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Abstract: State estimation is widely used in various automated systems, including IoT systems,
unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous
and processed in real time. With modern systems’ development, sensors can obtain more and
more signals and store them. Therefore, how to use these measurement big data to improve the
performance of state estimation has become a hot research issue in this field. This paper reviews the
development of state estimation and future development trends. First, we review the model-based
state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF),
unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian
mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high
requirements for models, while it is not easy to obtain accurate system models in practice. The
emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also
mentioned here. Secondly, the current research status of data-driven state estimation methods is
introduced based on network learning. Finally, the main research results for hybrid filters obtained in
recent years are summarized and discussed, which combine model-based methods and data-driven
methods. This paper is based on state estimation research results and provides a more detailed
overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each
method is provided so that beginners can have a clearer understanding. Additionally, it discusses the
future development trends for researchers in state estimation.

Keywords: state estimation; model-driven; data-driven; hybrid-driven; Kalman filter; deep learning

1. Introduction

Some of the states in a system cannot be directly measured, or else, some measure-
ments are not accurate enough due to sensor uncertainty. A sensor is a detection device
that converts an actual physical quantity (the so-called state) into an electrical signal output
and provides measurement data. The conversion process introduces some errors. These
errors include drift error and measurement noise. The sensor’s correction can eliminate
the drift error, but the measurement noise cannot be eliminated fundamentally. Thus, the
output of the sensor cannot be completely consistent with the state to be measured.

State estimation is one of the most common methods for estimating the most likely
value of a state based on measurements and a system. It is a prerequisite for high-level
information extraction and control and has been widely used in mobile robots [1], un-
manned aerial vehicles (UAVs) [2], sensor networks [3], smart grids [4], health performance
detection and evaluation [5,6], etc.

State estimation methods have a long history. In 1809, Gauss proposed an optimiza-
tion method called the least-squares method to determine a celestial body’s orbit from
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measurements [7]. Since the least-squares method does not need to know the signal’s
prior statistical knowledge when estimating, the least-squares method has a wide range of
applications in many fields.

In the 1940s, to control firepower, Wiener et al. [8] designed the Wiener filter in the
frequency domain to achieve linear optimal dynamic estimation in a stationary random
process system. Through the calculation of the Wiener–Hopf equation, the Wiener filter
obtains the analytical solution of the optimal transfer function of the filter, which can
suppress or gate signals containing a variety of information. However, because the Wiener
filter requires that both the estimated state and the measurement conform to a stationary
random process, and the Wiener–Hopf equation needs to be solved in the filtering process,
the amount of calculation and the storage space required are extensive. The project is
challenging to realize; therefore, it limits the applications of Wiener filters.

To overcome the shortcomings of Wiener filters, in 1960, Rudolf Emil Kalman proposed
modern filtering theory [9]. He introduced state space in stochastic estimation theory, used
state models to describe the relationship between states and measurements, and estimated
states based on measurements using predictions and updates. Kalman filtering does
not need to store all historical data. According to the state estimation at the previous
moment and the current measurement information, a new estimate can be calculated
according to the recursive method, which reduces the computer’s storage and calculation
capacity requirements and improves real-time processing. Simultaneously, the Kalman
filter can estimate one-dimensional, stationary random processes and multidimensional,
nonstationary random processes [10].

The Kalman filter has been widely used because of its simplicity and ease of imple-
mentation. Because a computer will continue to accumulate and transmit rounding errors
and truncation errors during the calculation process, the error covariance matrix loses its
positive definiteness and results in unstable filter estimation. Therefore, researchers have
successively proposed a series of numerical, robust filtering algorithms, such as square root
filtering, UD (Upper-Diagonal) decomposition filtering, and singular value decomposition
filtering [11]. These methods effectively improve the Kalman filter’s numerical stability
while also increasing computational efficiency [12].

On the other hand, the standard Kalman filter requires an accurate model, the known
statistical characteristics of the system noise. These requirements are relatively harsh in
applications. In actual systems, the system cannot meet these conditions due to some
uncertainties, making the Kalman filter lose its optimality, which reduces the estimation
accuracy and even leads to divergence. Researchers have introduced the idea of robust
control in filtering to solve this problem, thus forming a robust estimation [13].

Moreover, the standard Kalman filtering theory is only applicable to linear systems
and requires that the observation equations are linear. Meanwhile, in actual engineering
practice, the system is generally nonlinear. Therefore, in the 1970s, Bucy and Sunahara
proposed the extended Kalman filter (EKF) [14–16]. The nonlinear system is linearized
first and then uses the generalized Kalman filter to estimate the state. However, because
the linearization process will introduce errors in the nonlinear system due to calculating
the Jacobian matrix, the final state estimation accuracy will decrease. When the Jacobian
matrix calculation is inaccurate, the problem of filtering divergence will also occur.

The sigma point Kalman filter (SPKF) method is a class of approximate nonlinear
filtering methods based on the Gaussian distribution, including the unscented Kalman
filter (UKF), central difference Kalman filter (CDKF), square-root unscented Kalman filter
(SRUKF), etc. [17]. The ideas of these methods are roughly the same, of which the UKF is
the most famous. It uses several sigma points for nonlinear systems to obtain the accuracy
with second order.

With continuous research, the original methods have improved in the Gaussian do-
main filtering system. Some new methods have been proposed for approximating nonlinear
characteristics. In Bayesian filtering’s general framework, the filtering process involves
predictions and updates, including two integral operations. Under the Gaussian assump-
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tion, the integral is a multidimensional integral operation of the product of the equivalent
Gaussian function and the system function. A new idea is provided to realize approximate
Gaussian filtering: the nonlinear filtering is realized through an integral calculation. For
example, Simon Haykin et al. proposed a new filtering strategy independent of the EKF
and UKF, named the cubature Kalman filter (CKF) [18].

The above methods all describe the noise of a system using the Gaussian distribution.
Studies have shown that the effectiveness of these methods is only valid for single-mode
problems. They assume that the system state and noise are both Gaussian distributions,
where one Gaussian component corresponds to one mode. However, many issues faced
in the real world are often much more complicated than single-mode problems. A typical
example is system noise, including process noise and observation noise, which is not a
Gaussian distribution, but a gamma distribution or other complex mixed distributions [19].
Therefore, with the filtering of the above mentioned algorithms based on the Gaussian
noise assumption, it is difficult to obtain a satisfactory estimation performance due to
the model mismatch. In general, complex noise can be expressed as the sum of multiple
Gaussian noises. Then, the EKF, UKF, and CKF are applied to obtain the Gaussian mixture
(GM)-EKF, UKF, and CKF [20].

It is necessary to provide the system with the specific expression of the model and the
distribution characteristics of noise for the standard Kalman filter, EKF, UKF, CKF, etc., as
well as the multimode, complex, approximate Gaussian mixture filtering methods, such
as GM-EKF, etc. However, when the system is complex, it is challenging to obtain these
system models. Therefore, based on random sampling, another type of filter has appeared,
which realizes the state’s estimation by calculating the conditional probability of the system
state and realizes the conditional probability transfer through Bayes’ theorem. Its algorithm
is not based on the state function’s distribution characteristics, observation function, and
noise (such as the mean and variance, etc.), but the state’s conditional probability density.
Its purpose is to provide the state’s probability distribution, not the functional expression
of the state. This algorithm is based on Monte Carlo simulation technology and is usually
called the sequential Monte Carlo method or particle filter method [21].

In this type of method, a large number of particles are generated by Monte Carlo
simulation, and their distribution is used to approximate the probability distribution of
the state. Its advantage lies in its strong applicability, and it can be applied to any complex
system through calculating particles. Its accuracy can approach optimal estimation. It can
overcome the shortcomings of traditional Gaussian filtering algorithms such as the EKF,
which are more sensitive to initial value selection. By contrast, particle filters easily capture
the actual state within a specific error range due to particles’ dispersion, thereby improving
the filter system’s stability and convergence speed. However, the Monte Carlo simulation
method is challenging to realize recursive filtering with, and the calculation amount is
much more tremendous than that with the Gaussian approximation method, which affects
its real-time application to some extent.

With the development of sensor technology and storage technology, especially in
recent years, modern intelligent systems, such as unmanned aerial vehicles (UAVs), au-
tonomous driving systems, etc., have been widely used. We found that there are more and
more sensors in the system, and the measurement is also increasing. In the military and
civil fields, many processes, such as target monitoring, detection, tracking, and identifi-
cation, are based on multiple sensors’ measurements and are completed by information
fusion technology [22]. Therefore, the data-driven learning network has also become an
important research direction in state estimation theory.

Compared with model-based methods that require known system information, data-
based methods can use big data to obtain system characteristics that cannot be described
by the model. However, they abandon the established knowledge of the system and rely
too much on data. When the data are insufficient or of low quality, the result is not better
than that from traditional model-based estimation methods. Therefore, these two methods
have their advantages and disadvantages. It is crucial to effectively combine model-driven



Sensors 2021, 21, 2085 4 of 25

and data-driven methods to improve the performance of state estimation effectively, i.e.,
use a hybrid-driven state estimation method.

Estimation methods such as the Kalman filter series, EKF, UKF, CKF, and particle
filters have obtained rich published research results. They are widely used in various
detection, tracking, and control systems. However, data-driven methods based on shallow
networks cannot fundamentally improve the estimation performance, so related research
has not been the mainstream part of research into estimation methods. Recently, the rapid
development of other artificial intelligence methods was highlighted in recent years [23,24],
prompting researchers to reconsider improving estimation performance by the hybrid
modeling method. However, related research in this area has just begun, so there are not
many related review papers.

Although there are not many, the authors are still willing to recommend the following
reviews that are worth reading: Hong et al. [25] provides a survey for estimators that
can produce accurate estimations for complex dynamic systems, such as airbag, debris
detection, and active blast protection systems. From an application perspective, Dehghan-
pour et al. [26] focuses on distribution system state estimation in power systems. A few
critical topics are discussed, such as mathematical problem formulation, the application
of pseudomeasurements, metering instrument placement, network topology issues, the
impacts of renewable penetration, and cybersecurity. It is worth emphasizing that both
conventional and modern data-driven methods are reviewed in this survey. Similarly, Jin
et al. [27,28] are also based on the applications. Simultaneously, the latter emphasizes the
research progress in artificial intelligence in moving objects, which is more general and
includes deep learning networks in unmanned autonomous mobile systems.

Unlike the above review papers, this review introduces state estimation methods
without emphasizing a specific system or application background. We try to provide the
development path of the state estimation method from the perspective of the method and
discuss the future development trend under the premise of the current system’s universal
characteristics.

This review is based on the problem of state estimation, starting with the introduction
of classic estimation methods. We analyze the problems of classic estimation methods,
the current research progress and problems of model-driven and data-driven methods,
and discuss the state based on the combination of data-driven and model-driven methods.
Finally, we put forward our ideas for future state estimation research.

The structure of this article is as follows. Sections 2 and 3 are both for model-driven
estimation methods. Section 2 describes the Kalman filter and Gaussian mixture filter,
which are based on given system models. Section 3 describes the state estimation method
when the system model is not accurate enough, including a robust filter and closed-
loop adaptive filter. Section 4 discusses data-driven methods, including deep neural
networks, the hyperparameter optimization of network models, and the ability to suppress
sensor noise. Section 5 provides a detailed introduction to current hybrid drive estimation
methods. Finally, in the Conclusion, we discuss the future development research direction.

2. State Estimation Based on a Distinct Model

The state estimation method discussed in this section is based on the unified frame-
work of Bayesian filtering. These methods require a known model of the system: the
expression of the state (the so-called process model) and the relationship between the
measurements and state (the so-called measurement model). Furthermore, the distribution
of the process noise and observation noise of the system must be known. When the sys-
tem’s noise is Gaussian noise, the Kalman filter series can obtain satisfactory estimation
results (mentioned in Section 2.1). However, if the noise becomes complex and cannot
be approximated by the sum of Gaussian noise, the mixed filter is needed (mentioned in
Section 2.2).
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2.1. Kalman Filter Family

The standard Kalman filter requires a model of the given system, and the state of the
system is usually described as the following process model:

xk+1 = Akxk + wk (1)

where xk is the state, Ak is the state transition matrix, wk is the state noise with a given
covariance of Qk , and the measurement model is the following:

zk = Ckxk + vk (2)

where Ck is the measurement matrix, zk is the measurement data, and vk is the measurement
noise with a given covariance of Rk. Kalman filtering provides the estimated state x̂(k|k)
by the state’s initialization x̂(0|0) and covariance P(0|0) = P0 :

x̂k|k−1 = Ak−1 x̂k−1|k−1
Pk|k−1 = Ak−1Pk−1|k−1 AT

k−1 + Qk−1
(3)

and

Kk = Pk|k−1CT
k

[
CkPk|k−1CT

k + Rk

]T

x̂k|k = x̂k|k−1 + Kk[zk − Ck x̂k|k−1]

Pk|k = [I − KkCk]Pk|k−1

(4)

Equations (3) and (4) show that the Kalman filter algorithm has a two-step process.
Equation (3) denotes the prediction step, in which the prediction estimates x̂(k|k− 1) are
obtained based on the last estimate x̂k−1|k−1. The second step is the update step shown
in Equation (4), in which the estimates x̂(k|k) are updated using a filter gain Kk based
on x̂(k|k− 1).

Since most practical systems have nonlinear characteristics, researchers have improved
the nonlinear system based on the standard Kalman filter. The nonlinear filtering algo-
rithm, the EKF, uses the Taylor expansion of a nonlinear function to retain the first-order
linearization. The study [29] used the EKF to estimate the real-time traffic state in freeway
stretches for the nonlinear macroscopic traffic flow model. Next, we provide the system
model and then illustrate the EKF estimation method.

The nonlinear relation of the system is described by the following general model:

xk+1 = f (xk, wk)
zk = h(xk, vk)

(5)

where f (·) and h(·) are the nonlinear process and measurement equations, respectively.
We cannot find the process matrix Ak and measurement matrix Ck in Equations (3) and (4),
which are replaced by f (·) and h(·). Therefore, the Kalman filter in Equations (3) and (4)
cannot be used to estimate the nonlinear systems in Equation (5).

Then, the EKF obtains the prediction x̂k|k−1 from the nonlinear transfer f (x̂k−1|k−1).
In addition, the innovation zk − Ck x̂k|k−1 can be changed to zk − h(x̂k|k−1). The update of
the state then becomes

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1) (6)

We note that the other equations in the standard Kalman filter, such as Equation (4),
must use the matrices Ak and Ck. The EKF method obtains these matrices as the following
first-order Taylor series expansions: The first-order Taylor expansion of the nonlinear
process equation f (xk, wk) as ∂ f

∂x |x̂k−1|k−1
= Fk and ∂ f

∂w |x̂k−1|k−1
= Lk and the Taylor expansion

of the nonlinear measurement equation h(xk, wk) as ∂h
∂x |x=x̂k|k−1

= Hk and ∂h
∂v |x=x̂k|k−1

= Mk,
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where Fk, Lk, Hk, and Mk are the transformations from the Taylor expansion based on
the nonlinear process equation f (xk, wk) and the measurement equation h(xk, wk). Then,
similarly to the standard Kalman filter in Equation (4), the estimation covariance and
the filter gain are obtained by Fk, Lk, Hk, and Mk for the nonlinear system models in
Equation (5).

Because the Taylor expansion only has the first order, an EKF is commonly applied to
a nonlinear system’s weak case. If the system’s nonlinearity is strong, the error between
the approximate linear system of the Taylor expansion and the original nonlinear system
leads to a decrease in estimation performance and even to the phenomenon of filter
divergence. To maintain the estimation performance, Yang et al. [30] provided the improved
federated EKF for multisensor-integrated navigation according to the near-ground short
distance navigation applications of small unmanned aerial vehicles (UAVs). The study
[31] employed the EKF to fuse the data from multiple heterogeneous sensors, including
an inertial measurement unit (IMU), a magnetometer, a barometer, a GNSS receiver, an
optical flow sensor (OFS), light detection and ranging (LiDAR), and an RGB-D camera for
an unmanned aerial vehicle.

Unlike the EKF, the UKF does not use linearization. Instead, several effective adoption
points are used to simulate the state transfer relationship of the nonlinear model. By
effectively selecting sampling points, the mean and covariance of the state can be better
captured.

In 2002, Julier proposed the UKF method and selected sampling points as the un-
scented transformation [32]. Later, researchers proposed other unscented transformations
such as spherical unscented transformation. The difference from the standard Kalman filter
is that the UKF is not just a calculation of the mean and covariance of the state estimation
but also the calculation of each sigma point generated by the unscented transformation.
Therefore, in addition to the standard prediction and update process, the filter includes
generating sigma points and calculating the mean and variance of the current step based
on sigma points [33]:

Assuming that the state estimate and its covariance for the previous step have been ob-
tained, namely, x̂k−1|k−1 and Pk−1|k−1 , the process of unscented transformation is calculated
as follows:

x̂(i)k−1|k−1 = x̂k−1|k−1 + x̃(i) (7)

where

x̃(i) = 0, i = 0

x̃(i) = (
√
(n + k)Pk−1|k−1)

T

i
, i = 1, · · · , n

x̃(i) = −(
√
(n + k)Pk−1|k−1)

T

i
, i = n + 1, · · · , 2n

(8)

Then, each sigma point x̂(i)k−1|k−1 is predicted and is weighted as

x̂k|k−1 = ∑2n
i=0 w(i) x̂(i)k|k (9)

with w(0) = a
n+a , w(i) = 1

2(n+a) , i = 1, 2 · · · 2n , and a being a positive constant. Similarly,
the forward prediction of the measurement and the estimated weight also requires calcu-
lating sigma points and the weighted summation. The details of the calculation process
can be found in Jin et al. [28]. In our former research [34], we proposed two nonlinear
estimation methods based on the EKF and UKF, respectively, for real-time indoor RFID
(Radio-frequency identification) tracking. The results show that compared to the EKF, the
UKF method can obtain a lower covariance, while the EKF can cost less in calculation. The
study [35] developed an adaptive unscented Kalman filter (AUKF) as a vehicle driving
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state observer based on the seven-degree-of-freedom vehicle model and the Dugoff tire
model.

The CKF also uses several points to expand the previous step’s estimation and variance,
which is just a special case of the UKF with 2n sigma points. Differently from the sigma
point of the UKF in Equation (8), x̃(i) is obtained by

x̃(i) = (
√

Pk−1|k−1)
T

i
, i = 1, · · · , n

x̃(i) = −(
√

Pk|k−1)
T

i
, i = n + 1, · · · , 2n

(10)

with w(i) = 1
2n .

We can find that the CKE and UKF are very similar in the form of the algorithm. The
CKF is simply a special case of the UKF with 2n sigma points (with no center sigma point).
To obtain that, though a different path is followed, in the end, we have a similar algorithm.
Therefore, the CUK and UKF are also relatively similar in estimation performance. As an
application for the CKF, [36] proposed a strong tracking mixed-degree cubature Kalman
filter (STMCKF) method according to the system characteristics of the quadruped robot to
obtain the fusion estimation of forward kinematics and the IMU track.

Finally, we would like to discuss the performance of each one of these Kalman filters.
The classic Kalman filter requires the system to be linear with Gaussian white noise. It is
obviously difficult to meet these requirements in an actual system. Therefore, in practical
applications, the classic Kalman filter’s performance cannot reach the optimal estimation
performance. However, the classic Kalman filter plays a pioneering role in research, so
it is the theoretical basis of other filters. If the system is nonlinear and contains Gaussian
white noise, the performance ofthe EKF, UKF, and CKF is different. Most research results
indicate that the UKF and CKF are better than the EKF [34]. Meanwhile, the UKF and CKF
exhibit almost the same performance. Recently, the Kalman filter has been developed in
practical systems, such as the distributed Kalman filter [37] for sensor networks, hybrid
Kalman filter [38], and adaptive ensemble square root Kalman filter [39].

2.2. Gaussian Mixture Filter and Random Sampling Filter

The Kalman filter given in Section 2.1 is based on single Gaussian noise. However,
in existing systems, the distribution characteristics of noise are often more complicated.
Suppose the system’s noise can be decomposed into the sum of multiple Gaussian noises,
which is what we call a multimode problem. In that case, we can decompose the noise
first and then use the filters described in the previous section for each Gaussian noise
component.

Suppose p(x) is a mixed Gaussian distribution with n Gaussian components

p(x) =
n

∑
i=1

ωi N(x; µi, Pi) (11)

where N(x; µi, Pi) is each Gaussian component and the weight satisfies ∑n
i=1 ωi = 1.

Next, we need to determine the weight ωi, the mean µi, and variance Pi of each
Gaussian component. Then, the estimation methods in Section 2.1 can be used to obtain the
estimations based on each component with the Gaussian noise. At last, all the estimations
can be weight-summed by ωi. A flowchart of the Gaussian mixture filter is shown in
Figure 1.

To avoid too many components making subsequent calculations too complicated, it
is usually necessary to reduce the number of Gaussian components. In other words, it is
necessary to describe as accurately as possible with as few components as possible. The
methods of component reduction include retaining those significant components that affect
the distribution function by selecting some of the components with larger weights and
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discarding those that are not significant. Furthermore, by combining similar components,
the total number of components is reduced.

Figure 1. A flowchart of the Gaussian mixture filter. (a) The system noise is a complicated one
with multiple Gaussian components. (b) The complex Gaussian noise of the system is decomposed
into several standard Gaussian noises Pi, i = 1, 2, ......n. (c) The state x̂i is estimated based on each
Gaussian noise. (d) The state estimation result based on the complex mixed high noise is obtained by
using the estimated result and the weight.

Suppose the system’s noise is more complex and cannot be expressed as the approxi-
mate sum of multiple Gaussian noises. The particle filters appear for such a problem [40,41].
In that case, a numerical approximation method is required, that is, Monte Carlo simulation.
The probability distribution of the state is calculated by selecting multiple samples and
using statistical methods. However, the computational overhead is very high. Additionally,
in the process of calculation, due to particle degradation, sequential importance resampling
processing is required.

Figure 2 shows the flow of the particle filter algorithm. A set of particles represents
the samples in the distribution. Each particle is assigned a likelihood weight, representing
the probability of sampling. The weights tending to be the same is a common problem
with these filtering algorithms. However, this can be alleviated by resampling before the
weights become too uneven. In the resampling step, particles with smaller weights will be
replaced by new particles.

Two reviews provide details about particle filters, [42,43]. The first one focuses on
particle filters based on the optimal and suboptimal Bayesian algorithms for nonlinear
and non-Gaussian tracking problems. Within the general framework of the sequential
importance sampling (SIS) algorithm, several variants of the particle filter are introduced,
such as sampling importance resampling (SIR), auxiliary sampling importance resampling
(ASIR), and regularized particle filter (RPF). The second one discusses new developments
and demonstrates that particle filters are useful in even the largest dimensional geophysical
data assimilation problems.

At the end of this subsection, we want to discuss an interesting fact about particle
filters and Gaussian mixture filters. That is, particle filters were popular about 20 years
ago [44], while Gaussian mixture filters have only become a hot topic in the past decade [45].
The reason is that when the system encounters complex noise, people first use particle
filters to complete the task. However, the computational complexity of the particle filter is
too large. To improve real-time performance, many research results show a compromise
between real-time performance and accuracy. On the other hand, people find that it is
possible to use Gaussian mixture filters to complete the task by decomposing complex noise,
improving state estimation’s real-time performance while ensuring estimation performance.
However, when encountering difficult and incredibly complex noise, particle filters can
show better advantages. Therefore, there are still many application examples for particle
filters in video tracking [46,47]. However, in target tracking, the Gaussian mixture filter has
attracted more attention from researchers due to its small amount of calculation [48,49].
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Figure 2. The flow of the particle filter algorithm. The particles are generated firstly, and then, the
weights need to be calculated according to the states’ accuracy. Next, the weights are normalized, the
state is estimated, and the particles are resampled. The loop is continued until all the measurement
data are used.

2.3. Discussion

Table 1 provides some performance comparison of the filters. We can find that the
Kalman filter requires the system to be linear, with Gaussian white noise, and has a low
calculation cost. Meanwhile, in practice, it is hard to meet such requirements for the system;
therefore, in an actual system, the obtained estimation accuracy is low.

When the system is nonlinear and contains Gaussian noise, the UKF and CKF are the
first choices. This is because they do not require a large amount of calculation and can
obtain more accurate estimation results than the EKF. Of course, if the system’s nonlinearity
is not strong, the EKF is also a good choice. However, if the system contains complex noise,
the Gaussian mixture filter is the first consideration. As mentioned earlier, we need to
decompose the complex noise into Gaussian noise series and then use the Gaussian mixture
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filter to complete the estimation task. If the decomposition cannot be achieved effectively,
we suggest selecting the particle filter to ensure the actual estimation performance.

Table 1. Comparison of each filter.

Filter Requirements for
the System

Accuracy for a
Practical System

Calculation
Cost Description

Kalman filter Linear, with Gaussian
white noise Low Low

The requirements for the system are very high,
so it is difficult to achieve high accuracy in the
actual application system.

EKF Nonlinear, with
Gaussian noise Medium Low The performance of UKF and CKF is better

than that of EKF, but their calculation amount is
slightly larger than that of EKF.UKF Nonlinear, with

Gaussian noise Medium Medium

CKF Nonlinear, with
Gaussian noise Medium Medium

Gaussian mixture
filters

Nonlinear, with
non-Gaussian noise Medium Medium

These filters have low requirements for
the system. However, the amount of calculation
is large.

Particle filters Nonlinear, with
non-Gaussian noise High High

To obtain an accurate system model, a system identification method is used to establish
the mathematical models of dynamical systems [50–53], and some identification approaches
can be used to establish the prediction models and soft sensor models [54–57]. Nevertheless,
it is still difficult to obtain an accurate model in the existing system. Estimation methods
for inaccurate models are also attracting attention.

3. State Estimation Based on a Blurry Model

The estimation method in Section 2.1 requires a given system model, including system
parameters and the probability distribution of the noise contained in the system. How-
ever, the system model parameters and noise distribution characteristics are usually not
accurately obtained due to the large scale of the existing system, the complicated rela-
tionship between variables, and the influence of the state process, measurement method,
surrounding environment, etc.

The estimation performance degradation caused by the low degree of model matching
has always existed in actual system applications. It makes the estimation results unable to
reach the ideal performance of theoretical research. Simultaneously, it has also promoted
the development of classical estimation theory in the past few decades. Below, we introduce
the estimation theory and method based on a blurry model from two aspects of a “robust
filter” and “closed-loop filter”.

3.1. Robust Filter

When the system model parameters are inaccurate, the state can be corrected by modeling
the uncertainty term. Based on this, a robust filtering method has been designed to improve the
estimation performance. This method first describes the incorrect system model parameters as
the perturbation range and then designs the filter gain based on it. The estimated covariance
is bounded within the perturbation range of the parameters. The specific methods include
guaranteed performance estimation, H∞ filtering, etc. [11,13,58].

To guarantee performance estimation based on the system’s maximum uncertainty,
the estimator is designed to minimize the steady-state filter covariance’s upper bound.
For example, under the Bayesian framework, Dehghannasiri et al. [59] proposed a robust
Kalman filter based on the orthogonal theory, Nishanthi et al. [60] studied the guaranteed
performance filtering method for uncertain discrete systems under random hysteresis
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conditions, and Roy et al. [61] designed a guaranteed performance filter for quantum phase
change.

Wang et al. [62] designed a time-varying estimator to realize distributed state estima-
tion based on a type of sensor network with random model parameters and nonlinearity.
Under the premise of known topology information, based on Bernoulli’s random distribu-
tion, Li and Chang [63] studied the problem of robust filtering and feedback control with
random occurrence characteristics for uncertain systems.

The above research results are mainly based on Lyapunov stability. The basic idea
is to transform the robust filtering problem into a feasible solution of the Riccati matrix
equation and then provide the conditions and robust filters to ensure robust filtering
performance. Although the Riccati equation can achieve the method, some parameters
still need to be provided in advance. The choice of parameters affects the performance of
the result and affects the solvability of the equation. Due to the lack of suitable parameter
optimization methods, these parameters need to be set in the design process, which brings
conservativeness to the results. On the other hand, Riccati matrix equations are mostly
solved by iterative methods, which cannot guarantee the solution process’ convergence.

In the 1990s, with the introduction of the interior point method for solving convex
optimization problems, the linear matrix inequality (LMI) method attracted the academic
community’s attention. This method can overcome the shortcomings in solving the Ric-
cati equation, provide a convex constraint condition for the problem to be solved, and
then obtain the robust filtering problem’s solution by solving the convex optimization
problem [64].

The robust H∞ filtering considers the following uncertain discrete linear time-
invariant system:

xk+1 = (A + ∆Ak)xk + Bωk
yk = (C + ∆Ck)xk + Dvk

(12)

where xk is the state to be estimated, and ∆Ak and ∆Ck are the perturbation of the parameter,
and they can be written as [

∆Ak
∆Ck

]
=

[
H1
H2

]
FkE (13)

where H1, H2, and E are the constant matrix with appropriate dimensions, and Fk satisfies
the following:

FT
k Fk ≤ I (14)

If we have the constant β; symmetric positive definite matrix X, Y ; symmetric matrix
U; and asymmetric matrix M, S, T based on a given constant γ > 0, satisfying the
following,[

X I
I Y

]
> 0[

X M
MT U

]
> 0

−Y ∗ ∗ ∗ ∗ ∗ ∗ ∗
−I −X ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2 I ∗ ∗ ∗ ∗ ∗

AT ATXT + CTTT I −X + βETE ∗ ∗ ∗ ∗
0 ST −I −MT −U ∗ ∗ ∗

BT BTXT 0 0 0 −I ∗ ∗
0 DTTT 0 0 0 0 −I ∗

HT
I HT

I XT + HT
I TT 0 0 0 0 0 −β


< 0

(15)
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then we can have the robust filter

x̂k+1 = A f x̂k + B f yk (16)

with the parameter

A f = M−1S
B f = M−1T

(17)

satisfying the estimation covariance

E
{

ekeT
k
}
<

[
I
−I

][
X M

MT U

]−1[
I −I

]
(18)

In summary, based on the system’s uncertainty model, robust filtering can perform
state estimation based on minimizing the error covariance or performance indicators for all
the possible uncertainties of the actual system. However, for a specific practical application,
the state estimation accuracy provided is not high.

Therefore, although robust filtering was once a hot research direction in state esti-
mation at the beginning of this century, it has not been widely used in practice because
it cannot meet the existing system requirements for state estimation performance. The
reason is that it is still very difficult to accurately model the uncertain part first. If the
uncertain part cannot be accurately described, then the robust filtering performance is
not high. Recently, some research has tried to develop the performance for practice. For
example, Liu et al. [65] combined the unscented Kalman filter with the H∞ filter for state
estimation for nonlinear non-Gaussian systems.

3.2. IMM and Closed-Loop Adaptive Filter

Based on the fact that “complex system parameters and structures will vary with dif-
ferent applications”, researchers have provided another solution to improve the estimation
performance: improve the model to make it more in line with the actual system.

There are two categories for the related methods:

(1) Multiple system models describe parts of the system and then combine to describe
the whole system;

(2) Measurement information is applied to continuously optimize the online system
model to make the system model as consistent as possible with the current situation.

The former is represented by the “multimodel method” proposed by Bar-Shalom,
which simultaneously uses multiple models for estimation, evaluates the estimation results
of different models, and then designs a reasonable weighting strategy to obtain the final
estimation result [66].

The interacting multiple model (IMM) includes a series of basic models. Then, the
estimated results are generated by weighting each model’s estimation so that the tracking
performance is better than that of any single model.

The IMM supposes that the probability switching among models obeys a Markov
chain, and assumes the prior model number of the system is N, the sets of the models
are M(k) = {mi(k)}, i = 1 · · ·N, and the transition probability from model i at k time
switching to model j at k + 1 time is PTij. Then, the model transition probability matrix is
as follows

PT =


PT11 PT12 · · · PT1N
PT21 PT22 · · · PT2N

...
...

...
...

PTN1 PTN2 · · · PTNN

 (19)
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where each row denotes the current model of the k sampling time; each column denotes
the prediction model of the k + 1 sampling time, i.e., the next sampling time. Note that PT
is a given matrix based on prior knowledge.

Then, the probability prediction of the model i to model j is calculated:

PTµ(k + 1|k) =


PT11µ1(k) PT12µ1(k) · · · PT1Nµ1(k)
PT21µ2(k) PT22µ2(k) · · · PT2Nµ2(k)

...
...

...
...

PTN1µN(k) PTN2µN(k) · · · PTNNµN(k)

 (20)

where PTijµi(k) denotes the prediction joint probability of the model i transferred to model
j. Each element in the matrix is added at each column; then, the prediction probability of
model j at the k + 1 time can be obtained:

µj(k + 1|k) =
N
∑

i=1
PTijµi(k) (21)

Then, the probability prediction of the model is given as

µj/i(k) =
PTijµi(k)

µj(k + 1|k) (22)

The interactive probability is the probability of the model i at the current time k related
to the model j in the future k + 1 time.

Based on this, researchers have developed multimodel methods for nonlinear and
uncertainty parameters. However, this type of method requires multiple models to be
calculated in parallel and weighted according to each model’s matching degree with actual
system, so the amount of calculation is relatively large. Worse, in practical applications,
if the model group contains models with low matching degrees, it will lead to a decrease
in the estimation accuracy, so using too many models will not improve the estimation
performance.

Another method is to update model parameters in real-time based on state estima-
tion results, such as the expectation–maximization (EM) method and hybrid grid multi-
model [67]. Based on this idea, the applicant has also proposed a closed-loop adaptive
model [68,69]. For example, Bai et al. [70] built a framework of dynamic noise based on
a gyroscope’s noises, and developed the dynamic Allan variance to build the adaptive
Kalman filter.

This type of model can continuously optimize the system model’s system parameters
based on real-time estimation results so that the system model matches the actual system as
much as possible. Figure 3 shows the optimization loop of the system model and state. In
this type of system, optimal convergence is the most critical issue. We can find that, in such
a system, the state and the model are optimized sequentially. The model is initialized first,
and then, the state is updated; based on the estimated state obtained, the model parameters
are further updated.

However, the optimization based on the current estimation results will cause the
model update to lag behind the actual system. The simultaneous update of the state and
model parameters may also make the system parameter optimization process unable to
converge. These methods can combine identification approaches [71–75] for studying the
modeling of dynamic time series and stochastic systems with colored noises [76–80] and
can be applied to other fields such as signal modeling, tracking and control systems [81–83].
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Figure 3. The optimization loop of the system model and state.

4. Data-Driven Modeling by Learning

In this section, we introduce three parts: different deep learning networks, the opti-
mization of their hyperparameters, and one of their learning methods: Bayesian learning.

The network cell is the main part for the data-driven model, which decides the perfor-
mance of the model. Meanwhile, the choice of hyperparameters has a great influence on
the convergence of the network. Therefore, we focus on the hyperparameter optimization
in Section 4.2

As for the measurement for the sensors, the measurement noise has to be firmly
considered. Unlike the classic deep learning network, the neural network‘s weight should
have the capability to model the input noise characteristics. Section 4.3 describes the
so-called Bayesian deep learning network: the methods for Bayesian variational inference
and some applications. Table 2 provides the whole picture of the state of the art for the
data-driven model method, from which we can find that as the most general application
field, “prediction” has the most papers. Meanwhile, recently, some research work has
focused on the estimation.

Table 2. Data-driven modeling methods with deep learning networks.

References Network Cell Hyperparameter
Optimization Type of Network Purpose

[84] Long short-term memory (LSTM) Not mentioned Classic deep learning network Classify sequence

[85] Gated recurrent unit (GRU) Not mentioned Classic deep learning network Forecasting time-series
data

[86–88] Recurrent neural network (RNN) Not mentioned Classic deep learning network Machine translation
[89] Attention-based LSTM Not mentioned Classic deep learning network Machine translation
[90] Convolution network Bayesian optimization Classic deep learning network Prediction

[91–93] GRU Bayesian optimization Classic deep learning network Prediction
[94] Bidirectional RNN Not mentioned Classic deep learning network Detection
[95] ConvLSTM Not mentioned Classic deep learning network Prediction
[96] RNN Not mentioned Classic deep learning network State estimation
[97] GRU Manual search Classic deep learning network Prediction
[98] LSTM Manual search Bayesian deep learning network Prediction
[99] GRU Bayesian optimization Classic deep learning network Prediction

[100,101] Multi-layer forward neural network Not mentioned Bayesian deep learning network State estimation

4.1. Deep Learning Network

Unlike the traditional models in Section 3, the neural network model based on machine
learning does not require other prior physical information or model assumptions [102,103].
In the model training stage, the model is obtained by learning the data’s hidden relation-



Sensors 2021, 21, 2085 15 of 25

ships and knowledge. This type of model can process data with nonlinear characteristics
and has been effectively applied to prediction tasks in different fields [104,105].

As the most important machine learning branch, deep learning methods break through
the bottleneck of traditional machine learning methods and promote artificial intelligence
development. The recurrent neural network (RNN) has become an important process
modeling method because it can capture a nonlinear relationship. However, due to the
RNN structure’s limitation, the effect will worsen when dealing with longer sequences. The
emergence of long short-term memory (LSTM) solved the long-term dependence problem
of RNNs [84].

The interior of the LSTM cell has three gating units, which are the input gate, forget
gate, and output gate. The calculation process is

ft = σ
(

W f xxt + W f hht−1 + b f

)
it = σ(Wixxt + Wihht−1 + bi)

c̃t = tanh(Wcxxt + Wchht−1 + bc)

ct = ft · ct−1 + it · c̃t

ot = σ(Woxxt + Wohht−1 + bo)

ht = ot · tanh(ct)

(23)

Among them, ot represents the output of LSTM, and ht represents the output of the
last layer of LSTM.

Differently from the LSTM, the gated recurrent unit (GRU) network further simplifies
the structure of the LSTM network while maintaining the accuracy of the prediction. The
GRU model consists of two parts, the update gate and the reset gate.

The formula of the GRU cell is shown below:

zt = σ(xtUz + ht−1Wz + bz)
rt = σ(xtUr + ht−1Wr + br)

h̃t = tanh
(

xtUh + (ht−1 � rt)Wh + bh
)

ht = (1− zt)� h̃t + zt � ht−1

(24)

With the GRU and LSTM cell, the network can be constructed. Figure 4 provides an
example of a GRU for PM2.5 prediction with two layers [85], in which we find that the
deep learning networks still cannot capture the complex dynamic relationship of the data,
so the data are decomposed into several components.

In recent years, encoders and decoders based on data modeling have been able to
obtain more stable information from data and been suitable for the lengths of input data
and output data. One reason is that the encoder extracts features from the input data: the
extracted features are the hidden state of the RNN, and the output state of the encoder
is used as the initial state of the decoder to obtain the target signal [86]. The other is that
the encoder encodes the input data into a context vector and outputs the variable-length
sequence as a fixed-length sequence [87].

As the dependency of the input data increases, the performance of data-based model-
ing declines rapidly. Therefore, by introducing an attention mechanism, different attention
weights can be assigned to all the time steps. The relevant encoder hidden state can be
adaptively selected in all the time steps, and highly relevant features and output sequences
can be extracted. There are two common attention mechanisms: Bahdanau attention [88]
and Luong attention [89], also known as additive attention and multiplicative attention.
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Figure 4. Data-driven model. (a) GRU cell; (b) LSTM cell; (c) deep learning network.

4.2. Hyperparameter Optimization

Due to the increase in data complexity, deep learning methods’ modeling performance
needs to be improved. Especially, the hyperparameters of the network greatly influence
the modeling performance, so setting the network’s hyperparameters is very important.
Hyperparameters determine the model’s performance in deep neural networks; therefore,
it is extremely important to optimize the hyperparameters [106].

Hyperparameters need to be set before starting the learning process, not the parameter
data obtained through training, but including the number of layers of the network, the
number of neurons in each layer, the type of activation function, etc. One hyperparameter,
the weight’s training process, is shown in Figure 5, where Figure 5a is the training process
for the standard deep learning network to obtain the weights. Based on them, the part
shown in Figure 5b evaluates the network performance, defines the weights’ optimization
space, and makes it easier to converge to the optimal weights.

At present, hyperparameter optimization methods mainly include manual search,
web search, random search, and Bayesian optimization. Among them, a manual search is
a process of optimizing hyperparameters manually through trial and error. This method
is very time-consuming and relies on experience to determine the optimal hyperparame-
ters. Grid search is traversing all the candidate parameters, trying every possibility, and
comparing the values of the objective function one by one to the points that meet the
constraints, which is the final result. It is also very time-consuming. Random search is a
method of using random numbers to find the optimal solution for function approximation.
It is different from the “violent” search method of grid search. This method is based on
the theory of probability and continuous randomness within a certain interval. Instead of
generating random points with a tendency to calculate the value of the constraint function
and the objective function, the values of the objective function are compared one by one for
the points that meet the constraint conditions.
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Figure 5. Hyperparameter optimization process. (a) The training process; (b) The weights’ optimiza-
tion process.

Unlike these methods, the Bayesian method will refer to the previous evaluation
results when trying the next set of hyperparameters, so it can save a lot of calculations. The
Bayesian optimization problem has four parts, which are the objective function, domain
space, optimization algorithm, and result history. The principle is to establish a distribution
function (probability model) based on the past evaluation results for the objective function,
in the constructed domain space, to find the value that minimizes the objective function.
Wang et al. [90] used the Bayesian algorithm to optimize the convolution prediction net-
work’s hyperparameters by modeling the complex time-series data sets. The study [91]
used a GRU network for each component of power load data, in which Bayesian optimiza-
tion parameters were used for each subpredictor. The results showed that the Bayesian
optimization could effectively improve the prediction accuracy.

4.3. The Ability to Model System Noise

The neural network’s ability to model nonlinear relationships has been fully proven
theoretically; i.e., the neural network can fit any nonlinear relationship. In practical applica-
tions, neural networks, especially deep neural networks, have shown strong advantages in
practical application systems, with their powerful nonlinear modeling capabilities. How-
ever, an important problem to be faced in the estimation system is the system’s complex
noise. Overcoming the influence of complex noise on the estimation performance is one of
the important attributes for estimation methods’ performance.

We believe that the way the neural network obtains the weight should consider the
input noise characteristics. The Bayesian training process can replace the fixed weights
and bias of the traditional neural network. The network training is conducted by sam-
pling, thereby constructing the model’s uncertainty, suppressing the influence of noise,
and obtaining more accurate predictions. The neural network output is no longer a fixed
sequence but a sequence with a fluctuation range, thereby improving the prediction results’
reliability. Bayesian deep learning networks’ training methods usually include two meth-
ods: approximating the integral with Markov chain Monte Carlo (MCMC) and black-box
variational inference. We can estimate the true full cost function by Monte Carlo sampling
and then backpropagate using the estimated value.

Bayesian deep learning believes that every weight and bias should be a random
distribution, not a certain value. Different from the constant weights and biases obtained
by non-Bayesian neural network training, the training will obtain the distribution of
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weights and biases for Bayesian deep learning. The difference between the Bayesian deep
network and non-Bayesian deep network is shown in Figure 6.

Figure 6. The differences between the Bayesian deep network and non-Bayesian deep network are
(a) the weight optimization process for the non-Bayesian deep network, where the weight is a certain
value, and (b) the weight optimization process for the Bayesian deep network, where the weight’s
distribution is obtained.

Given a training data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, suppose we want to
obtain the posterior probability p(w | x, y). Then, according to the Bayes theory, we get

p(w | x, y) =
p(y | x, w)p(w)∫
p(y | x, w)p(w)dw

(26)
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However, the fact is that the denominator has to integrate on the value space of w,
and the space formed by these weights together will be quite complicated. In general, vari-
ational inference is used to solve the integral expression of the denominator. This method
uses a simple point distribution q(w) to approximate the posterior probability distribution
p(w | x, y), and uses Kullback–Leibler (KL) divergence to calculate the difference between
minimizing the distribution q(w) and p(w | x, y).

Data-driven methods have been used in state estimation research, which greatly
improve the performance of state estimation. The study [107] proposed training a shallow
neural network with historical data to “learn to initialize”, that is, to map the available
measured values to a point in the neighborhood of the true latent states. The results
show that, compared with traditional optimization methods, this machine learning-based
optimization method produces superior performance in terms of stability, accuracy, and
runtime efficiency. The study [108] was based on the Bayesian inference method for state
estimation and used it for sensor transmission power control. Experiments prove that this
method can improve the estimation performance.

5. State Estimation Based on Hybrid-Driven Methods

With the development of technologies such as sensors, wireless communications, and
data storage, more and more historical data are stored in modern complex large systems,
forming measurement “big” data. These data contain process information based on the
system parameters and noise characteristics that cannot be expressed by the system’s
mathematical model. We believe that these data will be used to develop the performance
of the simplified system model.

As long as we have enough measurement data, models describing data relationships
can be obtained through offline learning without prior knowledge. In recent years, in state
estimation, researchers have made some attempts to explore state estimation algorithms
that combine the Kalman filter and neural network.

Specifically, they are mainly divided into the following three categories:
Firstly, the network output is the difference between the reference state and the

classical estimation, which is used to correct the estimated state based on the system model.
For example, Liu et al. [109] trained an LSTM network to predict the difference between
the estimated result and the reference trajectory and modify the estimated result. The
study [110] proposed a multisensor fusion algorithm for underwater vehicle localization
by the augmentation of the radial basis function (RBF) neural network with the EKF, in
which the RBF neural network was utilized to compensate for the lack of EKF performance.
It simply used the classic state estimation method to evaluate the difference between the
actual complex system’s reference trajectory and the estimation result. Similar methods
include using learning algorithms to improve the extended Kalman filter [111] and the
multimodel extended Kalman filter [112]. In principle, this type of method does not
modify the model but uses the difference between the reference state and the classical
estimation result to describe the model’s matching degree. When the model error is large,
this compensation cannot completely offset the model error.

The second method is to learn the parameters of the system’s model under the frame-
work of Bayesian estimation [113,114]. For example, Zhao et al. [113] trained the network
to obtain the state transition matrix, state noise variance, measurement matrix, and mea-
surement noise variance of the system model’s monocular visual tracking. After obtaining
these parameters by learning LSTM networks, the state is still estimated based on the
system model and the Kalman filter framework. This type of method has the same purpose
as the optimization parameter method in Section 3.2. The difference is that the method
in Section 3.2 uses a statistical optimization strategy, while here, the learning method is
used to obtain system parameters after offline training. However, this method is essen-
tially system parameter identification, which cannot fundamentally solve the estimation
performance degradation caused by the system model’s low matching degree, especially
the model structure.
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The last one is to obtain the estimation state directly [115–118]. For example, Gao used
measurement data as input and the reference state as output data to train the LSTM net-
work [115]; Bai used the NARX (Nonlinear autoregressive with external input) network to
learn the complex relationship between the measurement, state, and filter gain in nonlinear
systems [116]. This method’s characteristics are as follows: It is necessary to obtain the state
reference value through simulation. The system is modeled through supervised learning,
and then, the network output is used as the result of the state estimation. This method can
use the network model’s ability to model complex data relationships and improve state
estimation performance to a certain extent. However, it must be pointed out that the degree
of matching between the simulation reference in the method and the actual application
system determines the practicability of the model.

6. Conclusions

When the model can be accurately obtained or completely consistent with a practical
system, the state estimation method using the Kalman filter can produce the best result.
For the nonlinear model, the EKF, UKF, and CKF are effective supplements to the standard
Kalman filter, and the estimation results for the nonlinear system with Gaussian noise can
be obtained. Although this estimation result is no longer optimal, this method is simple
and easy to perform effective real-time estimation with, so it has always been used in many
applications. However, such methods in existing complex systems, especially in modern
complex systems, are not good enough. To reduce the estimation method’s dependence on
the model, researchers have provided robust filters, IMM, and closed-loop adaptive filter
methods that can use multiple models to describe the system effectively.

Nevertheless, we found that with modern complex systems, the system contains
more and more sensors. The system’s internal structure becomes more and more complex,
making the modeling of the system more difficult. On the other hand, the system contains
more and more sensors, and we can obtain more and more sensor signals. Simultaneously,
due to the development of storage technology, we can store these data and generate so-
called big data. Based on these big data, we can further describe the model with high
accuracy and obtain a more accurate model. Therefore, the state estimation method based
on the learning network has been one of the hot spots of people’s attention in recent years.

However, because these methods only use the network to fit the nonlinear system, the
network modeling results are not good enough when the system is too complex. Moreover,
the traditional neural network modeling ability is further reduced due to sensor noise.
Therefore, in recent years, state estimation research has tended to combine the traditional
model-based estimation method and the data-driven network model method, in the so-
called hybrid-driven state estimation method. In the past three years, related research has
shown an increasing trend. It has brought a lot of vitality to the relatively quiet traditional
state estimation methods for many years and opened up a new field for studying state
estimation methods.

In this review, we summarized and analyzed the three current methods of this research
direction. We believe that these studies are very preliminary. There is still a lot of research to
be conducted on how to effectively combine the traditional state estimation method based
on Bayesian estimation theory with a strict mathematical foundation and the model-driven
modeling method that uses the big data complex network model to describe the system. In
this regard, we believe that the following research trends are worthy of attention.

The first is how to use sensor-based big data. Compared with the problems studied by
traditional deep learning networks, the network model applied to state estimation needs
to overcome sensor data noise, which is a more difficult subject for traditional learning
networks. Traditional neural network methods can effectively solve nonlinear modeling
problems. In theory, researchers have even proved that neural networks can best fit any
nonlinearity. Traditional neural networks are prone to overfitting to noise.

Second, the state estimation method should be developed for complex networks. The
current hybrid state estimation method does not fundamentally use the advantages of the
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model-driven and data-driven method. Therefore, the author believes that the research to
solve this problem effectively will be of great significance. It can fundamentally combine
the advantages of the estimation framework and the nonlinear learning network.

Third, the theory based on the hybrid model needs to be studied in depth. Based on the
state of the hybrid drive, the convergence of the estimation method, the requirements for
training data, the discussion of real-time performance, etc., are all worthy of our attention.

This review aimed to study the development context of state estimation and describe
the development trend of future state estimation. We believe that state estimation will still
be an important part of practical systems. For such complex systems, it will bring more
difficulties and new solutions to the state estimation methods.
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