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Abstract: Arterial blood pressure (ABP) is an important vital sign from which it can be extracted
valuable information about the subject’s health. After studying its morphology it is possible to
diagnose cardiovascular diseases such as hypertension, so ABP routine control is recommended.
The most common method of controlling ABP is the cuff-based method, from which it is obtained only
the systolic and diastolic blood pressure (SBP and DBP, respectively). This paper proposes a cuff-free
method to estimate the morphology of the average ABP pulse (ABPM) through a deep learning model
based on a seq2seq architecture with attention mechanism. It only needs raw photoplethysmogram
signals (PPG) from the finger and includes the capacity to integrate both categorical and continuous
demographic information (DI). The experiments were performed on more than 1100 subjects from the
MIMIC database for which their corresponding age and gender were consulted. Without allowing the
use of data from the same subjects to train and test, the mean absolute errors (MAE) were 6.57 ± 0.20
and 14.39 ± 0.42 mmHg for DBP and SBP, respectively. For ABPM, R correlation coefficient and
the MAE were 0.98 ± 0.001 and 8.89 ± 0.10 mmHg. In summary, this methodology is capable of
transforming PPG into an ABP pulse, which obtains better results when DI of the subjects is used,
potentially useful in times when wireless devices are becoming more popular.

Keywords: photoplethysmography; continuous arterial blood pressure; cuff-less calibration; deep
learning

1. Introduction

Cardiovascular diseases (CVDs) remain the most common cause of morbidity and
mortality worldwide [1]. One of its main risk factors which reaches at least 1.3 billion people
is high blood pressure (BP) or hypertension [2]. Unfortunately, most of the population is
not aware of suffering a CVD until an event such as arrhythmia, heart attack, or stroke
occurs. In this context, regular BP monitoring becomes an essential strategy of prevention,
detection, and control for health.

Methods for measuring the BP are divided into noninvasive and invasive. The tra-
ditional noninvasive method involves the sphygmomanometry technique. In general,
the measurement is carried out by a physician or different members of a clinical staff,
and the subject to be measured rests for a few minutes in order to stabilize his BP. As it
depends on an inflatable cuff, it does not serve as a continuous measurement method due
to only two values are obtained: diastolic BP (DBP) and systolic BP (SBP). Invasive methods
are performed by inserting intravascular catheters with pressure transducers. They have
the disadvantage of exposing the subject to bleeding and infections. The advantage is the
access to the continuous arterial BP (ABP) morphology, the gold standard for monitoring
the BP. Additionally, a noninvasive practice to estimate the ABP is the tonometry technique
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in combination with the cuff sphygmomanometer. The tonometry technique provides
the estimation of the waveform and the cuff sphygmomanometer provides calibrated
values [3].

ABP morphology (ABPM) is defined by the mechanical interaction between the blood
flow, originated in the hearth, and the arteries. The DBP is referenced to the minimum
value of BP and it is related to the aortic valve opening to blood ejection. The SBP is defined
as the maximum pressure value applied by the left ventricle in the heart’s cycle. It is the
result of the interaction between the blood ejected into the arterial tree and the reflected
waves [4]. The dicrotic notch (DN) represents the closure of the aortic valve and is used
to calculate the duration of the ejection period and the beginning of the diastolic phase.
ABPM can suffer of local alterations, such as those induced by the respiratory rhythm
or specific vascular test maneuvers. On the other hand, permanent alterations can be
observed as a result of advanced age or the appearance of vascular pathologies such as
arterial stiffness [5]. In addition, the ABMP changes according to the site of the arterial tree
at which it is measured. However, if both the waveform and calibration values are known,
it is possible to use generalized transfer functions to estimate the ABPM at another site [6].
Furthermore, it is known that ABPM may be more predictive of cardiovascular events
than just cuff-pressure values [7–9], may alert of CVDs such as diastolic dysfunction [10],
or could be a valuable measure of the response to the treastmen of the obstructive sleep
apnea [11]. In this sense, through the analysis of the ABPM it is possible to derive many
features related to the health of the cardiovascular system [3]. Some of them correspond
specifically to ABP values and other ones to temporal occurrences.

An important temporal feature introduced in [12] and studied more in depth in
Mukkamala et al. [13] is the pulse transit time (PTT). It is defined as the time between
the beginning of a pulse originated in the heart and its arrival at a specific point on the
periphery of the artery tree. PTT shows a relationship with arterial pulse wave velocity
(PWV) based on Moens–Korteweg equation:

PWV = L/PTT =
√

Eh/ρ2r (1)

in which E is the elastic module, h is the arterial wall thickness, ρ is the blood density, and r
is the radius of a vessel. And PWV can be related to ABP by Hughes equation [14]:

E = E0eαP (2)

where both α > 0 and E0 are subject-specific constants. E0 corresponds to the zero-pressure
modulus of the vessel wall and P reference to BP. PTT can also be defined as the difference
between pulse arrival time (PAT) and the pre-ejection period (PEP). In this sense, PAT can
be assessed as the time delay between the electrocardiogram’s (ECG) R-peak and the BP
pulse onset. However, PAT is not expressed in Equation (1) and cannot be related directly
to BP. Furthermore, it is shown that PEP represents a significant and variable proportion
of PTT, from 10% to 30% [15]. Nevertheless, PAT is widely used by researchers as a good
approximation of PTT, mainly due to the ease of its measurement [13].

Following this approach, in recent years there has been an increase in the amount of
publications regarding the estimation of BP values in a noninvasive and real-time way, also
called "cuff-less calibration". In this context, finger photoplethysmography (PPG) signal,
due to its similarities in time and frequency domains [16] with BP, emerges as an interesting
measurement for estimating BP. PPG is an optical device that measures the change of blood
volume in the vessel. Its advantages are the low-cost, simplicity, and portability, very
attractive characteristics for wearable devices [17]. Its disadvantages are the sensitivity to
noise and artifact due to subject movements; therefore, a signal processing in general must
be applied.

Unfortunately, PTT approach to estimate BP cannot be directly applied to PPG signal
morphology. In order to deal with this issue, different approaches based on machine
learning such as linear regression [18], AdaBoost [19], classical fully-connected neural
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network (NN) [20], and Gaussian process regression (GPR) [21] were proposed to mod-
eling the subject-specific relation between PPG and BP. These techniques were focused
in the feature extraction between PPG and ECG. In particular, in Monte-Moreno [22] and
Ruiz-Rodríguez et al. [23] techniques called Random Forest (RF) and Deep Belief Network-
Restricted Boltzmann Machine, respectively, were applied to estimate SBP and DBP extract-
ing features from the PPG. On the contrary, with the disruption of deep learning techniques,
feature extraction step could be relegated to the NN. In Eom et al. [24], raw ECG, PPG
and ballistocardiogram (BCG) signals were used in a combined convolutional NN (CNN)
and recurrent NN (RNN) model. Furthermore, some studies proposed to work only with
PPG time-series [25] and its derivatives [26]. In Liang et al. [25], a pretrained CNN was
used to classify three levels of hypertension based on the scalogram from the PPG and
in Slapničar et al. [26], a spectro-temporal ResNet model was proposed to estimate the
DBP and SBP values using the PPG in conjunction of the first and second derivatives
(PPG and PPG, respectively). The latter was also a combination of CNN and RNN with
gated recurrent units (GRU). Particularly, to the best of our knowledge, few studies
aim to the hard task of directly estimate the continuous ABP. In Sideris et al. [27] and
Sadrawi et al. [28] a RNN model, with long short-term memory (LSTM) units, and deep
convolutional auto-encoder (DCAE) model, respectively, were proposed to transfer signals
from PPG to ABP. General surveys on the existing and emerging approaches on this field
can be found in Hosanee et al. [29] and El-Hajj and Kyriacou [30].

In this context and considering the recommendations from Elgendi et al. [17], the col-
laborative spirit from Slapničar et al. [26] and the requirements when working with
the MIMIC-III Matched Waveform Database (MWDB) and MIMIC-III Clinical Database
(CDB) [31], the contributions of our work can be summarized in the next topics:

1. Morphology of the average ABP pulse (ABPM): The proposed methodology has the
capacity to estimate ABPM, from which DBP, DN, and SBP values are then extracted.

2. Raw PPG signal and demographic information (DI): The proposed deep learning
architecture allows the combination of the raw signal of the PPG and the DI age and
gender of each subject in the same model. The addition of DI improves the estimation
of ABPM.

3. Limited bias: The quantities of records per subject and signals duration are limited to
reduce subject’s biases.

4. Reproducibility: The processed dataset, subject’s ID, temporal information of each
signal, model architecture, and training sources codes are available for reproducibil-
ity. Please see Supplementary Materials section. The DI used due to requirements
from [31] is not shared, but the codes to extract it if the request to access to MIMIC-III
CDB is accepted, are also available.

2. Materials and Methods

Figure 1 shows a block diagram of the proposed methodology. Data for this work
come from two public available databases: MIMIC-III MWDB and MIMIC-III CDB. The first
one contains over 20,000 waveform records digitized at 125 Hz from more than 10,000
distinct patients in intensive care units and the second one includes information such as
demographics, laboratory and microbiology test results, cardiology and radiology reports,
and diagnostics. In preprocessing stage, records from MIMIC-III MWDB with invasive
ABP and fingertip PPG signals are selected, then their corresponding subject’s age and
gender were obtained from MIMIC-III CDB. In processing stage only segments with enough
signal quality (SQ) are kept and each morphology of the average ABP pulse (ABPM) is
computed. Deep learning stage compromises the model architecture, hyperparameters
settings, and training phase to get the estimated ABPM (ÂBPM) from PPG signal. Finally,
the values and time occurrences from ÂBPM are evaluated. Each stage will be detailed in
the next subsections.
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Figure 1. Block diagram of the proposed methodology.

2.1. Preprocessing

The ID of the records with a minimum duration of 15 min and with both ABP and
PPG signals were preserved. A 10 min interval was defined to consider the subject in a rest
condition and 5 min was defined as a gap between different segments of the record. In this
work only the age and gender were extracted from MIMIC-III CDB. The age of analysis
was set between 18 and 89 years.

2.2. Processing

In Figure 2a is summarized the processing stage. Part of this section was inspired in the
released code from Slapničar et al. [26]. Each record was loaded with the WFDB Toolbox [32]
for Matlab and two 15-s segments spaced 5 min apart were analyzed (Figure 2b). Each time
a segment was rejected for not meeting the requirements described below, a minute was
waited before reanalyzing two new segments. If a record was not able to meet the criteria, it
was excluded from the analysis and the next record was evaluated. If the criterion was met,
a structured file containing both the raw segments and the processed pulses was generated.

The main steps were called Flat, Peak, PPG-SQ, and ABP-SQ. Several thresholds were
set to ensure the quality for each segment and pulses, at least equal to those from Slap-
ničar et al. [26]. Particularly, for PPG-SQ and ABP-SQ others were added. The pulses
duration were limited in the range [0.5, 1.5] s considering normal physiological limits at
rest. The number of pulses per segment analyzed was limited to [10, 30]. To be accepted,
the difference SBP-DBP and the moment coefficient of skewness [33] had to be higher than
10 mmHg and zero, respectively.

More in detail, Flat and Peak detect null data and saturated points in valleys and
peaks of signals respectively. Then, a Butterworth filter with cutoff frequencies [0.5, 8] Hz
and MinMax normalization were performed only to the PPG segment. A pulse-by-pulse
analysis was done with the marker proposed in Li et al. [34]. It is important to clarify that
PPG-SQ corresponds to part of the feature extraction step in Slapničar et al. [26], but for
this work it was only used for signal quality reasons. Once PPG-SQ was succeed, raw
PPG segment was saved. The ABPM were calculated in ABP-SQ step. The ABP pulses
were synchronized regarding their onsets. For each time-step t = i∆t, the mean (µABPMi )
and standard deviation (σABPMi ) was calculated. Finally, ABPM was computed only with
the points in range µABPMi ± 1.25σABPMi , as is shown in Figure 2c. Regarding the deep
learning explained below, the class of each point related to different cardiac cycle stages
was defined as one of the following intervals: [onset, systolic peak] (C[O,SP]), [systolic peak,
dicrotic notch ] (C[SP,DN]) or [dicrotic notch, end] (C[DN,E]).
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(a)

(b)

(c)

Figure 2. (a) Summarized processing stage. (b) In blue, two 15-s segments analyzed with 5 min
gap between each other, in black. (c) An example of ABPM computed. Red, green, and blue lines
correspond to the classes [onset—systolic peak] , [systolic peak—dicrotic notch] and [dicrotic notch–
end], respectively, while gray lines represent ABP pulses and dashed magenta lines represent the
limits to consider the average pulse.

Once all the records were processed, after a visual inspection, ABP and pulse du-
ration were limited to 180 mmHg and 1.2 s, respectively. In addition, only pulses with
skewness greater than 0.2 were accepted. At this point, there were 10,696 segments corre-
sponding to 1131 subjects, where 169 subjects had more than 50% of segments. To reduce
subject’s bias, the quantity of segments per subject was limited to 10. Finally, there were
6478 segments, where 333 subjects represent the 50% of segments (Figure 3a). Figure
3b,c show the age and gender distributions and DBP and SBP distributions, respectively,
of the selected dataset. They were 464 females and 667 and males, while mean and stan-
dard deviation of age, DBP, and SBP were 58.6 ± 14.1 years, 64.48 ± 9.51 mmHg, and
130.84 ± 20.27 mmHg, respectively.
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Figure 3. Selected dataset distributions: (a) Number of subjects with their corresponding quantity of
segments (gray bars) and segments cumulative percentage (red line). (b) Age and gender. (c) Systolic
blood pressure (SBP) and diastolic blood pressure (DBP).

The raw PPG segment saved during processing was filtered before being used as
input. A band-pass Butterworth filter, with cutoff frequencies [0.5, 45] Hz, was applied.
As mentioned before, the PPG provides information that could improve ÂBPM. PPG was
computed using a Savitzky–Golay filter [35]. The window size and the polynomial degree
was 7 and 3, respectively. In addition, one second was removed at the beginning and at the
end of the segment to avoid artifacts caused by the two filters just mentioned. In summary,
the dataset available for the deep learning stage was constituted by 6478 segments, 13 s
each one, equivalent to 23.4 h.

2.3. Deep Learning

The proposed deep learning architecture is inspired by seq2seq encoder-decoder [36]
models with attention mechanism [37,38] on the natural language processing domain.
Before the detailed description of it in Section 2.3.3, a few concepts in relation with this
model are described in Section 2.3.1. Furthermore, some considerations about the input
data are presented in Section 2.3.2.

2.3.1. RNN Encoder-Decoder

Encoder reads each input from a variable source sequence and encodes it into a fixed-
length vector representation, also called hidden state. Then, the decoder starts initializing
its own hidden state with the encoder one, and then generates at each time an output.
Figure 4a shows an illustration of the encoder-decoder model using RNN, where the type
of RNN selected for this work is called "gated recurrent unit" (GRU). The structure of GRU
is shown in Figure 4b.
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(a)
(b)

Figure 4. (a) recurrent NN (RNN) Encoder-Decoder architecture. (b) Structure of gated recurrent
units (GRU) unit.

GRU structure was proposed by Cho et al. [36] to mitigate the vanishing/exploding
gradient of the RNN. Input vectors of each GRU unit are the previous hidden state ht−1
and the current input xt, while the current hidden state ht correspond to the output. In this
sense, ht is computed according to relations given by Equation (3):

zt = σ(Wz · [ht−1, xt]) = σ(Whzht−1 + Wtzxt)

rt = σ(Wr · [ht−1, xt]) = σ(Whrht−1 + Wtrxt)

h̃t = tanh(Wh · [rt ⊗ ht−1, xt]) = tanh(Whh(rt ⊗ ht−1) + Wthxt)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t

(3)

where rt and zt denote the reset gate and the update gate. Wz, Wr and Wh are learnable
weight matrices and h̃t is the proposed hidden state. σ(.) and tanh(.) correspond to the
logistic sigmoid and hyperbolic tangent function, respectively and ⊗ is the symbol for
element-wise multiplication.

Both encoder and decoder are RNNs and they are jointly trained to predict the next
value of a target sequence given a source sequence. In particular, two loss functions were
used to achieve a multitask objective. ABPM and ÂBPM points were decomposed by their

values ABPMv and ÂBPM
v
, respectively, and classes ABPMc and ÂBPM

c
, respectively.

2.3.2. Model Inputs

Model inputs were defined as 5-s random window signals. PPG and PPG were scaled
on-the-fly, independently, in the range [0, 1]. Furthermore, ABPMv was also scaled in [0, 1]
but considering global minimum and maximum values in ABPM dataset. Because of
the different durations of ABPM, an homogenization step was performed. To the largest
ABPM’s duration 0.12 s (15 time-steps) were added. Thus, the fixed length was set to
1.312 s (164 time-steps). Each ABPM was repeated until the fixed length was reached,
as shown on Figure 5. To all repeated points it was assigned a new class called [ended]
(C[ED]), thus increasing the number of classes to 4.

To accelerate the training, as the objective was to predict only one ÂBPM, a mask
vector with ones and zeros was created. ÂBPM

v
error was masked with it to only penalize

the nonrepeated ABPMv adding 0.12 s (15 time-steps). In Section 2.3.4 this mask will
be considered. An example of the limit of the mask is shown in Figure 5 with a vertical

magenta dotted line. Nevertheless, ÂBPM
c

was penalized over the whole fixed-size target
signal to force the prediction of the C[ED] class.
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Figure 5. Fixed-size target signal composed by a completed ABPM and its repetition. Red, green,
blue, and black lines correspond to classes [onset - systolic peak] , [systolic peak—dicrotic notch],
[dicrotic notch—end] and [Ended], respectively. Vertical magenta dotted line represents the end of
the error’s mask.

2.3.3. Model Architecture

Figure 6 shows the model architecture. It is constituted by three main parts: encoder,
decoder, and attention modules. The encoder consists of three bidirectional GRU (Bi-GRU)
layers, while decoder consists of three GRU and two multiperceptron layers (MPL) (MPLv

and MPLc, respectively). Both encoder and decoder have dense connections [39] to improve
the information flow between layers (blue arrows, Figure 6). Input Xl , with l ∈ [1, L], is the
mentioned 5-s PPG and PPG’ input signal. The whole encoder outputs (hs) go to attention
module. In addition, the last hidden state (hsL ) from each encoder GRU layer is used to
initialize the hidden states of the corresponding decoder GRU layer (red arrows, Figure 6).
The output of last decoder GRU layer (hti ) is sent to the both attention module and MPLc

layer. Context vector (ci) and hti are concatenated and transferred to MPLv. Finally, MPLv

and MPLc outputs are concatenated (orange arrows, Figure 6) to produce a prediction
time-step (yi). Age and gender demographic information vector (XDI) is concatenated at
each time-step with yi to conform the decoder inputs (yi&DI). In particular, y0 is a vector
full of ones used to indicate the start of a prediction.

Figure 6. Model architecture.
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In detail, the attention mechanism used in this work refers to the Luong Attention [38],
where ci is the weighted sum between an attention weight vector (ai) and hti :

ci =
T

∑
i=0

aihti (4)

where ai is computed and normalized using the softmax function:

ai = exp(score(hti , hs))/ ∑
s′∈s

exp(score(hti , hs′ )) (5)

where hs is each encoder output and score(hti , hs) is the general context-based function:

score(hti , hs) = h>ti
W hs (6)

in which W is also a weight matrix of a MPL.

2.3.4. Loss Functions

As mentioned before, the model was trained to produce ÂBPM
v

and ÂBPM
c
. The dif-

ference between ÂBPM
v

and ABPMv was penalized using mean squared error
(MSE) function:

MSE =
1
N

N

∑
j=1

1
M

M

∑
i=1

(ABPMv
ji − ÂBPM

v
ji)

2 (7)

while the difference between ÂBPM
c

and ABPMc was penalized with the categorical
cross-entropy [40] function (CE):

CE =
1
N

1
T

N

∑
j=1

T

∑
i=1

ABPMc
ji log(ÂBPM

c
ji) (8)

where, for Equations (7) and (8), N, M, and T correspond, respectively, to the number
of samples, the mask length previously mentioned and the fixed input length. Finally,
the training loss function was defined as:

Losstrain = MSE + λ CE (9)

in which λ was a constant empirically determined to 0.01.

2.4. Hyperparameters and Experimental Settings

The encoder Bi-GRU units per layer are 4, 20 and 100, respectively. Similarly, decoder
GRU units per layer are 8, 40, and 200. In addition, MPLv and MPLc layers have 1 and
4 units, respectively, with ELU [41] activation functions. MPLv and MPLc outputs were

assigned to ÂBPM
v

and ÂBPM
c
, respectively. In particular, MPLv output was previously

normalized with a softmax function. Adam optimizer [42] was chosen to update the model
parameters and the learning rate (LR) value was 10−3. LR was scaled by 50% after a
patience of 25 epochs without improvement in the loss. Training was stopped when
patience reaches 50 epochs. The batch size was set to 48.

Weights of MPLv, MPLc and Attention layers are initialized from U (−
√

w,
√

w) and
weights for GRU layers are initialized from U (−

√
k,
√

k) where

w =
1

# Layer input size
, k =

1
# GRU units

(10)
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In particular, for the weights corresponding for the transition matrix of the GRU
layers (Whz, Whr, Whh, from Equation (3)) a random orthogonal initialization scheme was
selected [43].

Three scenarios were proposed to evaluate the impact of XDI and the split of segments
by subject. For the first and second scenarios, the mixing of segments from the same
subject between train and test sets (Mixno) was not allowed. For the first scenario neither
XDI was provided. Then, for the second scenario XDI information was added. Finally,
for the third scenario, it was also allowed that the train and test sets had segments from
same subjects (Mixyes). The scenarios were named: Mixno, Mixno + DI and Mixyes + DI,
respectively. For scenarios Mixno and Mixno + DI the test set was formed by the segments
corresponding to 20% of the subjects. For scenario Mixyes + DI the test set was conformed
by 20% of the segments, independently of the subjects. Each scenario was cross-validated
5 times.

2.5. Evaluation

Firstly, to evaluate the cuff-less calibration in respect to real ABP, ABPMv and ÂBPM
v

were restored to the minimum and maximum ABP global scale, then using ÂBPM
v

the DBP, DN and SBP were computed (ÂBPM
DBP

, ÂBPM
DN

and ÂBPM
SBP

, respec-

tively). ÂBPM
DBP

was computed as the mean between the first and last value of ÂBPM
v
.

ÂBPM
DN

and ÂBPM
SBP

were considered as the last occurrence of the class C[SP,DN] in

ÂBPM
c

and maximum value in ÂBPM
v
, respectively. In this sense, the evaluation met-

rics for ÂBPM
DBP

, ÂBPM
DN

, ÂBPM
SBP

were root mean squared error (RMSE), mean
absolute error (MAE), standard deviation of the errors (STD), and the coefficient of deter-
mination (R2):

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(zi − ẑi)2 (11)

MAE =
1
N

N

∑
i=1
|(zi − ẑi)| (12)

R2 = 1−
[ N

∑
i=1

(zi − ẑi)

/ N

∑
i=1

(zi − zi)

]
(13)

where zi is the mean of zi and ẑi is the estimated value. Secondly, DN time occurrence
(DNTO) and pulse duration were also evaluated with RMSE, MAE, and R2 metrics. DNTO

and pulse duration were computed as last and first occurrence of classes C[DN,E] and C[ED],

respectively, in ÂBPM
c
. Finally, ÂBPM pulse values were evaluated with RMSE and

MAE, while ÂBPM pulse waveforms were evaluated with the Pearson’s coefficient of
correlation (R). When ABPM and ÂBPM had different durations, the shorter one was
considered for the evaluation. R is defined as:

R =
T

∑
i=1

(xi − x)(yi − y)
/√√√√ T

∑
i=1

(xi − x)2(yi − y)2 (14)

where x and y correspond to ABPM and ÂBPM, x and y theirs mean, and T the consid-
ered duration.

3. Results

Figure 7 shows an input segment, attention weights, and output test example from the
Mixno + DI scenario. Upper left plot compares ABPMv with respect to ÂBPM. Red, green,

and blue points represent ÂBPM
c
, while the black line is ABPMv. In the lower left plot
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the grade of intensity of heat map points determines the level of attention applied to the
input (lower right plot) by the model to produce each ÂBPM point. In addition, Figure 8
shows other test samples with very different morphologies predicted. It is important to
corroborate that the model did not learn a global average morphology.

Figure 7. Relationship between photoplethysmogram signals (PPG) and PPG input signals and
ÂBPM via attention weight’s heatmap. Additionally, ABPMv is shown in comparison with ÂBPM.

Figure 8. Comparison between different ABPMv and ÂBPM examples.

Table 1 shows the obtained values of ÂBPM
DBP

, ÂBPM
DN

, and ÂBPM
SBP

results.

In particular, ÂBPM
DBP

and ÂBPM
SBP

assessment refers to a cuff-less calibration task.
In ascending order, they were Mixno, Mixno + DI, and Mixyes + DI. Regarding the time
occurrences assessment from Table 2, there was not a clear difference between Mixno
and Mixno + DI scenarios. Despite the mean of the metrics being slightly better for the
Mixno scenario, they also show a larger standard deviation. On the contrary, Mixyes + DI
scenario show better results. Respecting the evaluation of waveforms and values of ÂBPM
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presented in Table 3 there was again a clear improvement in performance for the scenario
Mixyes + DI, followed by scenarios Mixno + DI and Mixno.

Table 1. Mean and standard deviation of the metrics used to evaluate the diastolic (DBP), dicrotic
notch (DN), and systolic blood pressure (SBP) errors.

Marker Scenario R2 RMSE MAE STD

Mixno 0.10 ± 0.03 8.88 ± 0.27 7.01 ± 0.23 8.84 ± 0.25
DBP Mixno + DI 0.19 ± 0.04 8.47 ± 0.29 6.57 ± 0.20 8.43 ± 0.29

Mixyes + DI 0.41 ± 0.04 7.40 ± 0.20 5.56 ± 0.18 7.32 ± 0.17

Mixno 0.29 ± 0.02 11.23 ± 0.44 8.72 ± 0.31 11.15 ± 0.38
DN Mixno + DI 0.32 ± 0.04 10.95 ± 0.27 8.54 ± 0.37 10.84 ± 0.26

Mixyes + DI 0.50 ± 0.02 9.67 ± 0.17 7.08 ± 0.19 9.63 ± 0.15

Mixno 0.17 ± 0.04 18.20 ± 0.52 14.55 ± 0.56 18.04 ± 0.54
SBP Mixno + DI 0.19 ± 0.05 18.07 ± 0.60 14.39 ± 0.42 17.87 ± 0.40

Mixyes + DI 0.39 ± 0.05 15.96 ± 0.60 12.08 ± 0.36 15.67 ± 0.50
root mean squared error (RMSE), mean absolute errors (MAE), and standard deviation of the errors (STD) in
mmHg.

Table 2. Mean and standard deviation of the metrics used to evaluate the errors in the dicrotic notch
time occurrence (DNTO) and the pulse duration from the estimated mean arterial blood pressure
pulse morphology (ÂBPM).

Scenario DNTO Pulse Duration

R2 RMSE MAE R2 RMSE MAE

Mixno 0.55 ± 0.10 33 ± 3 24 ± 2 0.97 ± 0.02 22 ± 8 15 ± 9
Mixno + DI 0.54 ± 0.05 35 ± 3 25 ± 1 0.97 ± 0.01 24 ± 5 16 ± 4
Mixyes + DI 0.61 ± 0.02 33 ± 1 23 ± 1 0.98 ± 0.01 18 ± 2 11 ± 1

RMSE and MAE in ms.

Table 3. Mean and standard deviation of the metrics used to evaluate the waveform and value errors
for each estimated arterial blood pressure pulse morphology (ÂBPM).

Scenario ÂBPM

R RMSE MAE

Mixno 0.98 ± 0.002 10.39 ± 0.11 9.06 ± 0.09
Mixno + DI 0.98 ± 0.001 10.26 ± 0.11 8.89 ± 0.10
Mixyes + DI 0.98 ± 0.001 8.65 ± 0.20 7.37 ± 0.21

RMSE and MAE in mmHg.

Table 4 shows the results regarding the British Hypertension Society (BHS) stan-
dards [44] using prediction of each fold per scenario. BHS define thresholds (i.e., 5, 10,
and 15 mmHg) to inform the cumulative error percentage and determine the grade of a
device when the BP is measured. DBP estimation during Mixyes + DI scenario achieves
grade B, requiring 3.4% for the range <5 mmHg to achieve grade A. Mixno and Mixno + DI
scenarios achieve grade C, lacking 8.2% and 4.5%, respectively, for the range <5 mmHg to
achieve grade B.

Bland–Altman plots were performed using SBP and DBP predictions of each of the 5
fold per scenario. Bland–Altman results are shown in Table 5 in terms of mean (µ) and limits
of agreement (µ± 1.96 σ). In particular, Figure 9 shows regression plots, Bland–Altman
plots, and histograms of errors corresponding to Mixno + DI scenario.
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Table 4. Comparison with the British Hypertension Society (BHS) Standard.

Scenario
Cumulative Error Percentage

<5 mmHg <10 mmHg <15 mmHg

Mixno
DBP 41.8% 76.6% 92.9%
SBP 21.6% 42.0% 59.3%

Mixno + DI DBP 45.5% 80.2% 93.5%
SBP 21.3% 41.9% 58.6%

Mixyes + DI DBP 56.6% 86.0% 95.5%
SBP 29.6% 53.2% 70.3%

BHS
Grade A 60% 85% 95%

BHS [44] Grade B 50% 75% 90%
Grade C 40% 65% 85%
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Figure 9. Regression plots (a,d), Bland–Altman plots (b,e), and histograms of errors (c,f), corresponding to Mixno + DI
scenario and DBP and SBP values.

Table 5. Limits of agreements(µ± 1.96σ) and means (µ) for Bland–Altman plots.

Scenario Limits Mean

Mixno [−17.80, 16.77] −0.52
DBP Mixno + DI [−16.87, 15.90] −0.49

Mixyes + DI [−14.23, 14.48] 0.13

Mixno [−32.85, 37.27] 2.21
SBP Mixno + DI [−34.36, 35.60] 0.62

Mixyes + DI [−28.78, 32.69] 1.95
Limits and Mean in mmHg.

4. Discussion

In the present work, the ABPM was estimated by combining the time-series of the
PPG and DI of each subject. Firstly, the ABPM signal was computed and paired to its
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corresponding PPG signal and DI. Secondly, a model with sequence-to-sequence architec-
ture and attention mechanism was proposed to transfer the information from the optical
domain to the pressure domain. Results show the capacity of the proposed method to
simultaneously estimate both morphology and calibration values of the ABP signal.

To the best of our knowledge, a distinction is made in the literature between cal-
ibration methods. Depending on whether or not data from the same subject are used
for training and testing, they are called calibration-based (cal-based) or calibration-free
(cal-free), respectively. In this sense, hereafter Mixyes + DI and Mixno + DI scenarios refer
to cal-based and cal-free, respectively. Table 6 presents a comparison, in calibration terms,
with other studies. Nevertheless, because of different evaluation metrics, dataset sizes,
and signal sources, the comparison is not easy and direct. Studies that reported lowest
errors are those with fewer number of subjects and in which the restriction to use subject
data in both training and training sets was not explicit or was not applied. Particularly,
in Chan et al. [18], mean error (ME) was used as a metric and the dataset was unspecified.
In Kurylyak et al. [20], despite that only PPG signal was used, the dataset consisted only of
15,000 beats and no information about number of subject was given. In Chowdhury et al.
[21] the dataset consists of 226 records, with a signal duration of 2.1 s and corresponding to
126 subjects. Methods in Chan et al. [18], Kurylyak et al. [20] and Chowdhury et al. [21] use
the feature extraction approach. On the contrary, in Eom et al. [24] a deep learning model
with the capacity to take raw multi signal inputs was proposed. However, the dataset was
composed of only 15 subjects, without restricting the use of data from the same subjects to
train and test.

Works that have used largest amount of subjects were [19,22,23,26] (410, 572, 1000,
and 510 subjects, respectively). In Monte-Moreno [22], estimations of SBP and DBP were
obtained using only features extracted from the PPG, combined with the age, weight,
and body mass index information of the subjects. The author did not make explicit
any subject’s data restriction (cal-based scenario). Assessments were reported in terms
of R2 metric and results reached a grade B under the standards. On the contrary, re-
sults from [19,22,26] reported results much more similar with those obtained in the
present work and also expressed subject’s data restriction for train and test set. In
Ruiz-Rodríguez et al. [23], only a cal-free scenario was reported and errors were informed
in terms of a Bland–Altman test. Limits of agreement for SBP and DBP were [−40.91, 34.94]
and [−20.68, 13.38] mmHg, respectively, and mean values were −2.98 and −3.65 mmHg,
respectively. Although they had a lot of clinical information available in their database,
this information was not included in their model when estimating BP values. Particularly,
in Kachuee et al. [19] were reported the lowest errors in both cal-free and cal-based sce-
narios. Nevertheless, ECG information was necessary jointly with the PPG time series,
followed by a feature extraction step to get estimations. On the contrary, in Slapničar et al.
[26], where a leave-one-subject-out experiments were performed, only PPG raw signal was
necessary. The dataset used in Slapničar et al. [26] was nearly the half used in this work,
and except for SBPMAE evaluation in the cal-based scenario, the results presented here are
better. Additionally, in no case authors of studies [19,22,23,26] reported a limitation on the
number of records per subject or the total duration per record. In these terms, we suggest
our work is less biased.

Table 7 shows a comparison between different methods and results that were focused
on the continuous ABP and our results given in Table 3. In Sideris et al. [27] there were 42
subjects and records analyzed from MIMIC database, and each record was composed of
two segments. Furthermore, a completely personalized approach was proposed, in which
as many different models as subjects were created. On the contrary, in our approach just
a single model needs to be trained. In Sadrawi et al. [28] the proposed DCAE model was
trained with 18 subjects from closed data. Additionally, while DCAE model only accepted
fixed input length, the methodology proposed in the present work does not have that
limitation. Although in Sideris et al. [27] and Sadrawi et al. [28] MAE and RMSE values
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were lower than those in the present work, the number of subjects evaluated was lower
and there was no subject’s data restriction between train and test sets.

Table 6. Comparison with related works in term of cuff-less calibration results.

Author Dataset Method Input Signals Calibration
Error

DBP SBP

Chan et al. [18] Unspecified Linear regression Feature ECG Cal-based ME: 4.08 ME: 7.49
PPG STD: 5.62 STD: 8.82

Kurylyak et al. [20] MIMIC Neural network Feature PPG Cal-based MAE: 2.21 MAE: 3.80
(15,000 beats) STD: 2.09 STD: 3.46

Chowdhury et al. [21] Dataset from [45]
(126 subjects)

Gaussian process
regression (GPR) Feature PPG Cal-based

MAE: 1.74 MAE: 3.02
RMSE: 3.59 RMSE: 6.74
R: 0.96 R: 0.95

Eom et al. [24] Own data
(15 subjects)

Deep learning
(CNN+GRU
+Attention)

Raw
ECG

Cal-based MAE: 3.33
RMSE: 3.42

MAE: 4.06
RMSE: 4.04BCG

PPG

Monte-Moreno [22] Own data
(410 subjects)

Random Forest
(RF) Feature PPG Cal-free R2: 0.89 R2: 0.91

Kachuee et al. [19] MIMIC-II
(1000 subjects) AdaBoost Feature

Cal-free
MAE: 5.35 MAE: 11.17
STD: 6.14 STD: 10.09

ECG R: 0.48 R: 0.59

PPG
Cal-based

MAE: 4.31 MAE: 8.21
STD: 3.52 STD: 5.43
R: 0.57 R: 0.54

Slapničar et al. [26] MIMIC-III
(510 subjects)

Deep learning
(ResNet) Raw PPG Cal-free MAE: 12.38 MAE:15.41

Cal-based MAE: 6.88 MAE: 9.43

This work
MIMIC-III
Matched Subset
(1131 subjects)

Deep learning
(Seq2seq
+Attention)

Raw PPG

Cal-free

MAE: 6.57 MAE: 14.39
STD: 8.43 STD: 17.87
RMSE: 8.47 RMSE: 18.07
R2: 0.19 R2: 0.19

Cal-based

MAE: 5.56 MAE: 12.08
STD: 7.32 STD: 15.67
RMSE: 7.40 RMSE: 15.96
R2: 0.41 R2: 0.39

ME, RMSE, STD, and MAE in mmHg.

Table 7. Comparison with related works in term of waveform results.

Author Dataset Method Calibration Error

Sideris et al. [27]
MIMIC
(42 subjects) LSTM Cal-based

RMSE: 6.04
STD: 3.26
R:0.95

Sadrawi et al. [28]
Own data
(18 subjects) DCAE Cal-based

RMSE: 3.46
MAE: 2.33
R: 0.98

This work
MIMIC-III
Matched Subset
(1131 subjects)

Seq2seq+Attention

Cal-free
RMSE: 10.26
MAE: 8.89
R: 0.98

Cal-based
RMSE: 8.67
MAE: 7.39
R: 0.98

RMSE, STD and MAE in mmHg.

It is important to mention that while all PPG signals came from the finger, it is un-
known from which specific site of the arterial tree BP signals were recorded. Nevertheless,
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future studies could improve the results by specifying the sites of the source and target
signals. Furthermore, the information about devices and filters used during data collection
is also unknown for both PPG and ABP signals. Therefore, in addition to the fact that the
type of drug supplied or the existence of previous pathologies is also unknown, the scenario
does not meet the standards of a rigorous medical protocol.

Finally, compared to the previous studies found in the literature, the presented ar-
chitecture allows for the use of both raw signals and DI (age and gender) as inputs. An
improvement in results can be observed when DI is considered (Tables 1 and 3). Further-
more, without any modification in the architecture, other characteristics of the subject
could be incorporated, such as ethnicity, weight, or height. Despite that many of them are
present in the MIMIC-III CDB, the final number of subjects with extra information and also
good quality records was less than 30% of the total used. Pre-existing conditions such as
diabetes, chronic kidney disease, smoking, and dyslipidemia also could be incorporated.

5. Conclusions

In this paper, a new deep learning architecture to estimate the average arterial blood
pressure morphology (ABPM) is proposed. The proposed methodology, for each point
that conforms the ABPM, estimates the blood pressure value and classifies it according
to the stage of the cardiac cycle to which belongs. To the best of our knowledge, this
is a contribution to the literature because most of the existing approaches only estimate
diastolic and systolic values. The methodology presented here also allows simultaneous
use of subject demographic information and raw photoplethysmogram signal from the
finger as model input. Further studies are needed with more specific databases in order
to expand the presented results. In addition, the source code is shared concerning the
reproducibility of the results. Finally, as a potential research direction, this methodology
could be adapted to mobile devices where only one source signal is required.

Supplementary Materials: The source codes are available at https://github.com/AguirreNicolas/
PPG2IABP and the processed dataset is available at https://doi.org/10.5281/zenodo.4598938.
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CDB Clinical database
CNN Convolutional neural network
CVDs Cardiovascular diseases
DCAE Deep convolutional auto-encoder
DI Demographic information
DN Dicrotic notch
DNTO Dicrotic notch time occurrence
GPR Gaussian process regression
GRU Gated recurrent unit
LSTM Long-short term memory
LR Learning rate
MAE Mean absolute error
NN Neural network
R Pearson’s correlation coefficient
RNN Recurrent neural network
RMSE Root-mean squared error
R2 Coefficient of determination
SQ Signal quality
STD Standard deviation of the errors
PAT Pulse arrival time
PEP Pre-ejection period
PPG Photoplethysmography
PPG’ 1st derivative of the photoplethysmogram
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PTT Pulse transit time
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