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Abstract: This study experimentally and numerically investigated the nonlinear behavior of the
resonant bulk waves generated by the two-way collinear mixing method in 5052 aluminum alloy with
micro-crack damage. When the primary longitudinal and transverse waves mixed in the micro-crack
damage region, numerical and experimental results both verified the generation of resonant waves if
the resonant condition ωL/ωT = 2κ/(κ − 1) was satisfied. Meanwhile, we found that the acoustic
nonlinearity parameter (ANP) increases monotonously with increases in micro-crack density, the
size of the micro-crack region, the frequency of resonant waves and friction coefficient of micro-crack
surfaces. Furthermore, the micro-crack damage in a specimen generated by low-temperature fatigue
experiment was employed. It was found that the micro-crack damage region can be located by
scanning the specimen based on the two-way collinear mixing method.

Keywords: ultrasonic nonlinearity; wave mixing; micro-cracks; experiment; numerical simulation

1. Introduction

Due to the influence of fatigue loading, micro-cracks can be easily initiated in metallic
material, which extends and degrades the material’s performance. The development and
aggregation of micro-cracks can generate a macro-crack, which leads to the final fatigue
failure. Thus, it is of great importance to detect and evaluate micro-crack damage in
materials at an early stage to ensure the safety of engineering structures.

As one of the most important nondestructive testing methods, ultrasonic testing is
widely used in various industries because it is nondestructive, highly efficient and cost-
effective. In particular, nonlinear ultrasonic techniques [1,2] have drawn much attention in
recent years for their high sensitivity to material microstructural changes. Meanwhile, the
feasibility of nonlinear ultrasonic techniques for detecting and evaluating early material
degradation has been widely demonstrated by theory, simulation and experiment. As
representative nonlinear ultrasonic techniques, higher harmonics technology [3–9] and
wave mixing technology [10–12] have been commonly developed. The average or equiva-
lent material nonlinearity in wave propagation paths can be tackled by higher harmonics
technology. For instance, Shui et al. [13] experimentally applied second harmonics of longi-
tudinal wave to evaluate impact fatigue damage in adhesive bonding. Herrmann et al. [14]
proposed a reliable technique based on nonlinear Rayleigh surface waves to assess material
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damage at different stages of fatigue life. Lim et al. [15] numerically and experimentally
studied the generation of second harmonics caused by the interaction between Lamb waves
and a fatigue crack. Compared with higher harmonics technology, wave mixing technology
has some advantages, such as its feasibility for scanning local damage, and its flexible
frequency selection to avoid nonlinear interference from the electronic system. Chen [16],
Gao [17] and Liu et al. [18] derived the necessary and sufficient resonant conditions of two
propagating time-harmonic plane waves with the various resonant types with material
nonlinearity. Zhao et al. numerically and experimentally investigated one-way bulk wave
mixing behavior based on material quadratic nonlinearity [19], and they numerically in-
vestigated the detection of the micro-crack damage using the one-way collinear mixing
method [20]. Tang [12,21] and Shui et al. [22] employed the two-way collinear mixing
method to evaluate and locate plastic damage. Jiao et al. [23] employed a collinear wave
mixing of two longitudinal waves to detect a single micro-crack. Jacobs et al. [24] analyt-
ically investigated the nonlinear mixing mechanism of two collinear Rayleigh waves in
isotropic nonlinear elastic solids. Sun et al. [25] derived the resonant condition for one-way
mixing of nonlinear Lamb waves to identify mode triplets. Based on the condition of phase
velocity matching, Lissenden et al. [26–28] investigated the generation and propagation
mechanism of Lamb mixing behavior with multiple modes. Li et al. [29] studied the
acoustic nonlinear behavior from third-order Lamb-mixing harmonics. Hu et al. [30,31]
investigated the one-way collinear mixing of A0 and S0 mode Lamb waves with quadratic
nonlinearity and randomly distributed micro-cracks. In addition, the non-collinear ultra-
sonic wave mixing technique [32–37] has also been studied by some researchers. Xiang [36],
Croxford [38], Mao [39] and Jiao et al. [40,41] employed non-collinear two shear waves
mixing method to detect plasticity, fatigue and a single fatigue crack. Ishii et al. [34,42]
analytically and numerically investigated the modal amplitude in the non-collinear interac-
tion of guided waves. Wang et al. [43,44] proposed analytical models to predict nonlinear
mixing of non-collinear guided waves and bulk waves at a contact interface, respectively.

Most of previous theoretical studies have focused on the evaluation of the material
degradation based on quadratic nonlinearity. In fact, the interaction between ultrasonic
waves and micro-cracks can lead to the nonlinear effect [45–47]. Three constitutive mod-
els of micro-cracks are mainly considered, including the hysteresis model [48], bi-linear
stiffness model [49,50] and the rough surface contact model [51,52]. Moreover, research
has been devoted to the evaluation of micro-cracks in recent years. Qu et al. [53] ana-
lytically explained the phenomenon of nonlinear interaction between bulk waves and
micro-cracks. Sun et al. [54] derived the acoustic nonlinearity parameter (ANP) based on
the zero-frequency component and second harmonics. Hu et al. [55] systematically studied
the generation mechanism of nonlinear Lamb waves in the micro-crack region based on
the low-frequency S0 mode Lamb wave method. Su et al. [56] illuminated the generation
mechanism of contact nonlinearity based on a three-dimensional crack “breathing” model.
Jiao et al. [57] employed a nonlinear Lamb wave mixing technique to evaluate the length
and width of the crack in a plate.

Due to the difficulty of manufacturing coaxial double crystal transducers, the realis-
tic application of the one-way collinear mixing method has been severely restricted. In
contrast, the two-way collinear mixing method only needs two independent transducers,
and the applicability and flexibility of this method can be assured. However, research on
micro-crack damage and the formulas for locating the damage region (plastic or micro-
crack) based on the two-way collinear mixing method is seldom found in the literature.
For instance, in [16–18], the resonant condition of the two-way collinear mixing method is
only considered for material nonlinearity, but not the micro-crack damage; in [12,21,22],
the plastic damage, instead of the micro-crack damage, is evaluated and located using the
two-way collinear mixing method. Thus, different to previous studies on bulk wave mixing
methods, this paper focused on the detection and evaluation of the micro-crack damage
based on the two-way collinear mixing method using numerical simulation and experi-
mental measurement. The aim of this work was to numerically investigate the variation
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characteristics between resonant waves and the micro-crack damage based on simplified
numerical modelling, and to experimentally verify the feasibility of this two-way collinear
mixing method for the detection of micro-crack damage in a specimen. The quantitative
relationships between the ANP and the key factors of micro-crack characterization were nu-
merically studied, and the expressions to calculate the position of the micro-crack damage
region were proposed. In addition, locating the micro-crack damage was also conducted
by experimental measurement, which was observed by surface electron microscopy (SEM)
after a low-temperature fatigue experiment. In summary, the novelties of this work could
be: (1) the resonant condition of the two-way collinear mixing method for the micro-crack
damage was first investigated by numerical simulations, which were correspondingly
verified by ultrasonic scanning experiment; and (2) formulas for locating the micro-crack
damage region in the two-way collinear mixing method were proposed and verified.

2. Numerical Simulations
2.1. Resonant Condition

When a transverse wave pulse is emitted at x = 0 and propagates in the positive x-
direction while a longitudinal wave pulse is emitted at x = L and propagates in the negative
x-direction, it is called two-way mixing. If the resonant condition ωL/ωT = 2κ/(κ − 1) [16]
is satisfied and there is material nonlinearity, a resonant transverse wave with the difference
frequency of the two primary waves can be generated, which propagates in the negative
x-direction, where ωL and ωT are the circular frequencies of longitudinal and transverse
waves, respectively; κ = cL/cT , with cL and cT being the longitudinal and transverse phase
velocities, respectively.

It should be noted that the above resonant condition is derived for the quadratic
nonlinearity, and we suppose that the resonant condition is available for the micro-crack
damage model [20]. Numerical simulations were then employed to validate the feasibility
of the above assumption.

2.2. Numerical Modelling

In order to investigate the generation mechanism of the resonant wave and the rela-
tionship between the ANP and the micro-crack damage, the simplified two-dimensional
plane strain model with periodic boundary conditions was employed to describe wave
propagation in elastic solids with micro-cracks. Note that we only considered the existence
of micro-cracks rather than the generation and evolution of micro-cracks. The represen-
tative volume element (RVE) method was also adopted to establish the region of the
micro-crack damage. Meanwhile, the contact behavior was modelled as the source of the
nonlinearity from micro-cracks in finite element models (FEM), and the material property
was regarded as ideal linear elasticity. The commercial FEM software ABAQUS (Version
6.14, Dassault Systèmes Simulia Corp., Providence, RI, USA) was adopted to establish the
FEM models with randomly distributed micro-cracks. A similar micro-crack modelling
method presented by Zhao et al. [20,30,54] was employed to simulate the two-way collinear
wave mixing in the micro-crack damage region.

By successively emitting a pair of transverse and longitudinal waves at two opposite
sides, a model of two-way collinear bulk wave mixing in an elastic solid with randomly
distributed micro-cracks was created, and is described in Figure 1. The micro-crack damage
region with the size of L2 × L2 is in the middle of the model. The distance between the
left boundary of the damage region and the left edge of the model is L1, and the distance
between the right boundary of the damage region and the right edge of the model is
L3. Besides, three signal detection positions are equally located with the same interval
L1/2 in the left of the model. To simulate the emission of transverse and longitudinal
wave pulses, two different dynamic displacement excitations were employed on the left
and right edges of the model, respectively. Due to the different velocities between the
transverse and longitudinal waves, the longitudinal wave pulse should be generated after
the transverse wave pulse. The two primary pulses propagate in the opposite direction of
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x, arrive and interact in the micro-crack region. Consequently, if the resonant condition
ωL/ωT = 2κ/(κ − 1) is satisfied, a resonant transverse wave pulse propagating in the
negative direction of x can be generated in the micro-crack region and finally received
at signal detection positions. Moreover, periodic boundary conditions were enforced
on the top and bottom edges of the model to ensure two primary pulses in the form of
plane waves.
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Figure 1. Schematic of two-way collinear mixing in an elastic solid with randomly distributed
micro-cracks.

To investigate the influence of micro-cracks on the generation of resonant waves, N
micro-cracks with a uniform length of 2a (the range of a is from 10 µm to 50 µm) were
randomly distributed in the micro-crack region. In order to keep the randomness of micro-
cracks distribution, the probability density function with a uniformly random variable in
numerical simulations was employed to determine the center position and the orientation
of cracks. Moreover, the expression c = Na2/A [53] was used for the definition of the
crack density, where A is the area of the micro-crack region. It should be noted that a is
much smaller than L2, indicating that the size of the micro-crack is much smaller than the
size of the micro-crack region. Additionally, L2/a = 100 is appropriate for guaranteeing
computational accuracy and efficiency [53].

The linear elastic constitutive model of the aluminum alloy (Al-5052) was adopted,
and the material properties were ρ = 2700 kg/m3, E = 70.0 GPa and v = 0.33. To describe the
clapping and sliding behavior between micro-crack surfaces, the contact model with “hard
contact” in the normal direction and the Coulomb law of friction (the friction coefficient
µ) in the tangential direction was employed. Next, based on the recommendation [53]
for more than 20 linear elements within the shortest wavelength, the element size in the
FEM model was set to 0.025 mm, and 5 elements were required in every micro-crack to
accurately ensure the interaction between the two primary waves and micro-cracks. Thus,
the two-dimensional FEM model measuring 80 × 4 mm2 was representatively constructed
by 510,000 four-node plane strain elements (CPE4R), as shown in Figure 2.

The transverse and longitudinal waves were generated on the left and right edges, respec-
tively, of the FEM model with the dynamic displacement excitation u(x, t) = A0 sin(2π f t),
where A0 is the amplitude of two primary wave pulses. The amplitudes of the longitudinal
and transverse waves were 10−5 mm and 10−4 mm, respectively. The excitation cycle was 10
in the two primary wave pulses. Considering the resonant condition and the assumption of
low frequency with respect to the crack size, fL = 8 MHz and fT = 2 MHz were adopted for
longitudinal and transverse waves, respectively, which leads to the frequency of the resonant
wave fR = fL − fT = 6 MHz. Thus, λ/a ≈ 20 in this work results in the assumption of low
frequency. Moreover, ABAQUS/Explicit solver based on the central difference method was
employed to analyze the generation of the resonant wave. The stable time increment was set
to be ∆t = 5.0 × 10−10 seconds, considering the need for numerical convergence, accuracy
and efficiency.
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In addition, the ANP with the expression β = AR/(ALAT) [57] was adopted to represent
the degree of damage of micro-cracks in this study, where AR, AL and AT are the amplitudes
of the resonant, the longitudinal and the transverse waves, respectively.

Finally, the influence of the random distribution of micro-cracks needs to be considered.
To investigate the relationship between micro-cracks’ randomness and the ANP, sufficient
FEM results should be averaged. The trend in the averaged ANP with the number of
FEM models is shown in Figure 3. When the average number is more than 30, a stable
averaged ANP can be achieved. Hence, all results were averaged over 30 FEM models in
the following discussion.
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Figure 3. Acoustic nonlinearity parameter (ANP) versus average number of FEM models
(c = 0.009375, fR = 6 MHz, µ = 0, L1 = 40 mm, L2 = 4 mm, L3 = 36 mm).

2.3. Numerical Results

In this section, we investigated the generation and propagation of the resonant wave
under the resonant condition and quantitatively reveal the relationship between the ANP
and the micro-crack damage. The feasibility of locating the micro-crack damage region
was also verified.
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The displacement contours of 2 MHz transverse wave pulses and 8 MHz longitudinal
wave pulses propagating in the micro-crack region are shown in Figure 4 (U1 and U2
represent the displacements in x and y direction, respectively). It can be clearly seen
that the length of the micro-crack is significantly smaller than the wavelength of the two
primary waves. Meanwhile, when the two primary waves interact with micro-cracks,
the waveforms of the two primary waves show no obvious change. The phenomenon
of micro-cracks opening and closing can be verified when the deformation shapes are
magnified 1500 times.
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Figure 5 shows the resonant wave signals in the time-domain and frequency-domain
received at three signal detection positions, which are 0 mm, 20 mm, 40 mm away from the
left edge of the model, respectively. Because the size of the micro-crack region is smaller
than the ideal duration of the resonant wave pulse, the received resonant wave signals
present an incomplete diamond shape [16,20]. The frequency-domain signal of the resonant
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wave in Figure 5b indicates the notable existence of the 6 MHz resonant frequency. We can
infer that the source of the nonlinearity leading to the generation of the resonant wave is the
clapping and sliding behavior of micro-crack surfaces. Meanwhile, the time-domain and
frequency-domain signals received at three signal detection positions are almost consistent.
This proves that the signal of the resonant wave in propagation remains unchanged.
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Figure 5. The signals of the resonant waves received at three signal detection positions (c = 0.009375, fR = 6 MHz, µ = 0,
L1 = 40 mm, L2 = 4 mm, L3 = 36 mm). (a1–a3) Time-domain; (b) frequency-domain.

Next, four key factors were considered to investigate the relationship between the
ANP and micro-cracks, such as the micro-crack density c, the size of the micro-crack region
L2, the friction coefficient µ and the resonant frequency fR. Figure 6 shows the ANP versus
the crack density. Based on the definition of crack density c = Na2/A, the parameters N
and a can both affect crack density. When the size of the micro-crack region, the resonant
frequency and the friction coefficient remain the same, the ANP increases linearly with the
crack density. A previous study [30] indicated that the effect of N and a on crack density
is consistent. Considering the assumption of low frequency, parameter a needs to remain
unchanged. Thus, we can increase the crack density by increasing the crack number N. The
linear relationship between the ANP and the size of the micro-crack region is shown in
Figure 7. It should be noted that the length of the micro-crack region is smaller than the
ideal duration of the resonant wave pulses. The generated length of the resonant wave
pulses can increase with the propagation and interaction of the two primary waves in the
micro-crack region, which leads to the linear accumulation feature of the resonant wave.
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Figure 6. ANP versus crack density (fR = 6 MHz, µ = 0, L1 = 40 mm, L2 = 4 mm, L3 = 36 mm).
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Figure 7. ANP versus the size of micro-cracks (c = 0.009375, fR = 6 MHz, µ = 0, L3 = 36 mm).

Considering the interaction between micro-cracks and the two primary waves, not
only the clapping behavior of micro-crack surfaces but also the slipping behavior may affect
the generation of resonant waves. Figure 8 reveals the ANP versus the friction coefficient.
It can be clearly seen that the relationship between the ANP and the friction coefficient has
a slightly increasing trend. We can deduce that the clapping behavior plays the leading
role in the contact interaction of micro-crack surfaces. Thus, the ANP is not sensitive to the
friction coefficient.

In addition, the ANP from micro-cracks could be affected by the frequency of the
resonant wave. We found that the ANP represents a monotone function of the resonant
frequency, as shown in Figure 9. Higher frequencies of two primary waves can lead to
stronger interaction between these waves and micro-cracks, which can generate a resonant
wave with a smaller wavelength and higher frequency. Then the resolution and sensitivity
for detecting micro-cracks can be promoted with the increasing frequency of the resonant
wave. Therefore, a resonant wave with higher frequency could provide better detection of
micro-cracks.
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Figure 8. ANP versus friction coefficient (c = 0.009375, fR = 6 MHz, L1 = 40 mm, L2 = 4 mm,
L3 = 36 mm).
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Figure 9. ANP versus the frequency of the resonant wave (c = 0.009375, µ = 0, L1 = 40 mm, L2 = 4 mm,
L3 = 36 mm).

Finally, when the orientation of all the micro-cracks keeps a certain angle, the mechani-
cal property of the micro-crack region can possess anisotropy behavior. These cases need to
be considered in engineering. Note that the position of the micro-cracks remains uniformly
and randomly distributed. Figure 10 shows the relationship between the ANP and the
micro-crack angle (the angle between the crack longitudinal direction and the x direction).
It can be clearly seen that the trend in the ANP with the change in the micro-crack angle (in
the range from 0◦ to 90◦) is a bell-shaped curve. The maximum ANP is reached when the
crack angle is about 45◦, and the ANP decreases with the crack angle gradually deviating
from 45◦. The main reason for this phenomenon can be ascribed to the clapping behavior
of micro-crack surfaces for both primary waves. When the micro-crack angle is close to 0◦,
the clapping behavior caused by the longitudinal wave tends to its minimum; conversely,
when the micro-crack angle approaches 90◦, the clapping behavior caused by the transverse
wave tends to its minimum. Figure 11 shows the time-domain and frequency-domain in
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the representative crack angles. The waveform distortion is much more serious when the
crack angle is close to 45◦. The anisotropy in the micro-crack region caused by the uniform
crack angle can lead to the invalidation of the resonant condition ωL/ωT = 2κ/(κ − 1).
Thus, the resonant wave is seriously affected by the material anisotropy caused by the
uniformly aligned micro-cracks.
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Figure 10. ANP versus crack angle (c = 0.009375, fR = 6 MHz, µ = 0.3, L1 = 40 mm, L2 = 4 mm,
L3 = 36 mm).
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Figure 11. Waveforms (a) and frequency spectrums (b) of the resonant waves with different angles of micro-cracks
(c = 0.009375, fR = 6 MHz, µ = 0.3, L1 = 40 mm, L2 = 4 mm, L3 = 36 mm).

2.4. Method of Locating Micro-Crack Region

Compared to traditional ultrasonic nonlinear techniques, the wave mixing method
has the important advantage of locating the micro-crack damage region. The location and
the length of the micro-crack region were calculated by the time-domain signals of the
two-way collinear mixing method as shown in Figure 12. The starting position L1 and the
length L2 of the micro-crack region can be calculated by the following expressions:

L1 = [(TStart − TT − ∆T)CL
p − L]CTR

p /
(

CL
p − CTR

p

)
(1)

L2 = [(TEnd − TT − ∆T − TL)CL
p − L + L1]C

TR
p /CL

p − L1 (2)

where TStart and TEnd are the starting and ending time of the resonant wave, respectively,
TT and TL are the time of exciting transverse wave pulse and longitudinal wave pulse,
respectively, CTR

p and CL
p are the velocities of the resonant and longitudinal primary waves,

respectively, ∆T is the exciting time delay between the transverse wave and longitudinal
wave, and L is the length of the model.
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Figure 12. Time-domain signal of the resonant wave for locating the micro-crack region (c = 0.00625,
fR = 6 MHz, µ = 0.3, L1 = 35 mm, L2 = 10 mm).

In addition, the location of the micro-crack damage region for different cases can be
calculated and the results are shown in Table 1. It can be clearly seen that the simulation
results agree well with the theoretical models. Therefore, the time-domain signal of the
resonant wave can be employed to locate the micro-crack region.

Table 1. The location results of different cases.

Simulation Results Theoretical Models Errors

L (mm) L1 (mm) L2 (mm) L1 (mm) L2 (mm) L1 (%) L2 (%)

50 21.24 5.05 21 5 1.14 1.20
50 26.08 4.12 26 4 3.10 3.00
80 34.98 9.83 35.00 10 0.05 1.70

3. Experimental Measurement

To investigate the validity of the two-way collinear wave mixing method for the
detection of micro-cracks in practical engineering, a micro-crack damaged specimen was
prepared through a low-temperature fatigue experiment. Note that the micro-crack dam-
aged specimen is not strictly coincident with that used in the numerical simulations. Then
the microstructure of the damage region was observed by a surface electron microscope
(Model: Phenom XL, Phenom-World BV, Eindhoven, Netherlands). Meanwhile, ultrasonic
measurement based on the two-way collinear wave mixing method was employed to detect
the micro-crack damage by scanning the fatigue specimen.

3.1. Preparation of Micro-Crack Damage

In the low-temperature fatigue test [58,59], the toughness of metals can be decreased
while the brittleness can be increased, which can induce micro-cracks. Thus, a three-point
bending fatigue experiment with a constant temperature of −40 ◦C was performed on the
rectangle specimen (type of Al-5052) measuring 210 × 50 × 50 mm3, as shown in Figure 13.
The fatigue testing machine was an MTS 809 axial/torsional test system (Model: MTS
809.10, MTS Systems Corporation, Eden Prairie, MN, USA) with a controlled environmental
chamber. A notch (7 × 3 × 50 mm3) with a triangle tip was manufactured in the middle
of the specimen to easily generate the major fatigue crack. Then the micro-crack damage
region could be effectively induced in front of the major fatigue crack. The span of the
bottom support in the three-point bending experiment was 200 mm and the top indenter
was loaded on the middle of the upper surface of the specimen. Stress control (minimum
pressure Fmin = −28 kN, stress amplitude R = 10 and loading frequency fload = 10 Hz) was
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employed in the three-point bending fatigue experiment. After 280,000 fatigue cycles, a
major crack with a length of 13 mm was clearly visible.
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Figure 13. (a) The low-temperature three-point bending fatigue experiment. (b) The manufactured gap and the major
fatigue-crack.

The microstructure of the major crack tip was observed by SEM, as shown in Figure 14,
which shows the comparison between the non-damaged and damaged region at the same
magnification of 3400. Note that to clearly observe the microstructure using SEM, the surface
of the specimen was polished. Distinct and regular scratches can be found in the non-damaged
and damaged regions. Besides, white spots can also be seen in Figure 14, which is typically
caused by the production process of aluminum magnesium alloy [60]. Importantly, in the
non-damaged region, no obvious damage with intact microstructures can be observed in
Figure 14a. However, a distinct major crack can be observed in Figure 14b. The width of the
major crack is rather small, which means it can be considered as a closed crack. Specifically, in
the front of the major crack, it can be clearly seen that lots of micro-cracks exist around the
tip of the major crack and impurities. The impurities could be deemed to be the source of
micro-cracks. The representative size of the impurity is 20 µm, and the size of the micro-cracks
ranges from 5 µm to 30 µm. Meanwhile, the major crack propagates across the impurity
and the micro-cracks exist around the impurity in the middle bottom of Figure 14b, which
indicates that the aggregation of micro-cracks could generate the macro-crack. This is in good
agreement with the phenomenon described in [58].
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3.2. Ultrasonic Measurement

Figure 15 shows the experimental setup of the two-way collinear mixing method for
micro-crack damage detection. Two primary wave signals are generated by the high-power
gated amplifier RAM-5000 SNAP (RITEC Inc, Warwick, RI, USA), and emitted by the
transducers at two sides of the specimen. A resonant wave can be generated based on the
two-way collinear mixing method and received by the transverse transducer. Then, the
received signals could be saved as data by the DPO 3014 digital oscilloscope (Tektronix Inc.,
Beaverton, OR, USA). The reference trigger signal of the oscilloscope is from the internal
trigger signal of RAM-5000 SNAP system.
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In the experiment, the frequency pair of 2–8 MHz was chosen to satisfy the resonant
condition. In order to launch the ideal sine wave signals, the transducers should be chosen
carefully, especially for the transverse wave transducer, where the bandwidth should be
enough wide to emit the primary transverse wave and receive the resonant wave. Thus,
the 2 MHz transverse wave pulse with 10-cycles was triggered from channel 1 of the
RAM-5000 SNAP system and excited by the left Olympus transverse transducer (Model:
V155-RM, Olympus Inc., Tokyo, Japan). Similarly, the 8 MHz longitudinal wave pulse with
10-cycles was triggered from channel 2 and excited by the right longitudinal Olympus
transducer (Model: V121-RM, Olympus Inc., Tokyo, Japan). It should be noted that the
positions of the two transducers should be at the same height as the micro-crack region.
In order to clearly observe the resonant wave, the output levels of two channels are both
set as 100% to maximize the output energy. The two primary waves propagate in the
specimen, mix and interact in the nonlinear region of the specimen. Then, a 6 MHz
resonant transverse wave can be generated and received by the left transverse transducer.
The RITEC duplexer (RITEC Inc, Warwick, RI, USA) was used to achieve the function of the
transverse transducer, both transmitting and receiving. Finally, the received signals were
digitized by the oscilloscope with a sampling frequency of 2.5 GHz and 100 k sampling
points with 512 times average.

The resonant wave signal can be interfered with by electromagnetic signals and
overlaid by the primary wave signals. Therefore, operations with the phase reverse method
were executed to extract the resonant wave signals in the experiment. The received signal
S1 was obtained by successively exciting the two primary waves with the positive phase,
and the received signal S2 was obtained by successively exciting the two primary waves
with the negative phase. Thus, the time-domain signal of the resonant wave can be acquired
by the operation (S1 + S2)/2.

3.3. Experimental Results

In this section, the validity of the two-way collinear mixing method for detection of
the micro-crack region is discussed in detail. Figure 16 shows the representative time-
domain and frequency-domain signals from two different mixing positions. Among them,
Figure 16a1,b1 show the time-domain signals of the resonant wave mixing at the position
of 80 mm and 105 mm away from the transverse transducer, respectively. When two
primary waves mix at a position away from the micro-crack region, the resonant wave can
be generated due to intrinsic material nonlinearity. Correspondingly, when two primary
waves mix at a position within the micro-crack region, the resonant wave can also be
generated due to quadratic nonlinearity and micro-cracks. Thus, the changes of the ANP
could represent the local increase in the degree of damage. Meanwhile, the waveforms of
the resonant waves show the typical diamond shapes, and the frequencies of the resonant
waves are equal to the differences of the two primary waves. It can be clearly seen that the
waveform of the resonant signal received at 105 mm is slightly distorted. The reason could
be the reflected primary transverse wave caused by the macro-crack, which can be directly
proved by the 2 MHz frequency component in Figure 16b2.
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Figure 16. Time-domain and frequency-domain of experimental signals. (a1,a2) The resonant wave signal mixing at the
position of 80 mm. (b1,b2) The resonant wave signal mixing at the position of 105 mm.

Changing the time delay to emit the longitudinal wave, means the mixing region can
be moved from the left to the right of the specimen. Then, the process of scanning the
specimen can be achieved. Figure 17 reveals the normalized ANP of the 6 MHz resonant
wave versus the mixing position. Notably, due to the beam spreading and the attenuation
with the propagation distance, the received signals do not contain all resonant wave
signals, which can result in the decrease in the resonant wave energy away from the mixing
position. Thus, when the intrinsic material nonlinearity is uniformly distributed in the
non-fatigue specimen, the relationship between the normalized ANP and mixing position
could represent the trend in the signal intensity, which decreases smoothly [12]. Figure 18
shows a comparison of the scanning results for the fatigue specimen and the non-fatigue
specimen, which agrees well with [21]. Compared with the non-damaged region, micro-
crack damage can generate higher acoustic nonlinearity due to the clapping behavior. Thus,
a significant increase of the normalized ANP can be observed in the middle region with the
micro-crack damage. The position of the peak in Figure 18 is coincident with the location of
the micro-crack damage in the fatigue experiment. Similarly, the scanning result using the
3 MHz resonant wave is shown in Figure 19. An inconspicuous increase of the normalized
ANP is also obtained in the micro-crack damage region. The increment in the normalized
ANP at the middle of the mixing position in Figure 19 is obviously smaller than that in
Figure 18. Thus, we can conclude that the 6 MHz resonant wave has higher resolution
and sensitivity than the 3 MHz resonant wave for locating the micro-crack damage region.
The experimental phenomenon is consistent with the simulation conclusion regarding
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the resonant frequency in Figure 9. Therefore, the two-way collinear mixing method can
effectively detect the micro-crack damage by scanning the specimen.
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experiment.
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and fatigue experiment.
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4. Conclusions and Discussion

In this study, a two-dimensional numerical model was built to investigate the res-
onant wave based on the two-way collinear mixing method in the resonant condition
ωL/ωT = 2κ/(κ − 1) and the validity of locating the micro-crack damage region was
verified numerically and experimentally. The following conclusions can be drawn:

Firstly, micro-crack damage can be generated by a low-temperature fatigue experi-
ment, and SEM results indicate the dominant role of micro-cracks in the microstructure of
the damaged region. Ultrasonic scanning of the specimen based on the two-way collinear
mixing method can locate the damaged region. Moreover, the higher-frequency resonant
wave has higher resolution and sensitivity than the lower-frequency resonant wave for lo-
cating the micro-crack damage region. Thus, choosing a reasonable frequency for resonant
waves is helpful to efficiently detect the micro-crack damage.

Next, if satisfying the resonant condition ωL/ωT = 2κ/(κ − 1), resonant waves with
the opposite propagation direction to the transverse waves can be generated when a pair
of longitudinal and transverse waves interact in the micro-crack region by the two-way
collinear mixing method. The numerical results also reveal that the ANP shows linear
accumulation with the increasing of the micro-crack density and the size of the micro-crack
region. The friction coefficient of micro-crack surfaces has a weak effect on the ANP and
the frequency of the resonant wave is associated with the ANP in a form of monotonous
increase. Therefore, the ANP is feasible for effectively characterizing the micro-crack
damage. More importantly, the location of the micro-crack damage region can be calculated
by the start and end time of the resonant wave signals in the time-domain.

In summary, this paper experimentally verified the feasibly of the two-way collinear
mixing method for the detection of micro-crack damage, and numerically investigated
the characteristics between resonant waves and the micro-crack damage. Thus, this study
provides the theoretical and experimental foundation for developing a nondestructive
evaluation technique for micro-crack damage, especially for key engineering structures
(such as aircraft, high-speed trains) under low-temperature fatigue loading. In further
work, we will investigate more factors for the two-way collinear mixing method, such
as the non-uniform distribution of micro-cracks in numerical simulations, and different
temperature and fatigue life in fatigue experiments.
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