dilated convolution,
resulting in a less complex network while extracting richer feature of the image. Further,
we omit the dilation rate of 24 in our DUC module. This brings us two benefits: (1)
we achieve a less complex network with fewer parameters, and (2) we attain an RF size
that is big enough to cover large-scale objects. The DLC module produces about 1.5M
parameters, which is only 23% of DenseASPP (nearly 6.48M). Figure 4 shows the detailed
implementation of DLC in the network.
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4. Experiments

In this section, we first introduce the benchmark datasets used in this experiment. We
choose ResNet [3] as the backbone of our network. Finally, we evaluate the performance of
the proposed method using standard evaluation metrics for pixel-wise classification and
report the results.

4.1. Dataset

We verify the effectiveness of the proposed methods on three challenging datasets:
ADE20K [18], Pascal-Context [5] and Cityscapes [15]. ADE20K is a densely annotated
dataset for semantic segmentation. It contains diverse annotations of scenes, objects, parts
of objects, and in some cases even parts of parts objects. ADE20K contains 20,210 images
in the training set, 2000 images in the validation set, and 3000 images in the testing set.
Of the total 3169 annotated class labels, 2693 are object and stuff classes and 476 are
classes belonging to the part of the objects. Figure 5 shows image and label samples from
ADE20K dataset.
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For each object, there is additional information about whether it is occluded or cropped
and other attributes. The images in the validation set are exhaustively annotated with
parts, while the part annotations are not exhaustive over the images in the training set. On
average there are 19.5 instances and 10.5 object classes per image. Pascal-Context dataset
is a pixel-wise annotated extension of the PASCAL VOC detection challenge. The total
10,103 scene images are comprised of 4998 and 5105 images for training and validation set,
respectively. We followed the standards metric provided in [5] by using all 59 class labels,
including one background class to evaluate the performance of the network. Cityscapes
dataset, which is designed for semantic urban scene understanding, has 5000 high-quality
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fine pixel-level annotations. The images are divided into three splits of numbers 2975,
500, and 1525 for training, validation, and testing, respectively. Besides, 20,000 coarsely
annotated images are provided for two settings in comparison, i.e., training with only fine
data or with both fine and coarse data.

4.2. Implementation Details

We use PyTorch [40], an open-source deep learning framework, to implement our
network architecture. Initially, we implement our method using ResNet50 [3] in the
backbone. “Poly” learning policy [41], which defines current learning rate equals to the

base learning rate multiplied to
(

1− iter
max_iter

)p
, is used as a learning update strategy. The

initial learning rate is set to 0.001 and p is set to 0.9. We use data augmentation techniques
of random vertical flipping and random scaling from 0.5 to 2. We also benefit from soft
computing preprocessing based on fuzzy technique [42–45] to avoid peculiarities in the
images. The images are then cropped to 480 × 480 and fed to the network. The network
is trained using 120 and 80 epochs for ADE20K and Pascal-Context datasets, respectively.
Stochastic gradient descent (SGD) is used as an optimizer, and the momentum is set to
0.9 with weights decay value of 1e−4. All experiments are conducted on 4-TitanX GPUs
(12 GB of memory per GPU) in parallel, where the loss is computed from multiple GPUs
simultaneously. We also investigate the impact of our method on other ResNet variants
with deeper layers that are designed for image semantic segmentation by keeping the
default configuration settings of each network.

4.3. Loss Function

Optimization of a deep learning model is driven by loss function. In order to minimize
the overall loss, the parameters of the neural network are updated by backpropagation
method. We use the standard multi-class cross-entropy loss, also called logarithmic loss,
as commonly used in multi-classification models. Cross-entropy loss decreases as the
predicted probability converges to the actual label. Cross-entropy in semantic segmentation
is defined as:

L = −
N

∑
n=1

K

∑
k=1

P

∑
j=1

tnk log P (6)

where N, K, and P indicate the batch-size, the number of classes, and the predicted pixels,
respectively, and t represents a one-hot target vector and tk = 1 when k is a true label.

4.4. Performance Evaluation

Standard evaluation metrics are used to assess the performance of the semantic
segmentation algorithms. These criteria are the variation of pixel accuracy (PA) and
intersection over the union. Let k + 1 denote the number of classes from L0 to Lk, including
a background or void class, and pij is the number of pixels of class i that are inferred to
belong to class j. In other words, pii denotes the number of true positives, while pij and
pji are often referred to as false positives and false negatives, respectively, although either
of them can be the sum of both false positives and false negatives. PA has often been
adopted to measure the performance of semantic segmentation algorithms. It is simply
the computation of the ratio between the amount of properly classified pixels and the total
number of pixels; mathematically it is represented as follows:

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(7)
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Mean PA (mPA) is a slightly improved PA metric, in which the ratio of correct pixels is
computed on a per-class (per-category) basis and then averaged over the total number of
classes. mPA is defined as:

mPA =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(8)

Mean intersection over union (mIoU)—originally proposed in the pascal visual object
classes challenge [46]—is another standard metric used in semantic segmentation. It is the
ratio of intersection over the union of the predicted segmentation and the ground truth.
The ratio can be reformulated into the number of true positives (intersection) over the sum
of true positives, false positives, and false negatives (union). The IoU is computed on a
per-class basis and then averaged over the total number of classes, which is referred to as
mIoU. Formally, it is denoted as:

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji + pii
(9)

Among all these metrics, the mIoU stands out of the crowd as it is a widely used
criterion due to its representativeness and simplicity.

5. Results

We report qualitative and quantitative analyses of our method on benchmark datasets,
described in Section 4. We compare the results of our method with those of the state-of-the-
art.

5.1. Qualitative Results

We report visual results on the validation set of ADE20K and Pascal-Context datasets
for image semantic segmentation. Our method presents a good ability in finding missing
parts of small- and large-scale objects in complex scenes, as demonstrated by the ADE20K
scene parsing dataset. Figure 6 shows the robustness of our method when delineating a
small-scale object in the scene.
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As can be seen in the first and second rows, our method treats objects boundary far
better than the baseline model does. Looking at the row three, the baseline architecture
misclassifies “pillows” as “bed”. Our method corrects this error by classifying “pillows”
as “pillows” on the bed. This is attributed to the robust capability of the DUC module
in the network. The DUC is designed to preserve the sharp boundary of objects in the
scene, which generates better segmentation output. The excellent performance of the
network is notable when it comes to the utilization of the context in the scene. It can be
seen that the proposed method has excellent ability in delineating edges of the objects in
the scene—much better than the baseline network.

Moreover, we can see that our model has semantically well classified small- and large-
scale objects in the scene in comparison to the baseline model. This shows the superiority
of the proposed method. Visual examples of Pascal-Context classification are shown in
Figure 7. In row one of the Figure 7, the baseline model treats the “rocks” as part of the
“mountain”, whereas our method corrects this error and classifies it as “rock”. Following
that, for “bus” and “animal” our method more precisely outlines the object boundary than
the baseline algorithm. The great effect of the proposed DLC module becomes clear in the
fourth row. DLC utilizes contextual information to properly distinguish the “person” from
the “tree”.
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5.2. Quantitative Results

In this research, we aggressively evaluate the effectiveness of the proposed method
with regard to three large-scale benchmark datasets described in Section 4.1. We test our
method using deeper neural networks with single- and multi-scale entries. A single-scale
input refers to the original image size, whereas multi-scale is multiple resized input images.
In a multi-scale entry, the features are shared in the network and then merged for pixel-wise
prediction. Deeper networks are proven to achieve robust performance on large-scale data
classification. Hence, we conduct experiments using different depths of ResNet in the
backbone. We test pre-trained ResNet with a depth of 50, 101, 152, and 269.
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It is evident that keeping the default setting of the network and increasing the depth
from 50 layers to 269 layers improves the final score (average of mIoU and PA) from 62.93%
to 65.49%, with 2.56% absolute improvement in multi-scale input setting. Detailed final
scores of our method with different ResNet depth in the backbone are listed in Table 1.

Table 1. Deeper pre-trained ResNet attains higher performance. Numbers in the parentheses refer to
the depth of ResNet. SS and MS denote single- and multi-scale testing, respectively. Experiments are
conducted on the ADE20K dataset.

Method Mean IoU (%) Pixel Acc. (%) Final Score

Ours (50) + SS 43.82 81.23 62.53
Ours (101) + SS 44.21 82.71 63.46
Ours (152) + SS 44.86 82.91 63.89
Ours (269) + SS 46.26 83.11 64.69

Ours (50) + MS 44.16 81.70 62.93
Ours (101) + MS 46.41 82.86 64.64
Ours (152) + MS 46.88 83.66 65.27
Ours (269) + MS 47.16 83.82 65.49

A comparison with state-of-the-art methods on the ADE20K dataset is given in Table
2. We report new records of performance on ADE20K dataset by achieving 46.41% of mean
IoU and 82.86% of PA using ResNet-101 in the backbone of our network architecture. The
proposed method outperforms state-of-the-art methods on pixel accuracy. Further, we
achieve the highest mean IoU and pixel accuracy over the validation set of the Pascal-
Context dataset. Table 3 shows the comparison of our method with state-of-the-arts.

Table 2. Comparison with state-of-the-art methods on ADE20K dataset. Our method outperforms
the state-of-the-arts on pixel accuracy.

Method Mean IoU (%) Pixel Acc. (%) Final Score

SegNet [10] 21.64 71.00 46.32
DilatedNet [47] 32.31 73.55 52.93
CascadeNet [48] 34.90 74.52 54.71
RefineNet [49] 40.70 - -

PSPNet [50] 43.29 81.39 62.34
FastFCN [51] 44.34 80.99 62.67
EncNet [22] 44.65 81.69 63.17
CPNet [52] 45.39 81.04 63.21

CGBNet [37] 44.90 82.10 63.50
ResNeSt [53] 46.91 82.07 64.49

Ours 46.41 82.86 64.64

Table 3. Comparison with state-of-the-art methods on Pascal-Context dataset. Our method outper-
forms the state-of-the-arts.

Method Mean IoU (%) Pixel Acc. (%) Final Score

DeepLabV2 [12] 45.70 - -
RefineNet [49] 47.30 - -

PSPNet [50] 47.80 - -
EncNet [22] 51.70 - -

Dupsampling [34] 52.50 - -
DANet [54] 52.60 - -

FastFCN [51] 53.10 79.12 66.11
CPNet [52] 53.90

CGBNet [37] 53.40 79.60 66.50
DRAN [55] 55.40 79.60 67.50

Ours 56.10 81.62 68.86
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Further, we achieve the highest mean IoU and pixel accuracy over the validation set
of the Pascal-Context dataset. Table 3 shows the comparison of our method with state-of-
the-arts. Following the standard evaluation metric in [5], we consider all 59 classes, plus
one background class for the evaluation and report the results. Our method produces an
encouraging score in comparison with previous best available methods by achieving 56.1%
and 81.62% of mIoU and pixel accuracy, respectively.

Finally, we investigate the effectiveness of our method on the new publicly available
dataset of Cityscapes. Our method remarkably outperforms the state-of-the-arts on the test
split of the Cityscapes dataset by achieving a mIoU of 83.3%. Table 4 shows the detailed
comparison on Cityscapes dataset.

Table 4. Comparison with state-of-the-art methods on Cityscapes dataset. Out method outperforms
the state-of-the-arts.

Method Mean IoU (%)

DilatedNet [47] 66.8
DeepLabV2 [12] 70.4
RefineNet [49] 73.6

PSPNet [50] 78.4
DenseASPP [36] 80.6

CGBNet [37] 81.2
DRAN [55] 82.9

Ours 83.3

6. Conclusions

In this study, we have addressed the problem of spatial information loss and missing
contextual details for image semantic segmentation using deep learning. We propose a
dense upsampling convolution method based on guided filtering that is able to effectively
preserve the spatial details in the network by transferring fine-grained structures from the
input high-resolution image to the low-resolution feature map in an end-to-end trainable
fashion. We further propose a dense multi-scale context convolution module based on
atrous convolution that is able to incorporate rich local context description in the network.
We tested the impact of the proposed method on ADE20K, Pascal-Context and Cityscapes
benchmark datasets. Visual result revealed that the proposed method classifies object
boundaries at a higher accuracy than that of the recent competitive models, which demon-
strates the effectiveness of our method. We also included single- and multi-scale inputs in
our experiments to find their correlation with respect to the problem of pixel-wise predic-
tion. The experimental results showed that multi-scale inputs promise better performance
than the single-scale entry. We also, studied the impact of deeper ResNet in the backbone
with regard to the performance of semantic segmentation output. The results indicated that
the depth of the backbone network is directly proportional to the performance of semantic
segmentation (i.e., the deeper the network, the better the performance). Despite the success
of this approach, in future work, we aim to improve the prediction accuracy for “parts” and
“parts of parts” of the objects in the scene as provided by the ADE20K dataset. Adopting
this approach to object detection and localization is another excellent domain of research to
invest on.
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