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Abstract: Spin-dependent tunneling structures are widely used in many spintronic devices and
sensors. This paper describes the magnetic tunnel junction (MTJ) characteristics caused by the
inhomogeneous magnetic field of ferromagnetic layers. The extremely oblate magnetic ellipsoids
have been used to mimic these layers. The strong effect of an inhomogeneous magnetic field on the
magnetoresistive layers’ interaction was demonstrated. The magnetostatic coupling coefficient is
also calculated.
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1. Introduction

Spin-tunnel magnetoresistive nanostructures are used in various spintronic devices:
in magnetic field sensors [1–4], in magnetoresistive biosensors [5], and in magnetoresistive
memory elements [6–8]. The magnetic tunnel junction (MTJ) consists of a conducting free
magnetic layer (FL), a dielectric tunnel barrier, and a conducting fixed magnetic layer

(FixL) [7,8]. The vector of magnetization
→
M2 in the FL has two equilibrium stable states.

It is determined by the direction of the anisotropy axis, and can be transferred from one
state to another by the magnetic field of electric current pulses in planar conductors. In this
paper, we study the model of the MTJ and the process of remagnetization of its state by

an external magnetic field. The magnetization vector
→
M1 of the FixL is directed along the

anisotropy axis. It has a high magnetization reversal field and does not change its direction

when the orientation of
→
M2 in the FL is changed.

In some cases of practical use (the element of the magnetoresistive memory cell,
the magnetosensitive element of a magnetically controlled scheme, the threshold sensor,
etc.), it is necessary to have two stable states of the magnetization vector of the FL, which are
defined through a change in the magnetoresistance of the MTJ. For example, for the stable
operation of an MTJ-based bistable element, it is necessary to find its optimal geometric
parameters and values of the magnetic field vector at which its state is switched. Research in
this direction for various modifications of MTJ has been actively carried out for over
20 years [7,8]. For example, in [9], a theoretical study of the range of magnetic fields in

which the direction of the vector
→
M in the FL switches from one stable state to another was

carried out. Magnetic stripes were modeled as strongly flattened identical ellipsoids with
an equal magnetization. The density of the magnetostatic energy of the interaction of the
stripes is considered to be

wc = −(
→
M2
→
Hm1) (1)
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where
→
M2 is the magnetization vector of the second stripe; and

→
Hm1 is the magnetic field

created by the first stripe in the area of the second stripe, which was considered uniform
and coinciding with the demagnetizing field inside the ellipsoid—that is, inside the first
stripe. The same author in [4] developed the theory for the case of stripes with different
thicknesses (ellipsoids). In [5], an attempt was made to take into account the difference
between the magnetic field of the FixL outside the stripe and the demagnetization field
inside this stripe, assuming that this field is proportional to the demagnetization field.
It was made by involving a certain decreasing constant coefficient, r = 0.8, which is assumed
to be →

Hm2 = r
→
Hm1 (2)

In this research, we study the range of stable operation of the MTJ by analogy with
the research in [3–5], using the exact expression for the magnetic field of a uniformly
magnetized ellipsoid.

2. Main Provisions of the Theory

In accordance with [9–15], we consider two ferromagnetic layers in the form of uni-
formly magnetized ellipsoids strongly flattened along the Z coordinate axis (Figure 1).
The semi-axes of ellipsoids a > b > c are oriented along the Cartesian axes of the X, Y,
and Z coordinates. Figure 1 shows the cross section of these ellipsoids along the X0Z
coordinate plane.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 9 
 

 

where �⃗�  is the magnetization vector of the second stripe; and �⃗� is the magnetic field 
created by the first stripe in the area of the second stripe, which was considered uniform 
and coinciding with the demagnetizing field inside the ellipsoid—that is, inside the first 
stripe. The same author in [4] developed the theory for the case of stripes with different 
thicknesses (ellipsoids). In [5], an attempt was made to take into account the difference 
between the magnetic field of the FixL outside the stripe and the demagnetization field 
inside this stripe, assuming that this field is proportional to the demagnetization field. It 
was made by involving a certain decreasing constant coefficient, r = 0.8, which is assumed 
to be �⃗� = 𝑟�⃗�  (2)

In this research, we study the range of stable operation of the MTJ by analogy with 
the research in [3–5], using the exact expression for the magnetic field of a uniformly 
magnetized ellipsoid. 

2. Main Provisions of the Theory 
In accordance with [9–15], we consider two ferromagnetic layers in the form of 

uniformly magnetized ellipsoids strongly flattened along the Z coordinate axis (Figure 1). 
The semi-axes of ellipsoids 𝑎 𝑏 𝑐 are oriented along the Cartesian axes of the X, Y, 
and Z coordinates. Figure 1 shows the cross section of these ellipsoids along the X0Z co-
ordinate plane. 

 
Figure 1. Section of the ellipsoidal magnetic stripes of the magnetic tunnel junction (MTJ) along the 
X0Z coordinate plane. 

The lower ellipsoidal magnetic stripe is magnetized along the X coordinate axis and 
is hard magnetic with an infinitely large coercive force (FixL of the MTJ); that is, the 
magnetization vector of this stripe �⃗�  is always oriented along the X coordinate axis. 
The upper ellipsoidal magnetic stripe (FL of the MTJ) has a crystal anisotropy and shape 
anisotropy along the X coordinate axis. Accordingly, it has two stable orientations of the 
magnetization vector �⃗�  of this layer—along and against the X coordinate axis. The 
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Figure 1. Section of the ellipsoidal magnetic stripes of the magnetic tunnel junction (MTJ) along the
X0Z coordinate plane.

The lower ellipsoidal magnetic stripe is magnetized along the X coordinate axis
and is hard magnetic with an infinitely large coercive force (FixL of the MTJ); that is,

the magnetization vector of this stripe
→
M1 is always oriented along the X coordinate

axis. The upper ellipsoidal magnetic stripe (FL of the MTJ) has a crystal anisotropy and
shape anisotropy along the X coordinate axis. Accordingly, it has two stable orientations

of the magnetization vector
→
M2 of this layer—along and against the X coordinate axis.

The geometric dimensions of the layers are shown in Figure 1, where d is the distance
between the layers; i.e., the thickness of the dielectric tunnel barrier of the MTJ. In general,
the thicknesses c of the ferromagnetic ellipsoids (films) may not coincide.

The magnetostatic field outside the ellipsoid will be inhomogeneous and can only be
considered approximately equal to the homogeneous demagnetizing field inside the FixL;
this was assumed in [9–14]. To calculate this field, we use the well-known expression for
the magnetostatic potential of a uniformly magnetized ellipsoid outside this ellipsoid [12]:

ϕ(x, y, z) = 4π
abc
2

∫ ∞

ξ(x,y,z)

dt
(a2 + t)R(t)

·M1xx (3)
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where
R(t) =

√
(a2 + t)(b2 + t)(c2 + t) (4)

It is taken into account that the magnetization vector
→
M1 is directed along the X axis

and has the only non-zero component:

M1x =

∣∣∣∣→M1

∣∣∣∣ = M (5)

The value of ξ is an ellipsoidal coordinate, depending on Cartesian coordinates
ξ(x, y, z) that are determined by solving the following equation [13]:

x2

a2 + ξ
+

y2

b2 + ξ
+

z2

c2 + ξ
= 1 (6)

The projection of the magnetic field strength vector Hx outside the ellipsoid according
to Expression (3) will be equal to

Hx = −∂ϕ

∂x
= 4π

abc
2

(
x

(a2 + ξ)R(ξ)
∂ξ(x, y, z)

∂x
−
∫ ∞

ξ(x,y,z)

dt
(a2 + t)R(t)

)
·M1x (7)

Equation (7) is expressed in terms of the incomplete elliptic integrals of the first
and second kind. The ξ(x, y, z) can be simplified at y = 0 and, according to (6), will be
determined by the following expression:

ξ(x, y, z) =

√(
a2 + c2 − x2 − z2

2

)2

− a2c2 + x2c2 + z2a2 −
(

a2 + c2 − x2 − z2

2

)
(8)

Formulas (7) and (8) were used to calculate the dependence of the Hx strength projection
on the X coordinate along the semi-major axis of the upper ellipsoid, where z = 2c + d
(Figure 1), for magnetic stripes made of FeNiCo with a saturation magnetic moment of
M = 1050 G, for two cases: with a = 3µm, b = 1µm, c = 5 nm, and d = 3 nm; and with a = 0.3 µm,
b = 0.1 µm, c = 5 nm, and d = 3 nm. Graphs of this dependence are shown in Figure 2.
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From Figure 2, it should be concluded that, in the first case, the projection of the 
strength of the magnetic field along the major axis of symmetry of the ellipsoid is basi-
cally almost constant and close to the value in the center of the ellipsoid 𝐻 (0) = −11.57 
Oe. The value of the demagnetizing field inside the lower ellipsoidal stripe is 𝐻 =−11.63 Oe. So, on most of the upper ellipsoid, the magnetic field generated by the 
lower FixL stripe coincides with an accuracy of 0.1%, which proves the approximation of 
the study [9]. However, near the ends of the semi-axis of the upper ellipsoid in an area of 
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(a) for a = 3 µm, b = 1 µm, c = 5 nm, and d = 3 nm; (b) for a = 0.3 µm, b = 0.1 µm, c = 5 nm, and d = 3 nm.

From Figure 2, it should be concluded that, in the first case, the projection of the
strength of the magnetic field along the major axis of symmetry of the ellipsoid is basically
almost constant and close to the value in the center of the ellipsoid Hx(0) = −11.57 Oe.
The value of the demagnetizing field inside the lower ellipsoidal stripe is Hm1x = −11.63 Oe.
So, on most of the upper ellipsoid, the magnetic field generated by the lower FixL stripe



Sensors 2021, 21, 2118 4 of 9

coincides with an accuracy of 0.1%, which proves the approximation of the study [9].
However, near the ends of the semi-axis of the upper ellipsoid in an area of the order of
0.1a, the field sharply changes its sign and reaches the value at the apex of the ellipsoid
Hx(a) = 152.77 Oe. The average value along the major axis of the upper ellipsoid calculated
by Formula (7) is HXcp = −10.23 Oe. If we formally calculate the magnetostatic coupling
parameter r in (2), introduced in [11], by the formula

r =
Hxav

Hm1
(9)

then, for (9), we get the value r = 0.88.
In the second case, when the length and width of the stripes are ten times less

(a = 0.3 µm, b = 0.1 µm), from Figure 2b, it can be seen that the inhomogeneity of the
field inside the upper ellipsoid increases significantly. The demagnetizing field inside
the lower ellipsoid is Hm1x = −113.13 Oe. The field in the center of the upper ellipsoid
generated by the magnetized lower ellipsoid is Hx(0) = −107.29 Oe and differs by 5%
from Hm1x; at the top of the ellipsoid, the value is Hx(a) = 350.04 Oe. The average value
along the larger axis of the upper ellipsoid is Hxav = −73.92 Oe. The parameter r in (9) will
have the following value: r = 0.65.

From the above data, it follows that if the FL and FixL of the MTJ are identical, then at
a depth of about 10% from the top of the FL (the large poles of the upper ellipsoid in
Figure 1) there is a strong inhomogeneity in the magnetization distribution, which may
affect the resistance of the MTJ. To get rid of this feature, it is enough to reduce the FL
in size by about of 10%, then the sensitive layer will be located in a more uniform and
significantly smaller magnetostatic coupling field.

3. Range of Bistable Quasi-Equilibrium States of FL

The range of a bistable quasi-equilibrium state of a uniformly magnetized ellipsoidal
particle in an external magnetic field has been studied for various specific physical prob-
lems [7,9–11]. These similar studies took into account the inhomogeneity of the magnetic
field of FixL (the field created by the magnetization vector of the lower ellipsoid in Figure 1).
We assume that the distribution of the magnetization vectors in the stripes is uniform.
Then, the magnetic energy density of the FL (in the upper ellipsoid in Figure 1) can be
represented as

w = wz + wan + wm + wc (10)

where wz is the magnetic energy density caused by an external field
→
H0 (Zeeman energy), then

wz = −
→
M2
→
H0 (11)

where wan is the monoaxial anisotropy magnetic energy density:

wan = K · sin2 ϕ (12)

where K is a constant of the mono-axial anisotropy whose axis is directed along the X

coordinate axis; and ϕ is the angle between the magnetization vector
→
M2 and the direction of

the X coordinate axis. Expression (12) is often written using the constant “anisotropy field”.

Han =
2K
M

(13)

where

M =

∣∣∣∣→M1

∣∣∣∣ = ∣∣∣∣→M2

∣∣∣∣ (14)
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Taking into account (13), Formula (12) transforms into

M =

∣∣∣∣→M1

∣∣∣∣ = ∣∣∣∣→M2

∣∣∣∣ (15)

The third term in (10), wm, is the density of magnetostatic energy,

wm = −
→
Hm ·

→
M2

2
(16)

where
→
Hm is the demagnetizing field of an ellipsoid whose components are defined by the

following expression:

Hmx = −4πnx M2x, Hmy = −4πny M2y, (17)

nx and ny are the demagnetizing coefficients of the ellipsoid [13]:

nx =
abc
2

∫ ∞

0

dt
(a2 + t)R(t)

, ny =
abc
2

∫ ∞

0

dt
(b2 + t)R(t)

(18)

The last term in (10) is the density of the magnetostatic energy of the interaction with
the magnetostatic field of the FixL (the magnetic field of the lower ellipsoid in Figure 1).
In contrast to [9–11,14], we took into account the influence of the inhomogeneity of this
field. For a simpler calculation, this energy was taken near the larger axis of symmetry
of the ellipsoid; that is, in a narrow cylinder of radius ε and height 2a, within which the
field can be considered to coincide with the field on the axis of symmetry, having one
non-zero component Hx, which is (7). Then, the energy of interaction with this area Wc will
be equal to

Wc =
∫

wcdV = −
∫ a

−a
M2x Hxdx · πε2 (19)

As M2x is constant, it can be taken outside the integral, so Expression (19) becomes
the following:

Wc = −M2x
1
2a

∫ a

−a
Hxdx · πε2 · 2a (20)

Taking into account that the integral in (20) is equal to the mean value of the field Hx
along the axis of the ellipsoid,

Hxav =
1
2a

∫ a

−a
Hxdx (21)

From (20), for the interaction energy density, we get the following:

wc =
Wc

πε22a
= −M2x Hxav (22)

Taking into account the value of the components of the vectors
→

M2 and
→
H0

M2x = M cos ϕ, M2y = M sin ϕ, (23)

→
H0 =

(
H0x, H0y, 0

)
(24)

From Formulas (13)–(22), we obtain the following dependence of the magnetic energy

density (10) on the angle of rotation ϕ of the magnetization vector
→
M2 to the X coordinate axis:
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w(ϕ) = −H0x M cos ϕ− H0y M sin ϕ + 1
2 Han M sin2 ϕ+

+2π
(
nx M2 cos2 ϕ + ny M2 sin2 ϕ

)
− Hxav M cos ϕ

(25)

Expression (25) can easily be transformed to

w(ϕ) = M
[
−(H0x + Hxav) cos ϕ− H0y sin ϕ +

Han + 4πny M
2

sin2 ϕ + 2πnx M cos2 ϕ

]
(26)

Energy density (26), depending on the values of the components of the external field
H0x, H0y and the average magnetostatic field Hxav, can have two local minimums (bistable

state) or one minimum (one stable state of vector
→
M1 orientation). As the external magnetic

field components increase H0x, H0y, while the angle ϕ is fixed, the bistable state changes
into one stable state. Mathematically, it means that the function has three extreme points
(26): two local minimums and a maximum. The critical values of the parameters H0x, H0y,
which make a bistable state change, mean that one local minimum merges a local maximum
in the function (26) and the forming of an inflection point. The values of H0x, H0y at which
such a state occurs can be determined using the following [14]:

∂w(ϕ)

∂ϕ
= 0,

∂2w(ϕ)

∂2 ϕ
= 0 (27)

After differentiating Function (26), we get the following:

(H0x + Hxav) sin ϕ− H0y cos ϕ +
Han + 4π

(
ny − nx

)
M

2
sin 2ϕ = 0, (28)

(H0x + Hxav) cos ϕ + H0y sin ϕ +
(

Han + 4π
(
ny − nx

)
M
)

cos 2ϕ = 0 (29)

The system of Equations (28) and (29) is easy to convert to the following equivalent
system of equations:

H0x + Hxav = −
(

Han + 4πM
(
ny − nx

))
cos3 ϕ (30)

H0y =
(

Han + 4πM
(
ny − nx

))
sin3 ϕ (31)

While the angle ϕ changes from 0 to 2π, Equations (30) and (31) will draw on the
plane a closed astroid curve, the inversion curve, which was first obtained by Stoner and
Wohlfarth [7,14].

The Stoner–Wohlfarth curves, constructed by Formulas (30) and (31), for the two FLs
of the MTJ considered in paragraph 2, are shown in Figure 3. The inner astroid in Figure 3
corresponds to the sample with the semi-major axis of the ellipsoid a = 3 µm and b = 1 µm,
and the outer astroid with the minor semi-axis a = 0.3 µm and b = 0.1 µm. The difference
between this curve and the classical astroid [7,13] is due to its shift along the X axis by the
mean field value (21).

For the values of the external field components H0x, H0y equal to the inner points of the
astroid in Figure 3 there is a bistable state, i.e., two stable orientations of the magnetization

vector
→
M2, and outside of the astroid, only one equilibrium state of

→
M2 is possible [7,13,14].

Thus, in order to transfer the MTJ from a low-resistive to a highly-resistive state, or vice
versa, it is necessary to act with a magnetic field, the components of which lie outside the
critical Stoner–Wohlfarth curve. From Figure 3, it can be clearly seen that magnetization of
the MTJ with a length and width an order of magnitude smaller, but with the same thick-
ness, requires a magnetic field that is ten times larger. This occurs due to an increase in the
demagnetizing coefficients nx, ny in (30) and (31) when reducing the semi-axes of the ellip-
soids a and b by 10 times. The coefficients nx, ny can be reduced by decreasing the thickness
of the magnetic layers; this may weaken the value of the tunnel magnetoresistive effect.
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Let us now determine what is the minimum pulsed magnetic field H0 needed to
switch the MRAM cells. To do this, we write (30) and (31) in dimensionless form, introduc-
ing dimensionless values:

H0x =
H0x

Han + 4πM
(
ny − nx

) , H0y =
H0y

Han + 4πM
(
ny − nx

) , (32)

Hxav =
Hxav

Han + 4πM
(
ny − nx

) (33)

Then, instead of (30) and (31), we get the following:

H0x = −Hxav − cos3 ϕ (34)

H0y = sin3 ϕ (35)

The modulus of the dimensionless vector of the external field strength according to
(34) and (35) will be

H0 =
√

H0x2 + H0y2 =

√(
Hxav + cos3 ϕ

)2
+ sin6 ϕ (36)

Differentiating the expression (36) for ϕ and equating the derivative to zero we get the
equation for determining the value of the angle ϕ, at which H0 reaches its extreme points:

2 cos2 ϕ + Hxav cos ϕ− 1 = 0 (37)

From (37), we find two different values of cosϕ, where the distance to different sections
of the inversion curve in Figure 3 will be minimal:

cos ϕ1,2 =
−Hxav ±

√(
Hxav

)2
+ 8

4
(38)
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For the MTJ described above, Hxav= −0.1577 (for a = 3 µm and b = 1 µm) and
Hxav= −0.1513 (for a = 0.3 µm and b = 0.1 µm); so, they are almost equal.

cos ϕ1 = 0.7476, ϕ1 = 41.6◦ (39)

cos ϕ2 = −0.6687, ϕ2 = 131.9◦ (40)

Taking (39) and (40) into expressions (34)–(36), we find

H0x1 = −0.260, H0y1 = 0.292, H01 = 0.414 (41)

H0x2 = 0.457, H0y2 = 0.411, H02 = 0.614 (42)

According to the notation (32), multiplying (41) and (42) by the multiplier
Han + 4πM

(
ny − nx

)
, receiving for the two FL stripes under consideration (with a = 3 µm

and b = 1 µm and a = 0.3 µm and b = 0.1 µm) the values of 64.9 Oe and 488.6 Oe, we obtain
the following optimal physical values of the field strength components that switch the ori-

entation of the vector
→
M2 in the FL. The calculation results are presented in Tables 1 and 2.

Table 1. For the first stripe with a = 3 µm and b = 1 µm.

N H0x, Oe H0y,Oe H0,Oe

1 −17 19 25

2 30 27 40

Table 2. For the second stripe with a = 0.3 µm and b = 0.1 µm.

N H0x, Oe H0y, Oe H0, Oe

1 −129 144 194

2 221 200 298

4. Conclusions

The influence of the inhomogeneity of the magnetic field in the FixL of the MTJ on

switching the orientations of the vector
→
M2 in the FL was studied. It was found that near

the boundaries of the magnetic stripe of the FL, the inhomogeneity of the magnetic field,
caused by the magnetization of the FixL, reaches a significant value, and the magnetic field
at the border increases sharply compared to the central part of the stripe. When the size
of the MTJ decreases, the inhomogeneity of the magnetic field increases in the volume of
the entire nanostructure. It is shown that if the distribution of the magnetization vector
over the volume of the MTJ is uniform, this inhomogeneity can be taken into account by
introducing the average field. This justifies the model developed in [11] and allows us to
calculate the empirical coefficient introduced in this paper. Within the framework of the
developed theory, the region of the stable equilibrium state of the vector in FL is calculated,
and the critical Stoner–Wohlfarth curve is obtained. The optimal values of the magnetic
field that switch the state of the MTJ are found.
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