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Abstract: Additive manufacturing (AM) has gained increasing attention over the past years due to
its fast prototype, easier modification, and possibility for complex internal texture devices when
compared to traditional manufacture processing. However, potential internal defects are occurring
during AM processes, and it requires real-time inspections to minimize the costs by either aborting
the processing or repairing the defect. In order to perform the defects inspection, first the defects
database NEU-DET is used for training. Then, a convolution neural network (CNN) is applied to
perform defects classification. For real-time purposes, Field Programmable Gate Arrays (FPGAs)
are utilized for acceleration. A binarized neural network (BNN) is proposed to best fit the FPGA
bit operations. Finally, for the image labeled with defects, the selective search and non-maximum
algorithms are implemented to help locate the coordinates of defects. Experiments show that the
BNN model on NEU-DET can achieve 97.9% accuracy in identifying whether the image is defective
or defect-free. As for the image classification speed, the FPGA-based BNN module can process
one image within 0.5 s. The BNN design is modularized and can be duplicated in parallel to fully
utilize logic gates and memory resources in FPGAs. It is clear that the proposed FPGA-based BNN
can perform real-time defects inspection with high accuracy and it can easily scale up to larger
FPGA implementations.

Keywords: FPGA; additive manufacturing; defects inspection; convolutional neural network; bina-
rized neural network; selective search

1. Introduction

Additive manufacturing (AM), involving components production layer by layer,
allows users to create a product directly from a 3D computer model, while the conventional
subtractive processing is the result of removal of material, formative processes, and joining
processes [1–3]. The nature of adding materials from the bottom up makes AM a perfect
solution for manufacturing dedicated, complex components. In addition, AM yields faster
prototypes and is convenient for a design modification. Moreover, AM makes it possible
for object components to come with various colors, textures, and materials. When it comes
to manufacturing complex lattice structures, AM is the only solution [4]. Although AM
is gaining tremendous attention due to these advantages, it is also more susceptible to
internal defects. Therefore, defects inspection is a major concern for AM and it needs to be
resolved in real-time automatically.

Defects inspection for traditional subtractive processing is usually performed after
the entire object is produced, which typically only guarantees the surface quality. Mean-
while, in some factories, the product inspection is conducted by human vision. It is
labor-intensive and the accuracy is limited. Apparently, those methods are not suitable in
AM. Chua et al. [5] reviewed current process monitoring/control systems for metal AM
and proposed a comprehensive real-time inspection method and a closed-loop monitoring
system to improve the quality of AM printed parts. To ensure the internal quality while
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improving the efficiency of AM product inspection, deep learning is commonly applied in
both industry and academia [6–8]. Typically, the deep learning-based defects inspection
involves three steps: image acquisition, image classification, and defects localization. Gen-
erally, a sophisticated high-speed, high-resolution camera is deployed to capture object
surface images during AM processing.

Zhu et al. [9] applied the convolution neural network (CNN) for feature extraction and
tried different classifiers: random forest, SVM, and soft-max to achieve 98.75% accuracy on
their own dataset. The experimental environment was a 64-bit Windows 10 system with
i5 CPU, 8 GB memory, and 2.30 GHz basic frequency. However, their method was time-
consuming and could not be applied to real-time industrial applications. Huang et al. [10]
introduced a novel compact CNN model with low computation and memory cost and
achieved 100% accuracy and 29 ms inference time on the NEU dataset with Intel i3-4010U
CPU. Cui et al. [11] presented a CNN model which achieved an accuracy of 92.1% within
8.01 ms. The experiments were conducted with AMD Ryzen 52600 processor and Nvidia
1070 GPU. He et al. [12] proposed a defect detection network (DDN) and set up the NEU-
DET dataset. Experiments showed that their DNN obtained 99.67% accuracy for defect
classification and 82.3 mAP for defect detection. However, the authors did not present
image inference time and hardware configurations. Above researches, while reaching
the defects classification goal with high accuracy and promising inference time, were all
CPU-based and GPUs were used for acceleration purposes.

Field Programmable Gate Arrays (FPGAs) have high throughput and can inherently
provide deterministic low latency for real-time applications [13,14]. Compared to GPUs,
FPGAs are more power-efficient and designers can build the neural network from ground
up and tailor the FPGA to best fit the model. Moreover, FPGAs allow camera sensor
fusion and captured images can be handled by the FPGA directly with minimal latency.
ARM processors are generally great for the low-power environment but are typically
slower when compared to Intel CPUs [15]. However, modern FPGAs have embedded
ARM processors along with custom logic on the same chip, striking a balance between
performance and flexibility. In fact, the AM machine itself is an embedded system. It is
desirable that the solution can be incorporated as part of the AM machine, so it can perform
the defect inspection automatically. This will make the AM machine with defects inspection
a standalone system, which is more attractive from the commercial perspective.

Mujawar et al. [16] proposed a 3-layer CNN architecture targeting at written dig-
its recognition application on the MNIST dataset and implemented it in Artix-7 FPGAs.
The authors also optimized the architecture by using loop-level parallel processing. Simu-
lation results showed that the FPGA version can achieve 90% accuracy and 58 µs inference
time. However, image sizes (28 × 28) in the MNIST dataset are much smaller than the
NEU-DET defects dataset (200 × 200). Nakahara et al. [17] implemented a multi-scale
sliding window-based object detector on an FPGA. They trained the VGG11-based bina-
rized convolutional neural network (BCNN). Their detector could classify the image and
locate the object. The implementation was on a Xilinx Zynq UltraScale+ MPSoC zcu102
evaluation board. The researchers did a comparison between their proposed ARM-FPGA
detector and the well-known YOLOv2 CPU-GPU version. Their proposed FPGA-based
solution could achieve 82.20% accuracy, 28 ms inference time, and consume only 2.5 W.
In comparison, the YOLOv2 GPU accelerated version achieved 28.37% accuracy, 20 ms
inference time and 250 W.

In the AM process, once any type of defect is identified, AM machine should pause the
production immediately and try to further inspect or fix the defect area based on specific
defect types. This is because it would be wasting materials and time on a defective product
unless the flaws are determined to be acceptable or are repaired. Therefore, locating the
defects should be executed right after defects classification. Nakahara et al. [17] used the
sliding window on multi-scale images to produce a set of sub-images. After the sub-images
were resized to the original size, they were wrapped together and sent to the FPGA-based
classifier. For any sub-image labeled with defects, its corresponding coordinates in the
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original image will depict the defects area. However, the proposed multi-scale sliding
window is time-consuming and many defect-free sub-images are generated unnecessarily.
In order to produce the potential sub-images with defects more efficiently, region proposal
algorithms can be deployed. Van de Sande et al. [18] adapted segmentation as a selective
search by reconsidering segmentation and proposed to generate many approximate loca-
tions over precise object delineations. Pont-Tuset et al. [19] developed a fast normalized
cuts algorithm, and then proposed a high-performance hierarchical segmenter that made
effective use of multiscale information. Finally, the authors proposed a grouping strategy
that combined multiscale regions into highly-accurate object regions by efficiently explor-
ing their combinatorial space. Taghizadeh et al. [20] proposed an efficient algorithm to
generate a limited number of regions for resolving visual recognition problems.

In this paper, we propose an FPGA-based embedded design to perform AM defects
identification and classification in real time. Although defects inspection exists, most
of the methods were implemented on CPU-GPU and cannot be directly integrated into
AM machines. Our method is an embedded FPGA solution and can be readily adopted.
The CNN architecture is first presented to achieve high classification accuracy. Next,
binarization is applied to CNN parameters to obtain the binarized neural network (BNN)
architecture. Then, the BNN is implemented in the FPGA for acceleration purposes. Finally,
the FPGA-based BNN model is used for AM defects inspection. Once defects are detected,
the selective search algorithm and non-maximum suppression algorithm are applied to
locate the defect regions.

The outline of this paper is organized as follows. Section 2 shows research methods.
More specifically, defect image acquisition, neural network architecture, FPGA implemen-
tation, and defects localization are described. Section 3 presents the results and evaluates
the performance. The Section 4 draws the conclusion.

2. Research Methods
2.1. Defect Image Acquisition

Materials used in AM can be polymers and metals [21]. Due to differences in material
property, defect features in metal AM and polymer AM have remarkable disparities. In our
paper, we studied the metal additive manufacturing. Acquiring the defect image dataset is
usually the barrier that stops researchers from training their neural network since obtaining
their own dataset from experiments consumes lots of time and materials [22].

2.1.1. NEU-DET

K. Song and his team’s efforts on the Northeast University surface defect database
(NEU-DET) [23] helped alleviate the above situation in the defects detection field. It in-
cludes six kinds of typical surface defects of the hot-rolled steel strip. In our work, we
took four types of defects from NEU-DET, namely rolled-in scale, patches, inclusion,
and scratches for model training. There are 300 samples for each type of defect, and each
image has 200 × 200 pixels, where the pixel size is 1.975∼2.7 mm (depending on images).
The 200 × 200 image size is typical for training CNNs. Resolutions beyond that, however,
will tremendously increase the size of the neural networks and slow down the training
and prediction speed. When the image resolution is higher, a common practice is to split
the image into sub-blocks and use the sub-images for training the CNN model to per-
form defect inspection in metal AM [11]. The 200 × 200 image size used in our paper is
comparable to literature with CPU-GPU approaches, and is considered the state-of-the-art
comparing to other FPGA-based implementations (e.g., 28× 28 in [16], 32× 32 and 48 × 48
in [17]). Zhu et al. [9] applied images with the size of 120 × 80 pixels to train the CNN
for classification of weld surface defects. Our work is applicable to defective images at
different scales as long as the images are segmented into sub-images.
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2.1.2. Preprocessing

The 200 × 200 image size of the NEU-DET dataset is sufficiently large to train our
neural networks. For each image in the NEU-DET dataset, we extracted a defect-free
sub-region, resized it to 200 × 200 and labeled it as “defect-free”. In addition, according to
the defect annotations, for every image in each defect type, we extracted the sub-regions,
resized them into 200 × 200, and labeled them with the same defect type. This ensured
that the trained neural network could be also used for locating the defects. The modified
dataset was split into training and testing sets at the ratio of 7:3. For every 10 random
images in the dataset, seven images were assigned to the training set, and the other three
were assigned to the testing set.

2.2. Neural Network Architecture

CNN models are ubiquitous in image data processing. It is one of the state-of-the-art
computer vision techniques for image classification [24,25]. In general, the number of
parameters in neural networks grows tremendously with the number of layers, which
makes the model training computationally intensive. CNNs’ convolutional operations use
information from adjacent pixels to effectively downsample the image. It can successfully
extract the image features while reducing the number of neural network parameters.
Therefore, in this paper, we adopt the CNN model due to its efficiency and high accuracy.
However, considering the fact that we will implement it on FPGAs because of the energy
efficiency and embedded nature of the design, we binarize the CNN weight parameters.
With binarized weight values, we can replace the multiplication with XNOR bit operations,
which tremendously speeds up the inference time in the FPGA [26,27]. Therefore, a BNN
architecture as shown in Figure 1 is proposed in our studies.

Figure 1. Binarized neural network architecture.

Our BNN model is elaborated as follows. The 200 × 200 pixels gray-scale image is
first processed by:

f (x) = (x− 127.5)/128. (1)

The x is a pixel represented by 8-bit integer, which ranges 0 to 255. The constant 127.5 is
the mean of range boundaries 0 and 255. The constant 128 is a scaling factor. After the
pre-processing, the pixel values are constrained within (−1, 1). Then the matrices of real
numbers are fed into the first convolutional layer with a filter size of 3 × 3 for feature
extraction. In the convolutional layer, the “use_bias” parameter is set to false. The max
pooling layer is used for extracting the maximum value in a sub-region of the feature map.
Our max pooling layer is of 2 × 2 in size and the stride is set to 2. The output of max
pooling is without padding. Batch normalization layer is applied to mitigate the effect of
unstable gradients. It standardizes and normalizes the input values by scaling and shifting
operations. In our batch normalization layer, momentum is set as 0.999, epsilon is 0.001,
and scale is false, respectively. The momentum is a parameter used for calculating the
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population average during inference. The epsilon is a small float number added to variance
to avoid dividing by zero. The binarization layer works as an activation function as shown
in the following equation:

q(x) =

{
−1, x < 0
1, x ≥ 0,

(2)

where x is the output from the batch normalization layer, which is a real number. The q(x)
is a 1-bit output of the binarization layer. After passing three additional convolutional
layers as well as corresponding max pooling, normalization, and binarization layers, we
can successfully extract image features.

Once the features are extracted, the next step is classification. The classification module
takes 25 × 10 × 10 feature maps and flattened them as a 2500 feature vector. Then, two
dense layers are deployed to densify the 2500 feature vector to the dimensional of 5. Finally,
a soft-max layer, as depicted in Equation (3), is applied to generate the output. In our BNN
design, M is the number of classes (number of defect types plus one defect-free type). Zi
represents the ith real number from the BNN activation outputs. δ(zi) is the probability of
the ith class. The final outputs are 5 real numbers representing the probabilities of defect
types, namely, defect-free, rolled-in scale, patches, inclusion, and scratches.

δ(zi) =
ezi

∑M
j=1 ezj

f or i=1,...,M and z = (z1, ..., zM) ∈ RM. (3)

In our BNN model, the cross-entropy loss function, as shown in Equation (4), is
applied for measuring the differences between the predicted class and the corresponding
labeled class:

L(w) =
M

∑
m=1

C

∑
c=1

ymclog(P(ym = c|Xm)), (4)

where M represents the number of classes, ym is the predicted class, and c is the labeled
class. The images with label m is denoted as Xm. The training process of our model is
targeting at minimizing the loss function by adjusting the weight parameters. Our BNN
training is performed on an Intel i5-7400 CPU @ 3.000 GHz. We used python scripts with
the open-source library of larq [28] and keras [29]. The TensorFlow backend engine was
employed, and the NVIDIA GeForce GTX 1060 3GB was applied for acceleration.

2.3. FPGA Implementation

After the BNN model is trained on the CPU, it can be used for inference. In order to
make the AM machine an independent and complete system, we present the inference
process as an embedded design. The BNN is implemented in the system on a chip (SoC) [30],
which is the Terasic SoC kit development board as shown in Figure 2. This board contains
an FPGA embedded with an ARM processor, as well as other components such as memory,
connectors, sensors, and display. The FPGA device is Intel Cyclone V. The hard processor
embedded in the FPGA is a Dual-Core ARM Cortex-A9 MPCore Processor. This board is
affordable and is currently available in common electronic components distributors such
as Digi-Key Electronics. It can also be ordered directly from Terasic’s official website. Due
to its low price, it is usually used for education purposes and small system prototypes.

The FPGA acceleration architecture is described in Figure 3. The image prepossessing,
convolutional layer 1, and the last activation layer are realized in the ARM. As a result
that these layers involve real number arithmetics, it is easier to be implemented in the
ARM instead of the FPGA custom logics. The outputs of convolutional layer 1 are sent
to the FPGA through the AXI bus using the Xillibus IP core [31]. After FPGA processing,
the output of dense layer 2 is then transferred back to the ARM for the activation layer.
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Figure 2. Terasic system on a chip (SoC) kit development board.

Figure 3. Field Programmable Gate Array (FPGA) acceleration architecture.

In our BNN model, only the convolutional and dense layer weights are binarized,
while the parameters of the batch normalization layer are still real numbers. Figure 4 shows
the details. Although the drawing only shows part of the entire BNN model, it is clear that
the values become real numbers right after passing through the normalization layer, which
indicates that the weights of the normalization layer are real numbers. In general, a real
number is represented as a floating point number in computers. In order to avoid any
floating point operations in the FPGA, which are resource hungry and timing consuming,
we use the fixed-point notation [32]. The fixed-point number representation is a real data
type for a number that has a fixed number of digits after the radix point. A value of a
fixed-point data type is essentially an integer that is scaled by a specific factor determined
by the type. In our design, the scaling factor is 1024, which means that 10 bits are needed
for representing the original real number’s fraction part. According to the maximum value
of our batch normalization parameters, we use 18 bits to represent the integer part of the
original real number. As a result, the real number is stored as a 28-bit fixed-point number
inside the FPGA.
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Figure 4. Describes the data type through the binarized neural network (BNN) convolutional layer 2.

Our FPGA design is written in Verilog hardware description language (HDL), which is
used to model electronic systems. Verilog is commonly used in the design and verification
of digital circuits at the register-transfer level. Different from software design using c/c++,
hardware design using HDLs need to take care of the timing. HDLs use principal digital
blocks such as flip flops, registers, latches, and memory to describe digital circuits. It has
to handle address and clock signals and take the gates/propagation delay into account.
In our FPGA design, we use finite state machines (FSMs) to help implement the differ-
ent convolutional layers in the BNN model. The FSM is a computation model that can
guarantee the logic sequence of a function and is usually applied in synchronous designs.

In the FPGA design, the convolution operation can be taken as a set of matrix mul-
tiplications. Those intermediate results are stored in the random-access memory (RAM).
RAM access time is typically 2 clock cycles. Our convolutional layer filter size is 3 × 3.
Before every matrix multiplication, it needs to repeat 9 times the image data access to RAM,
which could be time-consuming. Instead, we define a shift register as shown in Figure 5 to
access all 9 data at once [17], which speeds up the process dramatically. This will be even
more efficient if a larger filter size is deployed (e.g., 5 × 5 or 7 × 7).

Figure 5. Shift register design.

During the inference process, all the layer weights are stored in the read-only-memory
(ROM), which is a type of non-volatile memory used in embedded systems. Data stored in
ROM cannot be modified after it is programmed. This makes it perfect to store the trained
neural network weights/parameters. In the FPGA design, we need first to prepare the
memory initialization files (with the extension .mif) that specify the ROM initial contents.

2.4. Defects Localization

After any image is classified as one of the four defect types: rolled-in scale, patches,
scratches, and inclusion, the AM machine should stop printing the object and further
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inspect the defect areas. To make our AM defect inspection more functionally powerful,
we provide the defect locations based on the existing BNN model. The image identified
with defects should be retrieved for further processing. Given its size 200 × 200, we use a
4-tuple < xmin, xmax, ymin, ymax > that contains four coordinates to constrain the defect area.
The xmin, xmax, ymin, and ymax are defect area’s left boundary, right boundary, up boundary,
and bottom boundary, respectively, with the range from 1 to 200. We need to find a 4-tuple
value for every defect within that image. Our approach is to suggest as many potential
defect sub-regions as possible, where each sub-region is denoted by a 4-tuple. Then those
sub-regions will be resized to 200× 200 pixels and fed into the BNN model. If the output of
a sub-region is labeled as defective, its corresponding 4-tuple is marked as one of the defect
areas, which can be used for defects repair or displaying on the screen to alert the specialist.

2.4.1. Sub-Region Generation

The objective of sub-region generation is to identify the possible locations of the
defects in the image and detect more defects while fewer sub-regions are generated. Selec-
tive search algorithm is typically used to efficiently propose multiple sub-regions [19,33].
It starts by over-segmenting the image. Then, it recursively combines smaller similar re-
gions into larger ones. Selective search takes four types of similarities into account, namely,
color similarity, texture similarity, size similarity, and shape similarity. When the number
of regions, which decreases as the recursive combination continues, reaches a pre-defined
threshold, the rest regions are treated as candidate sub-regions.

2.4.2. Non-Maximum Suppression

However, the previously mentioned selective search algorithm will generate many
overlapping regions. If one defect object is included within several regions, the BNN
would output multiple redundant 4-tuples. More illustrative details are shown in Figure 6.
To eliminate those overlapping regions, we adopted the non-maximum suppression [34].
The non-maximum suppression method takes a list of bounding boxes and corresponding
defect type probabilities as inputs, where the boxes are described by 4-tuples, and selects a
single bounding box out of many overlapping boxes. Non-maximum suppression works
as follows:

1. Discard boxes that are below a given probability threshold T1.
2. Pick the box with the highest probability as the output.
3. Discard remaining boxes where IoU ≥ T2 with the previous output box. IoU is the

intersection over Union. T2 is a given threshold, and typically set to 0.5.
4. Repeat step 2 and 3 until no boxes left.

(a) (b) (c)

Figure 6. The results of non-maximum suppression algorithm: (a) describes the input image; (b) de-
scribes the defects localization results without non-maximum suppression; and (c) describes the
defects localization results with non-maximum suppression.

3. Results Evaluation
3.1. Evaluation of BNN Architecture

The testing set images are used for evaluating our BNN model. For every image
fed into our BNN model, five outputs are generated to represent the probabilities of each
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class. The class with the largest probability is our BNN model’s prediction. The accuracy
is calculated by the number of correct predictions over the total number of predictions.
Our BNN model can achieve 97.9% accuracy on either defective or defect-free classification.
This is achieved by treating all four defect types: rolled-in scale, inclusion, scratches,
and patches as defective only. We also evaluated the classification accuracy on specific
defect types for repair purposes. Due to the cross-class similarity, various defect types
do not have apparent differences and different types of defects overlap within some
images. Even for the same defect class, training defect images are acquired under different
illuminations and there are changes in materials. Our defect type classification accuracy is
88.07%. Relative BNN model’s accuracy and loss plots are shown in Figure 7. We believe
that the 88.07% accuracy on defect type classification is acceptable for our BNN model.
In AM defects inspection, the most important goal is to distinguish whether the object has
defects or not, in which case the exact defect type is not of high priority.

(a) (b)

(c) (d)

Figure 7. BNN model training results: (a,b) show BNN model accuracy and loss on defects identification (defective or
defect-free); (c,d) show BNN model accuracy and loss on defect type classification.

3.2. Evaluation of FPGA Implementation

Our embedded design of the BNN model is used for inference and a single BNN
implementation can inspect one image within 0.5 s. The BNN design is modularized and
can be replicated to fully utilize logic gates and memory resources of FPGAs. The FPGA
design compilation results are shown in Figure 8. The logic gates utilization is only 12%
and block memory utilization is 22%. Each BNN module utilizes 5 K ALMs and 1.25 Mb
block memory. Our design can provide real-time inspection capability since AM process
is a mechanical process and is relatively slow. The FPGA device on the Terasic SoC kit
development board belongs to Intel Cyclone V series, which is a lower-end family of Intel
SoC FPGAs. Other SoC FPGA devices (from Intel or Xilinx) can also be used for our BNN
model implementation without many modifications. Therefore, our design can easily scale
up and inspect more images simultaneously by switching to a more powerful FPGA chip.
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For example, Intel FPGA Stratix 10 GX10M can generate 246 BNN modules, which is
capable of processing one image every 2 ms. Table 1 shows three Intel FPGA families with
different logic gates and block memory sizes.

Figure 8. BNN model FPGA design synthesis results.

Table 1. Describes different FPGA chips’ capability of replicating BNN modules.

FPGA Device ALMs Block Memory Maximum No. of BNN Modules

Cyclone V 5CSXC6 41.5 K 5.6 Mb 4
Arria 10 GT1150 427.2 K 65.7 Mb 52

Stratix 10 GX10M 3466 K 308 Mb 246

3.3. Evaluation of Defects Inspection Results

For every image fed into our BNN inference model, we have five real number outputs.
The largest value means the highest probability and its corresponding class is the expected
result. For any image identified as defect-free, no further actions are needed. The AM
machine just keeps printing the object, and the camera continues to send images to the BNN
module. Once any defect is spotted, the AM machine stops printing. Our ARM processor
will execute the selective search algorithm to propose multi-regions. After resizing those
regions, the ARM will feed them into the BNN and record their corresponding coordinates
in the original image. In addition, non-maximum suppression algorithm is adapted to
eliminate overlapping areas. Finally, defect areas will be provided and highlighted with
boxes. Some sample defect results are shown in Figure 9.

Figure 9. Defect inspection results.
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4. Conclusions

In this paper, we have proposed an FPGA-based real-time embedded system for AM
defects inspection. The BNN model was presented and implemented on FPGA. Including
identifying defect types, our design can also provide defect area coordinates for any follow-
up repairs or specialist’s re-verification by utilizing selective search and non-maximum
suppression algorithms. The NEU-DET dataset is used for training our BNN model. It has
achieved 97.9% accuracy in identifying whether captured object image has defects or not.
By applying FPGA acceleration, our BNN model can process a single gray-scale image
within 0.5 s. Considering the AM object production speed, the results can guarantee real-
time quality inspection in the manufacturing process. In addition, our FPGA-based design
can easily scale up by generating more BNN modules in a more powerful FPGA. It is also
promising for other applications with higher processing speed requirements.
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