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Abstract: Known as an artificial intelligence subarea, Swarm Robotics is a developing study field
investigating bio-inspired collaborative control approaches and integrates a huge collection of agents,
reasonably plain robots, in a distributed and decentralized manner. It offers an inspiring essential
platform for new researchers to be engaged and share new knowledge to examine their concepts in
analytical and heuristic strategies. This paper introduces an overview of current activities in Swarm
Robotics and examines the present literature in this area to establish to approach between a realistic
swarm robotic system and real-world enforcements. First, we review several Swarm Intelligence
concepts to define Swarm Robotics systems, reporting their essential qualities and features and
contrast them to generic multi-robotic systems. Second, we report a review of the principal projects
that allow realistic study of Swarm Robotics. We demonstrate knowledge regarding current hardware
platforms and multi-robot simulators. Finally, the forthcoming promissory applications and the
troubles to surpass with a view to achieving them have been described and analyzed.

Keywords: Swarm Robotics; multi-robot systems; robotics; Swarm Intelligence

1. Introduction

Inspired by social insects’ organization, such as ants, bees, and termites, and the
formation of schools of fish and birds in flight [1], Swarm Robotics (SR) is a research
field of artificial intelligence responsible for creating new mechanisms of organization
of several robots with a simple structure [2]. This set of tools enforces the development
of an assertive collective behavior through its interaction with other robots and with
the environment. Interesting computational techniques were raised based on natural
methods. These techniques rely on Swarm Intelligence (SI) concepts, which is the ability
of a group to perform a variety of tasks [3]. Investigations provided the conception of a
new Computational Intelligence (CI) area, the SI [4,5]. This expression refers to artificial
intelligence systems in which individuals’ collective behavior in a population causes simple,
coherent solutions or patterns to emerge. Although this concept exists since the 1980s, this
branch of robotics has managed to move forward only at the enabling techniques which
enforced this development were the evolution of electronic engineering and information
technology, with smaller and more powerful electronic circuits, the facilities of wireless
communication, and the assembly of electronic robots [6]. Also, the development and
implementation of novel artificial intelligence systems have a significant impact on swarm
robotics’ evolution.

Swarm robotics is a broad area of study. In recent years, various reviews on SR have
been produced. Here we cite some of these works [2,7–11]. Each of these reviews works
discourses a specific feature of SRs. Some of these studies supplies taxonomies that are
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helpful to classify associated works. Possible Dorigo et al. work [7] is the principal access
to enter to SR research area for a fresh edge. The work explains all features associated
with SR, beginning from its bases, inherent characteristic and interesting ownerships.
It crosses SR potential applications and scientific involvements, connecting some of the
principals associated continuous study works and relating on umpteen features of design,
analysis, and arising behaviors, until introducing some open questions of SRs in real-
world applications.

One of the questions confronting the blooming of SRs is an application in the en-
gineering area. Brambilla et al. [2] analyze the literature from the viewpoint of Swarm
Engineering. They study especially the concepts and descriptions that subscribe to the
employment of SRs in the engineering area and, therefore, could help approximate real-
world applications. They also collaborate too many exhausting brief taxonomies: one for
methods and the other for tasks required in SRs. Garattoni and Birattari [8] studied ex-
istent research works on SRs, addressing the description of an engineering process for
creation, analyzing, and conserving robotic swarms. The authors then introduce SR from
an engineering outlook and report associated works that subscribe to SR’s progress as
an engineering area. Another hard defiance in SRs is regarding system formal modeling
capable of effectively simulating robotic swarms. Hamman and Schmickl [12] as Hammann
in Ref. [9] contributed interesting works, whereupon the authors stimulate the existent
studies endeavors on swarm systems and the incentive of the formal mathematical model-
ing of these types of distributed and self-organized systems. Particular attention is spent
to prove how mathematical models for varied kinds can enhance our knowledge of self-
regulation existing in natural swarm systems such as social insect colonies. Moreover,
the authors explain how mathematical models manipulate and optimize artificial swarm
groups’ conduct as used in SRs. Usual problems, such as modeling endeavor and to
formulate itself, influence as generators of new experiments and empirical experiments
that produce significant model specifications. Correll has provided another remarkable
academic study of SR modeling, and Hamman [11]. The authors demonstrate an exten-
sive survey of probabilistic modeling of various features in swarming structures, such as
populace functional, cooperation, and spatial distribution of the swarm agents, even as for
cooperative decision and optimization inside the swarm. The study is accomplished by
releasing several open defiances concerning merging non-spatial with spatial probabilistic
formulating approaches to produce superior suitable models for SRs.

A relevant component portions of a swarming system is the exhibition cooperative
behavior. Trianni and Campo [10] debate in an instructive manner some fundamental
cooperative behaviors noticed in the area of SRs. The midst of others determines and refers
to research works on differences in swarm aggregation behavior, swarm agent coordination
movements in a swarm, examination, and decision-making as realized by the swarm. In
this paper, we summarize the research accomplished during the last 30 years in this field
of SR systems. This approach structure is based on Navarro and Matía [13], but with
some relevant additions. For instance, we perform broader and more in-depth research
and analysis on the hardware components, software simulators, features, and swarm
robotics applications. We evaluate more work and provide critical analysis of the presented
content. Also, the result of Navarro and Matía is outdated, while this approach brings
the current state-of-the-art. Finally, we offer a broader set of swarm robotics applications,
overviewing several areas where authors propose real appliances of these techniques.
Finally, we also assessed some other review papers in this review, from which we notice
some relevant differences.

In the literature, there are other swarm robotics overviews. Nedjah and Junior [14]
reviewed solutions and concepts but did not assess real-world applications using swarm
robotics. Brambilla et al. [2] overviewed several SR projects and theoretical aspects.
Nonetheless, they did not create a taxonomical table to analyze and compare the so-
lutions, and they also did not assess the real-world applications. Bayındır [15] thoroughly
reviewed theoretical aspects of SR. Nevertheless, he did not assess prototyping solutions,
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simulation platforms, and real-world applications. Garattoni and Birattari [8] reviewed
the design and development process for SR. They also overviewed some notable projects.
However, they describe the platforms without comparing and analyzing and do not assess
real-world applications. Hamann and Schmickl [9] study the process of modeling SR
solutions. They did not survey existing platforms and solutions, some theoretical aspects,
and real-world applications in their work. Thus, this work aims to fill this gap present a
new overview of Swarm Robotics and its applications. For this matter, we review several
concepts, frameworks, and appliances, identifying the ground concepts, development
frameworks, tools, and application fields in swarm robotics. With this study, we expect to
provide an updated view of the Swarm Robotics field. Specifically, the contributions of this
research are:

• An analysis of the inspirations and definitions of SR. This discussion also differentiates
the concepts of mobile robots, multi-robot systems, and swarm robotics. Regarding
this contribution, there is also a presentation of the main features of this field.

• An evaluation of several SR projects’ main features. This work accesses several
robotics platforms, frameworks, simulators, and projects presented in the literature.
With this information, we provide an overview of the most commonly used research tools.

• A presentation of the most basic behaviors and tasks in SR. We provide a general
discussion regarding the techniques currently applied to solve the field problems with
this analysis.

• A presentation of the applications that use SR. This discussion provides an overview
of the importance of swarm robotics in multiple environments and applications.

This paper is organized as follows: In Section 2, we explain the inspiration to create
collective-intelligence-based systems. Section 3 outlines the definitions and main character-
istics of SR, highlighting the differences from other multi-robot systems design approaches.
In Section 4, we present some great swarm robotic projects, examining their main fea-
tures of each appliance. Section 6 displays some of the fields of applications from swarm
robotics in real contexts. Finally, in Section 7, we present an overview and discussion of the
gathered information.

2. Swarm Behaviors

In the previous section, we presented the context and primary objective of this
work. In this section, we outline the concepts which inspire the creation of SR appli-
ances. From termite mounds to fish schools, many social groups in nature live unitedly to
survive and thrive. Similar swarm behaviors influence various computational procedures
to answer problems and coordinate strategies for collective robotics. With the constant
search for intelligent prototypes motivated by real-world methods, it was found that simple
agents, who alone are unable to carry out trivial tasks, perform highly complex works
when they act mutually as an organized automatic system [16]. In nature, this pattern is
observed in several species such as bees in the composition, appears and building a hive,
termites that make complicated tunnel systems, ants that can find paths when looking
for food, birds flying in line in search of food, among others [17–20]. Collective behaviors
in swarms happen in almost each biological measure degree: they can be diverse from
single-celled organisms [21] to the largest animals on Earth [22]. An essential feature of
swarms is decentralization. A decentralized swarm is one in which complex behavior
arises through the labor of autonomous agents acting on local information, not briefings of
any imposing dominion [23]. In other words, there is no head in the swarm directing other
members to perform the planned tasks.

Usually, a swarm consists of a set of identical (or similar) members belonging to
progressing in an asynchronous manner [1]. These individuals own single competencies
compared to the whole group: they have restricted cleverness and cannot conclude the
swarm aims without the rest of the group. Additionally, it has been proven that group
members do not need any illustration or global understanding of the swarm to reproduce
complicated collective behaviors. Surprisingly, the complexity of these collective behaviors
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and structures does not reflect the relative simplicity of an insect’s individual behaviors
of an insect [24]. Swarm members do not know about the swarm’s overall status of the
swarm [25]. Usually, the entities that compose the swarm have small or simple individual
capabilities. Communication among members is achieved only on a local basis. A descrip-
tive instance is a flock of birds: birds in the flock can accompany a communal orientation in
their displacement to travel thousands of kilometers to a defined target location. However,
each bird is concentrated purely on its local neighbors.

Figure 1. Mobile Robotics, Multi-Robot Systems, and Swarm Robotics field delimitation. Swarm
Robotics is a subfield of Multi-Robot Systems, which itself is also a subfield of Mobile Robotics research.

Decentralization is closely associated with another important feature: self-organization.
Self-organization relies on combining the following four basic rules: positive feedback,
negative feedback, randomness, and multiple interactions [4]. Nevertheless, when an ant
discovers a possible fount of food, it comes back to the colony, releasing some pheromone
trace on the way back. Assuming other ants notice the pheromones, they also pursue the
track to the food fount and come back to the colony, dropping new pheromones, therefore
consolidating this specific path. These pheromones’ traces will disappear through time,
decreasing the attractive strength. Shorter trails are less reached in brief periods by this
evaporation procedure. Hence, they probably go through more repeatedly than extensive
ones. Consequently, nature offers a remedy to the problem of discovering the shortest
path between colony and food fount. These collaborative behaviors provide means for
computer scientists and engineers to create methods to resolve practical issues, working as
“bio-inspiration”.

3. Defining Swarm Robotics

In the previous section, we provided an overview of the inspirational concepts of SR.
We displayed how the idea for SR was created from concepts of Collective Intelligence in
nature. In this section, we formalize the concepts and main features for SR. Furthermore, we
present the main differences between SR and other methods of multi-robot collaboration.

There are many fields wherever sets of robots are used simultaneously to execute a
mutual task. Remarkable samples contain multi-robot systems, sensor networks, and multi-
agent systems. Nevertheless, they are not regarded as robotic swarms, as they do not
usually obey the rules and base of SRs. The first important information on SR is that
this field is a subset of techniques contained in the review article of Multi-Robot Systems
(MRS) [14], which is itself an extension of the Mobile Robotics (MR) research field. Al-
though some robots are fixed-base manipulators, MR studies the robots which can change
their global position using locomotion actuators [26]. This means there are other techniques
for creating collaborative tools using multiple robots. Furthermore, there is a set of fea-
tures that defines and differentiates Swarm Robotics from other MRS. Figure 1 displays
how these fields relate to each other. Osaba et al. [27] also enforce that robustness and



Sensors 2021, 21, 2062 5 of 31

scalability are vital features in Swarm Robotics appliances. Furthermore, they present
parallelism is another essential feature in Swarm Robotics Systems. They enforce that
this parallelism happens through simple tasks occurring through concurrent interactions.
Another significant contribution is the categorization of SR techniques in Operational
Research and Computational Intelligence. Yang et al. [28] introduced a new distributed
and parallel self-assembly method that employs the lattice system like a methodical and
identical agent like formation carriers to mold a two-dimensional according to a user
specification form independently. The authors measure this recent method’s viability and
scalability in simulation tests and implement the self-assembly algorithm on Rubik, a robot
created in their lab. Li and Tan [29] enforce that SR is self-organizing systems. This feature
occurs as they are inspired by natural self-organizing behavior. Also, they state that these
appliances aim to have a design composed of many robots. They enforce the robustness
constraint, also stating that the design is also cost-restrictive. Singh et al. [30] enforce that
SR Systems are self-organizing appliances. They also state that these systems are robust
and flexible due to autonomy and decentralization. Finally, these authors agree that the
individual entities have limited sensing and processing capabilities, being cost-restrictive.
They state that the performance of these systems depends on the information exchange.
Ali et al. [31] also report that SR Systems are self-organizing, distributed, and autonomous.
They state that many individuals compose these systems. They also present fault tolerance,
robustness, and scalability as key features in these appliances. They enforce the impor-
tance of communication in such systems to achieve success in performing the targeted
tasks correctly.

3.1. Swarm Robotics Main Features

From the first estimation, we can summarize the main features of Swarm Robotics.
Still, there are three primary characteristics in SR appliances.

• Robustness: The system must be able to perform the target task, even if some el-
ements present failures. The most significant advantage of a distributed system
with independent agents is the collective robustness, even with some individuals
presenting failures [14,27–31].

• Flexibility: The systems must be flexible. In other words, they must serve multiple
purposes and tasks, even with restricted communication and perception resources [14,28,30,32].

• Scalability: The system must be functional with a different number of elements.
The addition or loss of individuals must not jeopardize the task completion [14,27,28,31].

In line with some fundamentals of Swarm Intelligence, an important topic is that SR
ought to be created so that intended collective behavior arises from the local interactions
among agents and between the agents and the environment. Our research also brings an
additional set of features from SR applications:

1. The robots of the swarm are comparatively small and low-cost [28–30].
2. The robots should be independent, with the potential to understand and manage in

an actual environment by themselves [28–30,32].
3. In theory, the robots should all be equal. However, if not, the robotic swarm should

be similar [33].
4. The robots should be simple and cannot perform tasks separately or demonstrate

unsatisfactory performance to accomplish it. This means they inevitably must work
together to solve the problem [14,27–30].

5. The swarm is decentralized, self-organized, and distributed [27–32].
6. The norms controlling the swarm agents are commonly simple and executed individ-

ually, likewise to the collaborative behavior usually seen in nature, and capable of
generating a wide collection of compound collective behaviors [14,27,29,30].
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3.2. Differences between Swarm Robotics and Other Multi-Robot Systems

To understand the difference between Swarm Robotics and other cooperative ar-
chitectures in robotics, we need to conceptualize the MRS. MRS is a set of Multi-agent
systems, where the individual agents are robots. These systems are composed of multi-
ple autonomous robots, interacting with each other, with individual goals and sensory
information [34]. In the previous subsection, we stated that SR Systems are decentralized.
In MRS, where one or more individuals can have a leadership role over the group [33,35,36].
In these systems, the robots are driven to form some predefined shape. Also, in a general
manner, Swarm Robotics refers to cost-restrained machines. MRS is not closed on this scope,
often managing autonomous robots in the industrial supply chain or with sophisticated
structures [37,38]. Another relevant point on the differentiation between Swarm Robotics
and MRS is the acting capabilities. Swarms usually are homogeneous and composed by
constrained agents in the individual capabilities. MRS consider the individual acting capa-
bility as an essential feature in many appliances [39]. These systems also can present high
heterogeneity, which is not typical in Swarm Robotics. As expected, the presented features
display that Swarm Robotics is a special application of MRS. Nevertheless, to classify an
MRS as a Swarm Robotics System, the design process must consider a complementary set
of rules and features presented in the previous sections.

4. Swarm Robotic Projects

In the previous section, we presented the main concepts around Swarm Robotics.
We explained the fundamental concepts that build Swarm Robotics research. Also, we
discussed Swarm Robotics main features and differentiated them from other concepts in
the context of Multi-Robot Systems. In this section, we report some of the main projects
that enable practical research on Swarm Robotics. We provide information about actual
hardware platforms and multi-robot simulators.

4.1. Robotic Plataforms

In the most recent decades, Swarm Robotics has been the main object of study for
academic research and industry sectors. The first projects in 1980s and 1990s established
concepts and the basis of this area. Many robotic platforms used in SR investigations in
many laboratories are described as follows. In this stage, we feature some of the main
platforms developed to research swarm robotics applications throughout the years.

1. Khepera was one of the first robotic projects, developed in the mid-1990 [40]. This robot
was created by École Polytechnique Fédéralede Lausanne—(EPFL, Switzerland).
Another version such as Khepera III [41] were launched during the next decade with
some simulation programs. In a further version, Khepera IV is compounded by Linux
Core running 800 MHz ARM Cortex-A8 Processor with 256 MB of RAM, an additional
flashcard 512MB and 8GB for data and with 802.11 b/g Wi-Fi, Bluetooth 2.0 EDR,
and 20 sensors [42].

2. Alice was created by Gilles Caprari at Autonomous Systems Lab at EPFL as an
enhancement from Khepera. It was a small and independent robot that became very
popular due to its size and comparatively low-cost, enabling it possible to produce
and manage a group of hundreds of robots concurrently [43,44].

3. Kobot was created at the Middle East Technical University, Turkey [45]. Kobot is a
movable robot equipped with some sensors. It was drawn to be used in various
robotic research jobs, such as guided movement.

4. E-puck [46] is a platform created to help engineering students at their class. The robots
own an uncomplicated accurate structure effortless to comprehend, manage and
preserve. The robots were as versatile, with many alternatives for more improvement
and upgrading, whereby sensors, processors, and so on. This device is constantly
under upgrade, and its last version is E-puck 2 (http://www.e-puck.org/index.php?
option=com_content&view=article&id=55&Itemid=42, acessed on 3 March 2021).

http://www.e-puck.org/index.php?option=com_content&view=article&id=55&Itemid=42
http://www.e-puck.org/index.php?option=com_content&view=article&id=55&Itemid=42
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5. Jasmine was a public open hardware robot produced by the University of Stuttgart
whose goal was to construct a low-cost and easy microrobot platform [47].

6. Sambot is a robotic platform proposed by Wei et al. [48] as self-organizing swarms
that link to form new structures. Self-organization happens through a moving
docking mechanism.

7. I-Swarm is a platform created to combine micro robotics and self-organizing swarm
robotics with many individuals [49,50].

8. S-bot was a robotic prototype created by Mondada et al. [51] to generate a swarm
robotics colony named SWARM-BOT. It features an ARM processor running Linux,
omnidirectional cameras, infrared proximity sensors, light sensors, accelerometers,
and actuators.

9. AMiR is a platform for research and education on swarm robotics. Its low cost allows
the creation of systems with many robots. The prototypes are equipped with infrared
emitters and phototransistors to allow stigmergy [52].

10. Colias is a small and low-cost platform to enforce research on swarm robotics ap-
plications. The communication between individuals happens locally also using in-
frared [53,54]. Later, other researchers proposed enhancements to this platform [55,56].

11. eSwarBot is a platform created to allow affordable research and experimentation using
real robots. It is based on an Arduino microcontroller and specifically targets the
educational and academic environments [57].

12. Pheeno is a robot designed for flexible swarm robotics applications. It targets educa-
tion, research, and outreach activities. This model features a 3-DoF gipper module,
and infrared range sensors, a camera, and an Inertial Measurement Unit as sen-
sors [58].

13. Pi Swarm is a platform developed targeting research and education in swarm robotics.
Its objectives include cost reduction and simplifying the platform programming,
and tool-chain [59].

14. microUSV is a small platform to validate marine swarm robotics appliances. It features
3D-printed parts and off-the-shelf components to compose its design [60].

15. mROBerTO and mROBerTO 2.0 are robotic platforms with advanced computational
and sensing abilities to create swarm robotics applications. The advances on this
platform allowed the creation of platforms with more reliability and repeatable loco-
motion [61].

16. Kilobot is a very small and scalable robotic platform designed to test collective algo-
rithms with hundreds or thousands of robots. This platform has a very low cost and
is easy to assemble and operate [62,63].

17. Tribots are three-legged robots designed to reproduce complex strategies from ants,
including the evasion from large predators. The robots are insect-scaled and easy to
assemble. Nonetheless, it allows a set of five different movements [64].

To better understand and compare these various solutions, we provide a taxonomic
analysis of the solutions. The chosen criteria were hardware and physical features. We
extracted the most valuable information from the hardware used to prototype and build
the solutions from the papers. We chose to analyze the primary CPU/MCU, Memory,
Extra MCU units, Sensors, Actuators, and Robot size. We notice that most solutions use
low-power PIC or ATmega MCUs, or even ARM CPUs to perform the operations from the
presented data. Clock frequencies vary from 4 MHz to 1 GHz. Most systems have Lithium
batteries, providing from 3.4 to 11.1V. The sensors, actuators, and sizes vary according to
the purpose of the robot. Finally, some solutions apply extra MCU units to handle low-level
tasks. Table 1 provide the data from this analysis. Finally, we gathered the main features
of swarm robotic solutions. Based on the evaluated information, swarm robotic solutions
should present these main features:

1. A primary CPU/MCU, responsible for the high-level robot intelligence. As stated
before, swarm robotics usually have low-level intelligent tasks, as the intelligence is



Sensors 2021, 21, 2062 8 of 31

usually collective. Thus, usually, the platforms have low-power MCUs or embedded
CPUs with constrained resources.

2. Some solutions present auxiliary MCU modules. These modules are usually responsible
for real-time tasks. There is no guarantee of real-time operations in more elaborated
solutions, especially those using CPUs with embedded OSs. Thus, these auxiliary
units control these low-level tasks.

3. The robot context-awareness comes from the Sensors/Transducers. These devices
include the communication modules, as collective intelligence is a critical feature in
swarm robotics.

4. The interaction with the environment and neighbors comes from the Actuators/Transducers.
Again, the communication modules are also a part of this feature, as they have active
participation in the communication and collective intelligence. For instance, many
robots use IR LEDs and phototransistors to perform local communication.

5. Sizes vary from microrobots of 1.6 cm (approximately 1 inch) to 23 cm. Nonetheless, all
solutions can be considered low-size robots, as this feature is essential for the swarm’s
scalability.

4.2. Robotic Simulators

Running SR algorithms in real platforms is a perfect solution for the development of
applications. Nevertheless, hardware development often requires a significant investment
in hardware platforms. Even for low-cost platforms, this is not ideal when development
time and availability, for example. Thus, the simulators are exciting tools to test algorithmic
aspects in robotics and swarm robotics. Also, the availability of these systems and the
flexibility allow the prototyping and previous validation of these systems’ aspects. In this
stage, we present some of the most relevant and recent simulation tools.

1. Gazebo is a robotics simulation platform [65] created by the player/stage project [66].
This framework features individual and multi-robot simulation methods.

2. UberSim is a platform originally created to validate soccer robots [67]. This system
relies on the ODE as its physics platform.

3. USARsim is a simulation platform based on the Unreal Engine [68]. This platform is
very popular in robotics competitions, and can be combined with ROS for simulation
and control [69].

4. SwarmBot3D [70,71] emulates the functioning of the S-Bot [51]. The physical engine
used to create this platform was Vortex.

5. Microsoft Robotics Studio (MSRS) is a framework based in Windows to simulate robotic
units [72]. The physics simulator in this context was an external appliance created by Ageia.

6. ARGoS is a simulator developed for multi-robot simulation [73]. This platform allows
the usage of multiple physics engines, enabling the simulation of up to 10,000 e-puck
in 60% of the time taken in a real-world experiment.

7. Kilogrid is a virtual environment [74,75] created to emulate the Kilobots [62,63]. It en-
ables the experimentation with more Kilobot modules, providing a mean to experiment
without the limitations of the unit’s real versions.

8. Simbad is an autonomous robot simulation package [76]. It enables various methods
of single or multi-robot simulation using a Java-based platform.

9. RoboNetSim is a framework for multi-robot and network simulation [77]. This platform
is based on ARGoS, with added network simulators.

10. Webots is a mobile robotics simulation platform [78,79]. The physics features are
changeable inside the platform, allowing the emulation of flexible robots and environments.

11. JBotEvolver is a platform to enhance research and education in evolutionary robotics [80].
This platform is based in Java, with easy installation and use.

12. CoppeliaSim, which was previously named V-Rep, is a mobile robots simulation frame-
work [81]. This platform allows the simulation of several aspects of multiple robots
inside a defined environment.
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Table 1. Taxonomic table of the Swarm Robotics prototyping solutions.

CPU/MCU Memory Extra MCU Battery Sensors Actuators Size

Khepera Arm Cortex-A8
@ 800 MHz 256 MB dsPIC33FJ64

GS608
1 × 7.2 V Li-Poly
(3600 mAh)

Optical Sensors,
Ultrassonic Sensors,
IMU,
Microphones,
Camera

2 DC motors,
3 RGB LEDS,
1 loudspeaker

14.8 cm

Khepera IV Arm Cortex-A8
@ 800 MHz 256 MB dsPIC33FJ64

GS608
1 × 7.4 V Li-Poly
(3400 mAh)

8 IR Proximity and Light
4 IR Ground Proximity
5 Ultrassonic Sensors
IMU,
Microphone,
Camera

2 DC motors,
3 RGB LEDS,
1 loudspeaker

14.0 cm

Alice PIC16F84
@ 4 MHz - - 3 × 1.5 V

(23 mAh)
4 infrared sensors, radio board 2 Swatch motors,

radio board
2.1 cm

Kobot PIC18F4620A
@ 20 MHz - - 2000 mAh Li-Poly

(possibly 3.7 V)
8 infrared sensors,
ZigBeeCommunication Module

2 DC Motors,
ZigBee communication module

12 cm

E-puck PIC30F46014
@ 64 MHz 8 kB - 5 Wh Li-Ion,

1800 mAh
(possibly 3.7 V)

8 infrared sensors,
3D accelerometer,
3D gyro,
3 microphones,
camera

2 stepper motors,
1 loudspeaker,
8 red LEDs,
green LED ring,
red LED beam

7.5 cm

E-puck 2 STM32F407
@ 168 MHz 192 kB - 5 Wh Li-Ion,

1800 mAh
(possibly 3.7 V)

8 infrared sensors,
3D accelerometer,
3D gyro,
3D magnetometer,
4 microphones,
camera,
Front real distance sensor,
Time of fight (ToF)

2 stepper motors,
1 loudspeaker,
4 red LED,
4 RGB LEDs,
green light,
1 front red LED
Bluetooth 2.0,
BLE,
Wi-Fi

7.5 cm

Jasmine ATmega168
@ 8MHz 1 kB ATmega88 5V Li-Po Battery

(250 mAh)
6 IR Phototransistors,
1 IR receiver
for communication

2 DC Motors,
6 IR Phototransistors,
one IR LED for communication

3.0 cm

Sambot
STM32
ARM Cortex-M3
@ 72 MHz

128 kB 4× ATMega8 -
4 encoders,
Accelerometer,
Gyroscope,
ZigBee
Communication Module

2 Micro DC Motors,
Coupling module motor,
coupling hook motor,
ZigBee communication module

10.2 cm
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Table 1. Cont.

CPU/MCU Memory Extra MCU Battery Sensors Actuators Size

S-bot XScale ARM
@ 400 MHz 64 MB 10× PIC

processors
4Wh Li-Ion
(possibly 3.7 V,
1100 mAh)

color omnidirectional camera,
16 lateral and 4 bottom
IR proximity sensors,
24 light sensors,
a 3 axis accelerometer,
two humidity sensors,
incremental encoders
and torque sensors

Mobility DC motors,
gripper motors,
2 loudspeakers,
8 RGB LEDs

11.6 cm

AMiR ATmega168
@ 8MHz 1 kB - 3.7 V Li-Poly

(400 mAh)
IR Receivers 2 DC Motors,

IR Emitters
7.3 cm

Colias ARM Cortex-M4
@ 180 MHz 256 kB Atmega168 Lithum 3.7 V

(320 mAh)
2 DC Motors, RGB LED,
3 LEDs

Motion Sensor,
Camera,
2 microphones,
2 light sensors,
3 IR receivers

4.0 cm

eSwarBot ATMega328P
@ 16 MHz 32 KB - 1 × 9 V

(2300 mAh)
MaxSonar EZ1,
2 encoders,
2.4 GHz XBee

6 RGB LED,
2.4 GHz XBee,
2 DC Motors

12.6 cm

Pheeno ARM Cortex-A7
@ 900 MHz 1 GB ATmega328P 11.1 V Li-Po

(3000 mAh)

3D accelerometer,
3D magnetometer,
wheel encoders,
IR sensor, camera

RPR serial linkage servo,
2 DC Motors

5.0 cm

microUSV ARM11
@ 1GHz 512 MB ATmega328 9 V Battery IMU DC Motor 23.0 cm

mROBerTO ARM Cortex-M0
@ 16 MHz 256 KB - 3 × 3.7 V Li-Po

(120 mAh)
Light, range, gyro, camera,
accelerometer, compass,
distance, bearing

2 micro DC motors 3.2 cm

Kilobot Atmega328
@ 8 MHz 32 KB - 3.4 V Li-ion

(160 mAh)
IR Receiver infrared LED transmitter,

2 Vibration Motors
1.6 cm

Tribot ATtiny4313
@ 10 MHz 256 B - 3 × 3.7 V Li-Po

(120 mAh)
2 IR proximity sensors 2 IR transceivers,

3 linear spring-type
shape-memory alloy (SMA)

5.8 cm
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4.3. Architectures and Frameworks

Another important aspect of SR appliances is the architectures and frameworks. It is
essential to understand the tools created to design and develop applications. From these
aspects, we also need to understand the dataflow inside a proposed solution. These issues
help to assess the real-time aspects, data processing, and data analysis payload processes
within any project. In the context of SR, it is feasible to analyze the data in the Edge [82,83],
Fog [84–86], Cloud [87–89], or even combine these strategies [90]. Some examples of
frameworks and architectures are:

• Aerostack is an example of architecture and software framework developed for
UAV/UAS SR applications [91]. The onboard application has modules to control
real-time and non-real-time tasks. The collective architecture considers modules that
target the most relevant tasks in the context of each SR unit.

• ARCog is a cognitive-based architecture designed to surface inspections in large
scale [92]. The decision process happens through a supervising agent that attends
solicitations from each unit throughout the execution time.

• ALLIANCE is a software architecture designed to facilitate the control of heteroge-
neous SR applications [93]. Internally, each unit has a set of high-level functions to
perform designed tasks, using information from internal states, other robots, and en-
vironmental conditions.

• CoMPACT presented a hierarchical architecture to control UAV swarms [94]. This pro-
posal combines mission-planning tasks with dynamic reassignment, motion planning,
and swarm behaviors.

5. Basic Behaviors and Tasks in Swarm Robotics

In this section, we describe a compilation of most meaningful techniques in Swarm
Robotics. Researchers classify Swarm Robotic Systems based on the tasks or behaviors
performed by swarms through several experimental results. As expected, some features
are rather basic but represent a part of some challenging tasks.

5.1. Aggregation

Aggregation is a technique where single robots gather together to achieve tasks, for in-
stance, collective movement or exchange of information. This technique permits swarm
agents to get spatially nearby in a particular region to each other for more interaction.

Aiming to demonstrate the aggregation dynamics, Firat et al. [95] concentrate the
investigation on the self-organized aggregation of swarm-robot systems. According to
the authors, the goal was to survey the prelude of “informed robots” and examine the
amount of these agents are required to conduct the aggregation development regarding a
predetermined area among those accessible in ambiance. They investigate the aggregation
procedure with informed robots in three situations: two are morphologically symmetric
and an asymmetric scenario. This research’s main collaboration is to prove the result of the
insertion of a small part of informed robots in both ambiances: symmetric and asymmetric
ambiances. In symmetric ambiances, agents conduct the aggregation method to investigate
selected areas; in the asymmetric ambiance, informed robots can change natural choices
in the majority denoted area and persuade the swarm to gather on minimum select areas.
The authors demonstrate detailed experiments to investigate how the procedure can foretell
the dynamics noticed with a swarm in symmetric situations.

Khaldi et al. [96] investigate the Minkowski distance function in self-organized re-
search aggregations inside swarm robotics systems. The authors developed an aggregation
technique named DM-KNN, supported by the Minkowski distance function. The authors
also say the employment of such a function conducts an essential advance in the aggre-
gation efficiency when confronted with a preceding aggregation procedure. The authors
analyze the efficiency of their technique with that DM-KNN technique using the AMBR
metric. Subsequently, they study the efficiency of the two techniques by considering the
swarm dispersion capacity they intend to minimize. Experiments indicate the suggested
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aggregation technique surpasses the performance in contrast to the DW-KNN proposal.
Mısır et al. [97] proposed a fuzzy-based self-organizing aggregation approach. In the devel-
oped technique, swarm agents assess their controlled sensor input by norms of fuzzy logic
and exhibit aggregation behavior with the proposed approach. Simultaneously, swarm
agents either own the facility to avoid obstructions in a restricted area with this procedure.
Swarm agents identify nearby robots, make choices, and show aggregation behaviors.
The authors explain the proposed method employs fuzzy logic controllers to rate restricted
sensor data. Organized experiments were employed on several swarm robots with diverse
areas dimensions. Furthermore, the noise was employed on the sensor input to investigate
the fuzzy logic’s efficiency supported the self-organizing aggregation procedure. Shah and
Vachhani [98] introduce a decentralized technique for swarm aggregation. This technique
simplifies tasks, whereas the robots practice local decision-making. The authors say this
research’s first goal is to arrange steady gathers of a swarm employing exclusive local expe-
rience and no interaction between robots. A theoretical study of the suggested procedure is
shown encouraged in the concept of switched systems. Computational experiments are
performed to prove aggregates’ stability in the closeness of broad barriers and outward per-
turbations. Moreover, the authors describe an implementation of the suggested controller
in an authentic process using examinations on the swarm of distinctive microbots. The pro-
posed method lacking communication indicates comparable performance compared to
previous swarm aggregation methods employing global and local iterations.

Distributed and Reinforcement Learning

Reinforcement learning is a supported method where agents that can be in a group of
conditions and can perform a specified group of activities, collect feedback on the outcomes
of their actions, over an award. The goal of the agents is to select a mapping inside mapping
and actions thus to maximize the award. The award is attached to agents that straight
complete an aim with global reinforcement using a local reinforcement model where every
robot is awarded for each fulfillment; local reinforcement is more suitable with swarm
intelligence fundamentals because it does not demand sharing global information with
the swarm.

Hüttenrauch et al. [99] suggest a novel state representation deep multi-agent RL
supported on the average embedding of distributions, where they consider the robots
like samples and uses the empirical average embedding as an entry for a decentralized
policy. They determine distinct characteristic distances of the average embedding using
histograms, radial basis procedures, and neural networks instructed end-to-end. They
assess the representation of two renowned problems of swarm literature in a global and
locally observable configuration. In the local configuration, they moreover insert single
communication protocols. On all proposals, the average embedding representation using
neural network characteristics allows the most valuable information swap among neigh-
boring robots, favoring the deploying of complicated collective procedures. Encouraged
by new progress in single-agent reinforcement learning, Sartoretti et al. [100] present a
single-Agent Asynchronous Actor-Critic (A3C). A3C allows the robots to train a distributed
policy, in which the robots labor jointly towards an ordinary aim without interaction. Their
method depends on the unified policy and crucial learning, but decentralized policy perfor-
mance, in an entire observable process. They present that all robots’ total experiences can
be influenced to fast practice a policy that scales to smaller and larger swarms. They prove
the algorithm’s applicability on a multi-robot construction problem, where the robots need
to organize easy blocks components to construct a user-defined structure. The authors
demonstrate simulation outcomes where a swarm of different dimensions builds distinct
assays structures without additional training.

Wai et al. [101] propound a double average schema, where each robot iteratively
accomplishes mean on both space and time to embody neighboring gradient information
and local award information. They verified the propounded algorithm converge to the
optimal solution at an overall geometric ratio. An algorithm constructs in a primal-dual
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formulation of the average squared designed Bellman error minimization problem provides
an increase in the decentralized convex-concave saddle-point problem. According to the
authors, the propounded algorithm is prime to reach quickly finite-time convergence on
decentralized convex-concave saddle-point problems. Di Mario et al. [102] investigate the
automatic synthesis of robotic controllers to numerous mobile agents’ coordinated motion.
The method used to train the controllers is a clatter-impervious version of Particle Swarm
Optimization employed in two distinct scenarios: centralized and distributed learning.
In the first scenario, each agent runs the same controller, and the performance is measured
in an overall metric. In the second scenario, agents use distinct controllers, and performance
is measured separately on every agent with a local metric. The results demonstrate that it is
feasible to learn a collaborative task in an entirely distributed manner using a local metric.
They authenticate the simulations with actual robots experiments where the two scenarios’
superior solutions reach analogous performances. Akrour et al. [103] presented a study
of Reinforcement Learning (RL) with previous restricted knowledge. In their research,
preference-based reinforcement learning is matched with active ranking to reduce the
number of ranking queries to the specialist required to produce reasonable policy.

5.2. Direct Communication

Direct communication relates to a method whose agents change knowledge between
each other, frequently clearly propagating data to a signal a special condition. Usually,
according to the principle of local communication, information can be exchanged between
nearby robots, which can then act upon received information, modifying their behavior to
improve the foraging performance [15].

Cambier et al. [32] approach another significant topic in SR: communication. This fea-
ture relates directly to the capability of self-organization in swarms. Usually, Swarm
Robotics considers three ways of communication. The first one is indirect communication,
where the communication happens through changes in the environment, such as the stig-
mergy concept. The second one is direct interactions, which relate to influences between
individuals through physical contact. Finally, the third is direct communication, where
individuals exchange information. The communication aspect constrains the flexibility
of the system, as they are designed for specific tasks. Hüttenrauch et al. [104] presented
several single communication protocols that can be investigated by deep reinforcement
learning to discover decentralized control procedures multi-robot systems ambiances.
These procedures are motivated by histograms that encrypt the robots’ local neighborhood
connections and can too convey task-specific instructions, such as the shortest distance
and direction to the requested aim. They use on their framework an adaptation of Trust
Region Policy Optimization to acquire complicated cooperative tasks. They assess their
results in a simulated 2D-physics ambiance and confront their implications of various
communication protocols.

Li et al. [105] introduced distributed algorithms for a swarm to mask in an ambiance
by creating colored patterns such as those realized in the ambiance, imitating the camou-
flage systems used by cephalopods. They suppose every particle to be composed with
sensing, computing, and local communication skills. In this method, a group of robots can
understand their ambiance’s color, identify a local pattern, obtain agreement on a global
pattern, and create a camouflage pattern compatible with the ambiance the agents are
in. They propound to create local patterns, and they used a weighted-average consensus
algorithm. This algorithm enables the swarm to converge to a global pattern. Lastly, they
employed a pattern formation model named the activator-inhibitor model that combines
the background. This is performed using local communication and mathematical opera-
tions.

Stigmergy

De Nicola et al. [106] present an easy language for multi-robot systems that contribute
to the intuitive project of local specifications. Robots act on a decentralized data structure,
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the stigmergy, that includes their knowing. Such knowing is asynchronously disseminated
per local stigmergy. In this manner, local modifies can induce global conduct. The principal
innovation is that the acting mechanism gathers stigmergic interaction with attribute-
based communication. Particular requirements for interaction can be represented in a
model of attributes through exhibition properties of the robots. Furthermore, robots
access the global ambiance. They present the language expressiveness in several case
studies. They add some introductory outcomes to automatic validation by entrusting an
automatic representative encoding that enables them to explore conventional languages’
inspection tools. Tang et al. [107] implemented a stigmergic interaction strategy for swarm
robots to research and follow a dynamical aim. The stigmergic procedure employs the
pheromone left in the ambiance to reach knowledge information among agents, which
minimizes the demand of agents’ communication ability and render the swarm more
scalable. The stigmergic procedure is composed of a suggested vectorial pheromone model
and approximates after swarm agents get the vectorial pheromones. Two kinds of aim
movement paths are checked in simulation and experiments. The outcomes demonstrate
that the stigmergic procedure allows the swarm agents to discover the aim quickly and keep
a near path to the aim thereafter. Moreover, the stigmergy procedure is even doable with
distinct quantities of agents, which proves that this procedure is scalable. Tang et al. [108]
propound a new system grounded on stigmergy in their investigation for swarm robots
to research an aim. Pheromones are a novelty introduced by vectors, which enables them
to include more information than conventional systems. The RFID labels are employed
as a bearer of pheromones. RFID readers compose agents to read and write information
in the RFID labels at the present location. The procedure either contains a velocity and
position updating algorithm. Numerical simulations are accomplished completely to prove
the propounded procedure.

5.3. Dispersion

Dispersion is another swarm behavior that consists of agents ought to dispose of in
the ambiance, collaboratively filling a broad region. Specifically, the dispersion is generally
necessary when investigating the region ought to be extended without connectivity waste.
Bayert and Khorbotly [109] proposed a method to resolve the dispersion problem standing
on the noted gradient descent algorithm in a robotic swarm. The dispersion is obtained
when the single robots reduce the collected signals’ entire power from nearby robots.
The proposed technique is appropriate because it does not need any excessive calculating
qualifications. Tests were conducted to evaluate the method through computer simula-
tion and experimental verification. The results prove the proposed method can scatter
groups of robots and raise their coverage area. Florea and Buiu [110] introduce a mem-
brane computing supported technique for the coordinated dispersion of a group of robots.
This membrane computing (XP colonies) is a powerful tool for designing and conduct-
ing robots in a swarm because they are parallel and distributed models. Furthermore,
XP colonies’ employment to manage robots in a swarm is a useful technique for man-
aging the swarms of thousands of robots where parallelization is required. The authors
present a study case with illustrative videos for several dispersion models to confirm this
technique’s legibility. Kshemkalyani et al. [111] presented work about robot dispersion
problems on graphs. The aim of this work is concurrently decreasing both important per-
formance metrics: time and memory. The authors demonstrated two models for Dispersion
of k ≤ n agents regarding time grid graphs that discover programs in several real-world
robotic systems and demonstrate concurrently optimal limits for the two metrics. No-
vischi and Florea [112] developed a formation control technique of communication amid
aggregation and dispersion abilities that allow a group of robots to gather and scatter
a specified air-gap distance operating merely local communication. The authors supply
different simulation experiments and a study of the connection among agents that presents
asymptotic stability on the developed technique.
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5.4. Pattern Formation

Pattern formation is a technique of organizing the robots in a global structure by
modifying their locations. The robots modify their locations, establishing a special form
by local communication. Coppola et al. [113] developed a strategy to create local behavior
agents in a swarm to arrange required global patterns, regardless of very restricted cognitive
skills. According to the authors, this strategy was planned to perform the global pattern
from the robots’ stochastic bearing. The agents obey this stochastic procedure to choose an
activity supported on their present understanding of the neighborhood. The authors put
forward a proofing method aiming to confirm if the required pattern will constantly appear
from the robots’ local actions. The proofing method’s major feature is that it is mainly local
in nature and concentrates on the agents’ local conditions and the global consequences
of their local actions. It was employed as a local method to minimize computational
work when examine the arising of substantial patterns. Lastly, the authors demonstrate
numerous experiments on a practical robot model. Li et al. [114] discourse about problem
of introducing a group of robots gradually to a shaping determined as a point cloud.
The authors suggested an algorithm to convert a considering point cloud to an acyclic
direct graph to accomplish this task. This graph is employed to enable a swarm of robots
to arrange the object form supported just on local choices gradually. This indicates that
robots are not information to obtain their position supported on the position realized
of the agents previously in the formation. The authors demonstrated their method’s
effectiveness through experiments grounded on physics and robotic tests, demonstrating
the solid confluence. Queralta et al. [115] developed a sophisticated formation control
algorithm that allows nearly structures to be built without the requirement of connections
among agents and without recognizing every agent with only one tag. This method is
supported on an index-free description for a location with a shaping that demands distance
and bearing measures to show the next robot’s location. Furthermore, the descriptions
can be adjusted to prevent collision among robots. Wang and Rubenstein [116] proposed a
distributed shape formation algorithm that allows a group of robots to create a structure
by a specified form swiftly and with no impacts. The robots receive targets and apply
the local knowledge to share the targets and program no collisions routes simultaneously.
The authors performed experiments on a group of robots until 1024 simulated agents
and 100 real agents. The tests’ conclusion indicated that the algorithm was slower than
the centralized technique; however, it can aggregate all agents arranging the intended
form. Also, the significant number of experiments demonstrated the algorithm could
perform with just a little divergence in the distance, nearly 25% if contrasted to an optimal
centralized method.

5.5. Collective Movement

The agents in Swarm Robotics are portable gadgets. In other words, agents can budge
in the ambiance. Considering this fundamental feature, the robots can perform several tasks
supported on swarm motions such as the motion of a unique or several agents, the evasion
of obstructions, the recognition of other agents or targets, among other labors. The motion
of the agents in these motion-associated diverges about self-organization assignments.
In collective movement jobs, the whole swarm is assumed to walk from one position to
another in the ambiance. In comparison, every agent budge inside the swarm, desiring
to reorganize in a spatial organization task. Nevertheless, there is no actual movement of
the group.

Talamali et al. [117] introduce a cooperative foraging system supported by virtual
pheromones, testing with essays, and swarms of up to 200 physical agents. The controllers
of individual agents are too simple since they are supported on binary pheromone sensors.
Regardless of how simple they are, individual controllers are sufficient to copy standard
foraging rehearses guided by qualified real ants that identify pheromones’ accumulation
and pursue its gradient. The controllers’ essential quality is a control parameter that
stabilizes the assignment between distance selectivity and individual fodders’ quality
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selectivity. The authors created a standard prototype of foraging theory that considers the
distance and characteristics of the resources and foresees a procedure subject to the swarm’s
size. They also evaluated swarms by implementing our controllers versus the optimization
model and realized that for reasonable swarm dimensions, they could be configured to
resemble the ideal foraging approach. The authors state that this work proves the efficiency
of simple rules to reproduce an improved collaborative foraging behavior. Yamagishi
and Suzuki [118] suggested a new swarm-robot distributed movement control approach
supported on a thermodynamic representation. The suggested procedure allows the
collective movement of a group of robots among obstructions with a variable aggregation
appropriate for facing obstruction disposals in the ambiance. The group robot form is
determined aggregation created by potential attraction and repulsion forces supported
on the suggested procedure. It obeys a representative guide when preserving its form.
Whenever the swarm aggregation form cannot be kept throughout displacement regardless
of the limited area with obstructions, the robots’ group modifies form according to the
local ambiance. The procedure applies virtual thermal movement; that is produced with
instructions and allows constant movement. Simulation experiments are made to prove the
suggested approach’s power in allowing the stability and flexibility of the swarm robots’
collective movement. Moreover, the experiments demonstrate that the limit setting scope
is relevant for enforcing the suggested approach.

Scholz et al. [119] present a notably simple and flexible system whereupon 3D-printed
robots accomplish self-propelled and self-spinning motion on a tremble table. The authors
investigate a blend of minimalist clockwise and counterclockwise rotating robots named
rotors. Tests demonstrate that rotors budge collaborative and display diffusive interfacial
movement and period detach through spinodal decomposition. The authors show the
macroscopic system is a mold of a soft matter when mapping rotor movement on a
Langevin equation and by contract with computational experiments. Zhao et al. [120]
investigate the collective movement problem suggesting algorithms for swarm robots in
3-D space. The authors say the agents are skilled to budge through a predefined route from
an origin to a destination whereas fulfilling the next particularities:

1. the agents use merely one-hop neighbor knowledge;
2. the agents keep connectivity network topology through knowledge swap;
3. the agents keep a requested neighboring distance;
4. the agents are sufficient to go through obstructions without splitting the agent swarm.

The authors emphasize the fundamental idea is to add an orientating force and a
topology force inside the process. The orientating force is employed to conduct the
agents to their destiny place over the predefined path. According to the authors,
it guarantees that the agents proceed to budge up to arrive at their destiny place.
The topology force is employed to keep a “decent” topology of the swarm, such as
to preserve connectivity of network topology and the required distance among the
neighboring agents.

The authors classify their algorithms in three categories:

1. no obstructions or no chiefs;
2. no obstructions with a chief;
3. with obstructions with or without chiefs.

Experimental simulations demonstrate that:

1. the algorithms perform all the requisites;
2. the algorithms are free to GPS and robot faults.
3. the algorithms’ self-adjusting control create a network topologies further solid and

spare travel time of agents.

5.6. Task Allocation

Task Allocation is a decision method, wherever the agents chose from a set of al-
ternatives, which job each one will perform. The task allocation problem can appear in
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multi-robotic systems and swarm robotics. Harwell et al. [121] studied the use of task
allocation in swarm robotics. The authors examined task decomposition graphs on sev-
eral levels allowing swarms to use available caches and complicated task decomposition
graphs, allowing generate/eliminate caches. They presented the task decomposition graph
development is connected with swarm intelligence advent and conduct for varied task
allocation techniques in an object collecting task. The authors also investigated how the
advance of swarm intelligence emerges of knowledge and investigation of graph form
instead of graph composition (costs of nodes).

Khaluf et al. [122] presented a powerful approach of task allocation algorithms to
swarm robots to perform tasks subject to special time limitations. The strategy is a variant
of the famous Ant Colony Optimization method for local computing and upgrade of the
pheromone routes using knowledge obtain single robot when performing its task. The au-
thors affirm this work is an original approach to use a system to optimize task allocation.
The experiences examined in this work prove that an adequate strategy coordinates the
swarm to carry out its designated tasks within specific deadlines, both static and dynamic
simulated environments. Lee et al. [123] presented a foraging task where a set of robots
must collect food particles and transport them to the central nest. Robots transport food
to a collective storage region called a cache area (clipboard), and storage robots take food
from the collective storage region to the central nest. The authors created a dynamic task
assignment method to measure robots’ share proportionally to task requests. According
to the authors, the collaboration of the article is to make it possible to change the efficient
local task of individual robots with the response threshold model, but without communi-
cation, performing, in an extreme way, the designation of the tasks desired for a cluster
and presenting the convergence mathematics of the assignment of tasks. The authors de-
scribe it as a self-structured procedure for dividing a task into sequentially interdependent
subtasks and determining individuals in a cluster to perform the subtasks concurrently.
They claim that this strategy is intended to decrease interference between individual robots
since different worker models are more segregated, and the improved transport efficiency
provides a better overall swarm functioning.

Hung et al. [124] presented a new adjustable, organized distributed control, allowing
a little swarm of mobile robots to follow wide target clouds. According to the authors,
distributed control was planned by distribution node control and distributed connectivity
control to permit a robot flexibly to get along with movement limitations originated by
local minimum topologies of local networks. The collaborative observation task, tracking,
and launch algorithm of the collaborative workstations were added to the distributed
control to render it adjustable to follow more than one target in ample destination clouds,
ensuring the entire global network for the assignment of collaborative tasks. The authors
confirmed and legitimized the control method using simulations and authentic analysis.

5.7. Source Search

Swarm robotics can be extremely helpful in search tasks, mainly those in that the
source’s spatial model can be complicated as in the case of sound and odor. To determine
the miniature robot’s orientation with many infrared sensors in a swarm robotic system,
Liu et al. [125] presented a mathematical model of the behavior of orientation supported
on existing positioning models, aiming to improve positioning precision when employed
in the practical location. The resultant mathematical model is based on optimization
to enhance exactness. The characteristic structure is to order the weights for particular
independent variables. Later, use the genetic algorithm (GA) to obtain the optimal values of
those proper to remove the positioning error. The results demonstrated that the suggested
location model is efficient and thriving to discover a neighboring robot’s exact orientation
in a system with several robots.

Renzaglia e Briñón-Arranz [126] presented a new technique for researching a feeble
and rowdy signal and finding its fount using a group of mobile robots. According to the
authors, the robots move in a circular composition and swap knowledge to collaboratively



Sensors 2021, 21, 2062 18 of 31

predict the signal gradient grounded on noisy mensuration, considering the communica-
tion limitations. The training center follows an associated random walk, which guarantees
excellent space-filling qualities to investigate a reliable signal strength region successfully.
To solve the exploration and the exploitation problem, the assumed gradient plays acts as
a trend of distribution probability of the unusual guidance walk, permitting the group a
soft transition amid the two techniques and improving the robustness concerning a certain
change. The authors claim results in experiments that prove the success of the approach.
Dadgar et al. [127] employed the repulsion method between homogeneous ions as motiva-
tion to define a recent robotic target search technique that was analyzed using the RDPSO
algorithm (Robotic Darwin PSO). The suggested procedure presents various significant
benefits for the robotic research of targets and the ability to offer a great heterogeneity
among robots; thus, the suggested procedure can solve the problem of slow convergence
rate and, in complement, it can prevent local optima. The suggested technique aims to
restrict the converging search region; this conducts to an excessive exploiting ratio. These
characteristics conduct to a powerful robotic search algorithm. Several experiments were
carried out to investigate the performance of the proposed method. Experimental results
show the supremacy of the suggested method in contrast to other research techniques,
particularly when there is a small group of robots.

The problem of searching multiple odor sources is addressed in the paper of Jain et al. [128].
In this work, the authors presented an approach based on div-PSO. To obtain superior
coordination, actions such as group formation, disassembly group, fusing group and
dimensions constraints were used. According to the authors, the results indicate the
performance improved even more with the approach supported by div-PSO. The plume
division is simulated in the 3D environment by the Ansys Fluent software. The simulated
responses are introduced into MATLAB and used to quantify the convergence of odor
source. The performance of the suggested div-PSO method is superior to the niche-PSO,
R-PSO, M-PSO methods in the three divergent environments, as it supports preserving
variety and decreases the possibility of stagnancy in local optima. Furthermore, the use
of artifices in the proposed div-PSO approach is more satisfactory since it uses the group
destruction operator. In addition, if the robots get stuck in the optimal location, the search
counter’s design will help them escape from the optimal location area.

5.8. Collective Transport of Objects

Swarm robotics is an encouraging technique to answer the collective transport prob-
lem. To improve performance, the use of several robots can represent a benefit to the
problem due to the collective manipulation of one object. In Ebel et al. [129], a decision-
making and fully distributed control scheme was developed that allows robots to cooperate
as equals, without any central control instance. In addition to coordinating the robots’
movements in a distributed manner, they comprise the autonomous determination of the
robots’ positioning around the object, such as the agreement between robots on which
robot is assigned which role or in the transport process. The most fundamental elements
of the control scheme are based on optimization, resulting in an instinctive introduction
of problems and an adaptable general control scheme, covering the distributed drivers
commanding as a compliment, as well as the calculation of formations, i.e., configurations
of robots to the around the object, suitable for transportation. Several simulated and exper-
imental results indicate the scheme’s flexibility, both in relation to the number of a person
in charge and the shapes of the objects transported. In addition, the solutions expand the
benefit and usefulness of automatic online reorganizations, where few robots are available
for transportation. The hardware experiments’ responses indicate that the introduction of
techniques is naturally applicable to objects and physicists in the real world and show that
the coordination scheme is quite robust to faults as possible noisy.

Gabellierri et al. [130] present a common model and a control law for robots that
are collaboratively handling an object for terrestrial and floating systems. The control
procedure experiences a leader-follower scheme and is only on implicit communication.
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The purpose of the control is composed, especially in orienting the object manipulated by
the swarm of robots to an intended location and orientation in a collaborative manner. An-
alytical results were demonstrated on the balance configurations and their stability, which
are therefore ratified by numerical simulations. The object’s internal forces’ function is
examined in the convergence of the object’s location and orientation to the required values.
Likewise, a discussion was presented about additional characteristics of the controlled
system that were examined using a complete numerical analysis, i.e., the robustness of the
system when the object is topic to outward perturbations in non-standard situations and
how the number of leaders in the cluster can affect convergence and robustness.

In view of the many weak sources in the search for the swarm of robots in an un-
explored environment, Shi et al. [131] created a multi-target model with several signals.
The proposed new collaborative technique known as robotic pedestrian swarm behavior
(SRPB) was based on pedestrian behavior at subway/train stations. According to the au-
thors, several realistic restrictions were considered, covering limited intercommunication
range, restricted working time, unknown sources, unknown extremes, the robots’ arbitrary
initial location, unguided search, and no central coordination. The paths of the robots from
the initial locations to the extremes indicate SRPB can conclude the research activity from
the various sources truly. The functioning of the SRPB was analyzed according to the aver-
age time to discover the first, the median and the last source, the number of sources, and the
collision index. Different experiments demonstrated that SRPB had notable effectiveness
and the highest stability in all the comparison strategies and obtained a low collision
index and many discovered sources. In addition, several experiments have proven that the
collision index was associated with the environment dimension and the number of robots.
The quantity of discovered sources was linked to the number of robots. In conclusion,
the study of how to implement this technique was created to support new research.

Sugawara [132] developed work on the transport of objects by swarm robots estab-
lished on granular convection. In this work, the segregation phenomenon examined in
a mixture of particles of different sizes was highlighted. Its particularities were used to
describe a system for moving an object to its destination. In this system, the robot is
transported only by a random force association, a continuous force realized by the desti-
nation, and a spring force produced by fixed points that act as a limitation. The object is
submissive and propelled only by the bump of the robots. Even though no one of the robots
has a specific mechanism that identifies the target object and other robots, the object is
transported to the destination. Initially, the essential qualities of a system’s behavior based
on an unrestricted robotic cluster were explained. Subsequently, the behavior of the same
system with restrictions was clarified. The results show that the robotic swarm without
restrictions carries the object properly when a continuous repulsive force of destination is
inserted; the addition of a continuous force of destiny causes the restricted cluster to be
transported. It was also shown that the speed of the object’s displacement is associated
with its size, mainly in the system with restriction, and the higher the density of the robots,
the more agile the object moves to the destination, mainly in the system without restric-
tion. In this work, the performance of the system was also discussed, especially through
computer simulation.

5.9. Collective Mapping

Collective mapping is the dilemma of synchronizing a collection of robots and co-
hesively budging the swarm. This formation owns a precise shape such as a line or is
random like a flocking. Arvanitakis and Tzes [133] proposed a new procedure of coop-
erative mapping and navigation in the undiscovered ambiance by a group of movable
robots. Every robot is provided with a reached sensor of a restricted area to observe and
grasp. A particular aim is attributed to every robot that must explore an unexplored area.
The sensory knowledge about ambiance gathered from every robot is swapped to generate
a public map of the investigated area. The authors use an objective function that, in the
beginning, intends to find out every robot’s aims region, a boundary investigation takes
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place. The boundary is chosen by using a switching cost function that regards the feasible
finding out of the aim area of an agent by else limb of the group. When an agent’s aim
area is within the disconnected explore subarea, the navigation function is changed to a
geodesic function that guarantees the navigation to the explored region. Experiment results
show that the suggested control method navigates lead the group capably to the specific
aim positions.

Delight et al. [134] proposed a method for reaching collective movement in a group of
robotic boats aiming at ocean surface mapping. The authors show implementation and
experimental tests to authenticate the idea in a sea evaluation with 16–24 robotic boats.
The method employs local neighbor communication and responds to outer knowledge
calculated in a mentor’s ambient features or inner knowledge. The authors formulate and
prove three types of behaviors and show experimental tests from area assays performed in
Catalina Harbor in California. Kegeleirs et al. [135] research a swarm mapping procedure
wherein the agents initially separately map the environment through random walking.
After that, the authors join the agent’s maps to a single one. The authors also concentrate
on five variants of random walking and contrast the maps’ standard that a swarm yields
whenever investigating the environment using this variant. The tests indicate that it is
feasible together to map the environment blending them. The authors affirm the standard’s
map relies on the investigation behavior of the agents. Experiments results that notwith-
standing the individual maps being unfinished, it is acceptable to create a map by fusing
them collaboratively. The results indicate the ballistic motion provides superior mapping
outcomes for covered areas.

Kit et al. [136] suggested a collective computing system employed on a complicated
task: collective mapping. This system is supported by swarm models, which offer these
main qualities: robustness, scalability, and flexibility. This system enables a decentralized
and distributed mapping with scalability to independents systems managing broad envi-
ronments compared with present approaches. The experiments affirm the efficiency of this
collaborative approach. The authors find out the topology of the network influence the
functioning of the collaborative act.

6. Applications Using Swarm Robotics

In the previous sections, we presented and defined Swarm Robotics, displayed some of
the developed and available testing platforms, evaluated some projects, and discussed their
basic behaviors and tasks. For a broader comprehension of Swarm Robotics’ importance, it
is also necessary to understand its context of use. In this section, we overview some of the
real applications of Swarm Robotics.

6.1. Marine Environmental Control

As presented in the introductory section, swarms are compositions of autonomous
robots. Unmanned Underwater Vehicles (UUVs) and Unmanned Surface Vehicles (USVs)
allow the usage of swarms in several tasks. For instance, swarm robotics in UUVs and
USVs improve automated environmental monitoring in marine environments [137], oil
pollution control [138], and exploration [139]. The applicability of swarm robotics in these
environments led to the development of specific simulation tools for these environments,
such as microUSV [60].

Gregory and Vardy [60] introduce an open-source Unmanned Surface Vehicle (USV)
projected to act in laboratory ambiances. The first design objective was to minimize the
robot’s dimension and cost while demonstrating a steady and maneuverable platform
with autonomy. To achieve this, the robot is constructed using 3D printed, electronic
components and uses a general camera system to simulate sensor data to minimize the
number of onboard sensors needed. Their paper reports the context, project, and montage
process for a microUSV and shows the platform’s base-level functionality in the mold
of a controller implementation for either single and multi-agent configuration. In their
paper, Gupta and Bayal [138] uses a swarm intelligence algorithm, Modified Glowworm
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Swarm optimization (MGSO) Algorithm, jointly as swarm robots to find out origins of
oil pours. Their algorithm uses a variant step size on a static method profile to accelerate
the convergence fee. The result shows superior performance if the quantity of iteration
and quantity of s-bots get reduced. The comparing analysis is produced by using some
benchmark function and estimations measurements based on PCR (Peak Captured Rate).
The most significant quantity of origins of oils’ pours is discovered.

Lončar et al. [137] presents a study of an underwater acoustic sensor network com-
pounded of a heterogeneous robotic swarm used for a long-period scanning underwater
ambiances. This swarm contains many underwater robots performing as sensor nodes
with restricted motion capacities, and some surface robots assist them in realizing subaque-
ous overseeing scenarios. Principals interaction between two kinds of robots embraces
underwater sensor deployment and relocation, energy and data exchange, and acoustic
localization assistance. The hardware capacities of each agent have described inexactness.
Agents communication is divided into two tiers: surface and subaqueous communication.
Surface communication employs wireless communication using Wi-Fi routers with decen-
tralized routing. Subaqueous communication mostly works with acoustic communication
that poses a defiance task whenever used in a wide swarm because of the extreme possibil-
ity of interference and data loss. The acoustic communication protocol used to avoid these
questions is described in detail. Lastly, additional complicated functionalities of SR are
introduced, including sundry results from life-real tests. In the study of Sànchez et al. [139],
they create an autonomous multi-robot approach to investigate unfamiliar subaqueous
ambiances by gathering data about water features and the existence of barriers. Unfamiliar
subaqueous spaces are adverse ambiances whose exploration is frequently complicated.
The usage of human diapers or equipped vehicles for these scenarios imply significant
danger and massive overheads. The systems used for the same tasks generally entrust
remotely operated vehicles (ROVs) commanded by a human operator. The troubles related
to this technique embrace the substantial costs of hiring a high prepared operator, the nec-
essary presence of a vehicle in closeness to the ROV, and the delay in communication
frequently experienced between the operator and the ROV. Their study propounds the
usage of autonomous agents that would allow costs to be quite decreased. Furthermore,
a distributed swarm method would enable the ambiance to be investigated faster and
effectively instead of using a unique robot. The swarm technique reported in their article
is supported on Robotic Darwinian Particle Swarm Optimization (RDPSO), which was
primarily projected for planar robotic land applications. According to the authors, this
is the initial study to generalize the RPSO algorithm for 3D applications, emphasizing
subaqueous robotics to demonstrate a topmost exploration fastness upgrade robustness to
private faults whenever confronted with conventional ROV proposals.

6.2. Autonomous Aerial Tasks

One of the most popular swarm robotics applications is the Unmanned Aerial Vehicles
(UAVs), popularly known as “drones”. With swarm robotics, UAVs can flock and fly
in formation without the need for a centralized control unit, even with a larger number
of individuals. These techniques also apply to urban traffic management [140], farm
inspection and mapping [141], and many others.

Garcia-Aunon et al. [140] introduce an aerial swarm that constantly supervise the
traffic in SwarmCity, a simulated city built up in Unity game engine wherever drones and
vehicles are designed in a realist manner. The airy swarm’s control algorithm is supported
on six behaviors with 23 constants required to be tuned. The optimization of these constants
is executed with a genetic algorithm in a simple and speedy simulator. The resulting
principal configurations are assayed in SwarmCity, proving significant efficiencies in
supervising vehicles on total vehicles throughout time windows. The algorithm achieves
an excellent performance using a reasonable computational time for the optimization.

Camci et al. [141] propound autonomous capacity supervision over rice farms by using
quadcopters. Real-time control of vehicles is even defiance as they show a high nonlinear
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behavior, particularly for nimble handling. Moreover, these vehicles must act under
unsure circumstances such as gale and storm perturbations as even as positioning mistakes
reasoned by inertial measures units and global positioning system. To control these
obstacles, type-2 fuzzy neural networks (T2-FNNs) are projected to control a quadcopter.
The new particle swarm optimization-sliding mode control (PSO-SMC) theory-based
hybrid algorithm is suggested to teach the T2-FNNs. In particular, the continuous version
of PSO is chosen to recognize the previous part of the T2-FNNs when the SMC-based
update rules are used for the learning of the subsequent part throughout the control.
The simulated results for the T2-FNNs are contrasted with the conventional proportionate-
derivative (PD) controllers for distinct case studies. According to the authors, the results
demonstrate that their procedure reduces the trajectory path integral squared error by 26%
on PD controllers’ standard case, when this rate increase to 95% at unsure circumstances.

6.3. Industry 4.0

Some of the economic interest in swarm robotics comes from the usage of these
techniques in strategic areas such as farming and Industry 4.0 [142–144]. In the context
of Industry 4.0, Limeira et al. [145] developed a microrobot platform for experimentation
in Industry 4.0. For instance, these applications can manage smart warehouses [146–148],
machine job scheduling [149], and others.

Limeira et al. [145] developed a prototyping platform to test aspects of communication
necessary in the Industry 4.0 concept. They designed this platform to have typical elements
of industrial actuation robots, intending to reach autonomous behaviors. The communi-
cation with the other robots and elements happens using Wi-Fi. Lee [146] proposed and
developed a system that implements an IIoT-Based Smart Warehouse control system. This
system relies on Swarm Robotics for the logistic of goods management. He designed and
implemented the system, meshing cloud, and local control strategies for Swarm Robotics.
He tested his proposal in a simulation environment. Liu et al. [148] proposed a Swarm
Robotics simulation tool for warehouse logistics. Their approach has tools to avoid colli-
sions, find paths, and schedule tasks. The objective of creating this new task is reaching
to specific aspects of warehouse management that general-robot simulators do not assess.
Farrugia and Fabri [150] proposed a testbed using low-cost robots to perform an object
transportation task using Swarm Robotics concepts. The objective of their work was to
transport a payload heavier than the individual capacity of these robots. In their results,
the robots were able to organize themselves in formations and perform the desired task.

6.4. Farming

Another relevant area for the application of swarm robotics is farming [142,151].
These applications can be used for various tasks, such as inspection and mapping [152,153].
These techniques also apply to seeding [154], cereal harvesting [155], plant care [156], weed-
ing [157], and so on. Albani et al. [152] developed a roadmap to implement a swarm robotic
solution for weed detection and control in the field. They propose the usage of UAVs
and computer vision to monitor and identify weeding within a farm environment. They
performed bench tests that indicate the feasibility of their proposal. Carbone et al. [153]
study the usage of UAVs for crop inspections in farming. They overview a set of features,
displaying advantages and disadvantages of different UAV models in these tasks perfor-
mance. Blender et al. [154] present a platform for seeding tasks in fields. This robot has
the typical swarm robotics features, with a minimal approach on sensors and computa-
tional power to remain operative. The task’s intelligence comes from a centralized entity,
which also connects the robots to cloud services. They performed tests both on simulated
environments and with real-world prototypes. Millard et al. [155] approach a novel swarm
robotics system for autonomous cereal harvesting. They proposed an architecture with
decentralized control to reach higher flexibility, scalability, and overall robustness. Their
testing was performed in a simulated environment to probe the effect of various parameter
changes in the system’s performance. Minssen et al. [156] propose a novel robot-based
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system for plant care. Through their process, they evaluate such appliance constraints,
raising the steps of the robot creation process. Finally, they developed a modular robot
prototype for testing the concepts in a fertilization task from winter wheat.

6.5. Civil Construction

The construction process also benefits from swarm robotics. A number of several types
of research have investigated construction-related questions implying the employment
of mobile robots and portable building material. The majority have not discoursed the
question of automatically creating a specific desired structure, concentrating rather on
other factors of the problem. In almost all instances, or the purpose is not to mold a specific
structure, or the system is provided a pre-designated order of building stages to pursue.

Melenbrink et al. [158] introduce Romu, a wheeled robot that uses a blend of a
vibratory hammer and its own body mass to guide equally post and heaps on the floor.
They relate to the results of hardware parameters on heap leading acting and prove acting
in either limited and natural ambiances. Romu is initially configured to guide interlocking
sheet heaps. Furthermore, to their advantages as a foundation, interferences are used to
avoid erosion and stimulate groundwater to reload in dry regions. They use simulations
supported on real-world grounds to examine the possible impact of a fleet of robots
disposed on a broad watershed area, using a plain reactive method dynamically define
barrage localization. Romu is so configured to lead a variety of promptly disposable
building materials that usually serve as posts. Melenbrink and Werfel [159] investigate
in simulation a system of decentralized scaling agents able of crossing and enlarging a
two-dimensional framework structure and examine the usage of feedback established
on force sensing as a manner for the group to foresee and avoid structural faults. They
regard a scenery in which agents are charged with constructing an unsupported cantilever
throughout a blank where the purpose is for the swarm to construct any steady structure
instead of to edify a particular predetermined blueprint. They present that the access
to local force measures allows agents to construct cantilevers that span meaningfully
further than those constructed by robots lacking access to that information. This advance
is reached by taking to preserve equally force and stability, where force is guaranteed
by regarding forces throughout moving to avoid joins from ruptures, and stability is
preserved by observing how loads transmit to the ground to guarantee versus dropping.
They demonstrate that swarms that have equally two types of forces in consideration
have to upgrade construction enforcement in either structured scenarios with plain land
or unexpected ambiances with harsh terrain. Werfel et al. [160] introduced a multi-agent
construction system encouraged by mount-building termites, resolving like a reverse
problem. A user details a demanded structure, and the system automatically produces
low-level regulations for autonomous scaling robots that ensure the production of the
building. Agents use just sensing and synchronize their act by the distributed ambiance.
They prove the method by a physical experiment with three independents scaling robots
restricted to onboard sensing. According to the authors, this study progresses the goal
of engineering compound systems that reach particular human-designed aims. Gerling
and Von Mammen [161] offer a concise study of works that encourage the development of
self-organized robotic systems for the objective to build construction. It emphasizes the
features of construction material (hard and shapeless), deployed hardware (landed and
airborne), and the organizational achievement of the agents’ synchronization by resources
of stigmergic communication.

6.6. Space Exploration Tasks

Space is a harsh environment. Thus, humans must rely on robots to perform au-
tonomous tasks, given the difficulty and danger of exposing humans to space environ-
ments [162–164]. space applications of swarm robotics vary from exploration [165,166]
to the on-orbit structures assembly [167,168]. On this matter, Vassev et al. [164] assessed
how NASA approaches Swarm Robotics technologies. In their work, they study both the
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development process and present some proposed applications. For instance, they overview
appliances to explore the asteroid belt, the Saturn rings, and provide moon landing bases.
Hao and Qin [165] explore the computational methods to plan paths for robots performing
collective tasks in the space environment. They apply the combination of Chaos, Particle
Swarm Optimization (PSO) with Immune Network theory to create their algorithm. They
tested it in simulated environments, performing successful planning to avoid obstacles
and navigate. Sabatini and Palmerini [166] study the main individual rules to perform
swarms’ collective tasks. For this matter, they observe satellite reorganization tasks, such
as collective changes in orbits for satellite arrays. They state that these tasks reach success
as the composing individuals follow four rules: collision avoidance, group maintenance,
neighbor alignment, and goal-reaching. In their study, Katz et al. [167] evaluate on-orbit
assembly tasks performed by autonomous swarm modules. In their research, they tested
several features, such as docking and reconfiguration. Their examinations indicate that the
proposed methods create a feasible swarm-based environment. Ayre et al. [168] propose
a control scheme for spacecraft swarms. They perform mathematical modeling of the
dynamical system of the swarm, providing predictability on the collective behavior. Finally,
this model is used to impose control laws on each element composing the swarm, achieving
typical behavior.

7. Conclusions

In this paper, an introduction to the world of Swarm Robotics was presented and
outlined its enforcements. Swarm Robotics is a comparatively recent researching field
inspired by swarms in Nature and robotics. Swarms Robotics is presently one of the most
significant application areas for swarm intelligence. Swarms supply the opportunity of
improving task performance, high assuredness, small oneness complexity, and low cost
alongside conventional robotic systems. They can perform several tasks that would be
impracticable for a unique robot to realize. Swarm robots can be employed in various
areas, such as agriculture, construction, inspection/maintenance, medicine, manufacturing
systems. Regardless of the number of studies that have been developed, it is even enough
away for real application. Our goal was to present a review of swarm robotics to compre-
hend this multi-robotic area study better and elucidate the impressive lines being subject
to this area. Concerns recently arising to this subject study can undoubtedly be orientated
through the various sections introduced in this paper.
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