
sensors

Article

The Extensive Usage of the Facial Image Threshing Machine for
Facial Emotion Recognition Performance

Jung Hwan Kim , Alwin Poulose and Dong Seog Han *

����������
�������

Citation: Kim, J.H.; Poulose, A.; Han,

D.S. The Extensive Usage of the Facial

Image Threshing Machine for Facial

Emotion Recognition Performance.

Sensors 2021, 21, 2026.

https://doi.org/10.3390/s21062026

Academic Editors: Chen Chen and

Valentina Franzoni

Received: 1 February 2021

Accepted: 10 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu,
Daegu 41566, Korea; jkim267@knu.ac.kr (J.H.K.); alwinpoulosepalatty@knu.ac.kr (A.P.)
* Correspondence: dshan@knu.ac.kr; Tel.: +82-53-950-6609

Abstract: Facial emotion recognition (FER) systems play a significant role in identifying driver
emotions. Accurate facial emotion recognition of drivers in autonomous vehicles reduces road rage.
However, training even the advanced FER model without proper datasets causes poor performance
in real-time testing. FER system performance is heavily affected by the quality of datasets than the
quality of the algorithms. To improve FER system performance for autonomous vehicles, we propose
a facial image threshing (FIT) machine that uses advanced features of pre-trained facial recognition
and training from the Xception algorithm. The FIT machine involved removing irrelevant facial
images, collecting facial images, correcting misplacing face data, and merging original datasets on a
massive scale, in addition to the data-augmentation technique. The final FER results of the proposed
method improved the validation accuracy by 16.95% over the conventional approach with the FER
2013 dataset. The confusion matrix evaluation based on the unseen private dataset shows a 5%
improvement over the original approach with the FER 2013 dataset to confirm the real-time testing.

Keywords: facial emotion recognition (FER); autonomous driving; convolution neural network
(CNN); Xception; ResNet; MTCNN; FER 2013 Dataset; CK+ Dataset

1. Introduction

A machine that precisely identifies a driver’s emotional expression is one way to
reduce the number of fatal vehicle accidents. Ismail et al. [1] claimed that angry driving
behavior increases the risk of a car accident and could become life-threatening to others.
A facial emotion recognition (FER) system might help prevent fatal accidents and save
someone’s life from enraged drivers.

Presently, many researchers of FER have been rigorously improving new FER algo-
rithms with the aim of achieving ideal FER system performance, but few have published
newly collected FER datasets. Most researchers propose their customized FER algorithms
be tested with datasets such as FER 2013 [2] and extended Cohn and Kanade (CK+) [3]. FER
2013 and CK+ datasets are well-known and popular datasets. Unfortunately, neither have a
sufficient amount of data compared with the CIFAR-10 dataset [4] which has 60,000 object
images for training and testing. Most algorithms have reached 99% validation accuracy
in recent years. Many FER datasets do not have as large a number of facial images as
the well-balanced number of the CIFAR-10 dataset. Krizhevsky et al. [5], who designed
and built the AlexNet algorithm, justified that the data-augmentation technique could
mostly solve the overfitting problem from the small number of facial images for training
FER systems. Still, in an article by Sakai et al. [6], collecting many brain signals showed
better performance than using a small number of biological signals by applying the data-
augmentation technique. Data augmentation seems to be a temporary solution if we do not
have sufficient FER datasets in the FER system. However, a small number of facial images
still failed to generalize the dataset and cause poor performance in real-time testing even
with data augmentation.
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Generally, relying on obtaining datasets without any rigorous inspection could cause
the trained model to become disoriented by some malicious data inputs. Some images
were not relevant to facial images or misplacing them into the wrong labeled directories.
Removing irrelevant facial images from the FER 2013 dataset must be done to reduce
unnecessary computation. Considering the number of available facial images in the
dataset, removing any facial images reduced the amount of available training and testing
datasets and caused an imbalanced number of each directory’s facial images. We merge
with different existing datasets or collect the additional datasets to have the additional
facial images for training and testing to substitute the removed facial images. Merging the
different existing datasets requires a unique pre-processing technique because all datasets
have different sizes or different positions of facial images on a massive scale.

Furthermore, obtaining highly qualified datasets is even more challenging than im-
proving the FER system performance by giving lists of datasets [7]. Obtaining face images
was difficult, as the FER dataset often could not access individual institutions or did not
share in public due to protecting intellectual property or personal privacy. Initially, we
planned to collect volunteer facial expressions without any stimulating environment. We
captured random facial expressions made by themselves in front of their camera. Cowen
and Keltner [8] proposed how to capture 27 distinct emotions. Their volunteers made
different facial expressions based on what they saw in different emotional or provoking
content. We compared the facial expression from our volunteers and the real-time facial
expression from people on YouTube. People’s emotional expressions on YouTube are
quite different from our volunteer acting expressions, and even from other obtained facial
images from FER 2013 and CK+ datasets. If we ask volunteers to express their emotions
without real-time simulated environments, the trained model based on those volunteer
facial expressions will be less likely to be recognized as vital facial expressions in the
real-time situation. On top of that, collecting facial images for training an FER dataset is
time-consuming due to the standardizing each captured facial image size and the lack of a
variety of volunteers.

We propose to operate a facial image threshing (FIT) machine, and the significant
contributions to this paper to address these problems are as follows:

• We implemented the proposed FIT machine, which can collect the massive number of
facial images from videos.

• The proposed FIT machine can eliminate the irrelevant facial images from the FER
2013 dataset.

• The proposed FIT machine can correct the misplaced face data in a wrong categori-
cal class.

• The proposed FIT machine can remove the background segment but leave the fa-
cial segment.

The major applications of the proposed FIT machine are face detection [9], security [10],
malware threat detection [11], and body pose estimation [12] as well as collecting the face
emotions. The face detection could detect any face from lost children to criminals as the
FIT machine can collect faces for storage of the dataset, and later use them for model
training. The FIT machine could be handy for apprehending runaway criminals. It also
could be applicable for detecting authorized personnel to access certain buildings without
any identification device. The FIT machine could act as a malware threat detection when
unauthorized personnel breach the system.

The rest of this paper is organized as follows. Section 2 refers to the related work of
collecting facial images, pre-processing techniques, and the conventional FER datasets.
Section 3 proposes and demonstrates the structure and operation of the proposed FIT
machine. Section 4 analyzes the experimental results. Section 5 concludes this paper with
some concluding remarks.
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2. Related Work

In this section, we describe conventional approaches to managing FER datasets. We
discuss the existing FER system challenges when the system uses FER 2013 and CK+
datasets.

McDuff et al. [13] collected 168,359 video frames from 242 facial videos in 2013. They
also included the active units (AU), landmarks, labels, and other assisting properties onto
their collected dataset. The team developers recorded the online visitor facial expressions
while watching a short video clip to trigger their facial emotional expressions. The policy
rules before accessing the website indicated that the users consent to being recorded for the
team developer research or not. Online visitors must consent to the policy rules before they
access the website. McDuff et al. [13] published their dataset to share in public, and the
datasets can be found at the online website address. Nevertheless, their proposed approach
might be quite time-consuming if the web users were unwilling to share their profile or
mostly not participate in the website.

The most popular dataset is FER 2013 for many FER researchers. The FER 2013
dataset could be obtained in a comma-separable value (CSV) format or actual image.
Tümen et al. [14] experimented with a convolution neural network for training the FER
model. They achieved 57.1% validation accuracy with the FER 2013 dataset. However, their
achieved validation accuracy was not sufficient for potential performance because even a
simple convolution neural network could achieve more than 59%. Moreover, they did not
inspect the actual facial images in the FER 2013 dataset thoroughly because we spotted that
some malicious facial contents hinder the FER system performance. We emphasize how
important it is to manage the existing dataset and increase the available number of face
images to train the FER model. Another FER researcher, Zahara et al. [15], who used the
FER 2013 dataset, achieved 65% of validation accuracy of the FER performance with the
FER 2013 dataset. They also display the confusion matrix and the real-time performance.
However, their approaches of FER 2013 are not sufficient to analyze the FER 2013 dataset.
They used a face detection system based on the Haar cascade classifier method. The Haar
cascade classifier method was proposed by Viola et al. [16] in 2001. Historically, computing
from each colored pixel into the extracted features was considerably expensive. The
computation of the Haar cascade classifier method was reduced by training the AdaBoost
algorithm [17]. The Haar cascade classifier method is used not only in the face detector but
also in objects. However, the proposed face detection from Zahara et al. is outdated because
the Haar cascade classifier method was introduced in 2001, even before introducing the
AlexNet algorithm. The Haar cascade classifier is still shallow compared with our current
algorithms that we used. Their proposed facial detection was not highly accurate and can
detect more irrelevant pictures of the face, confusing the pre-trained FER model during the
training and testing.

Another popular FER dataset is the CK+ dataset. Before training and testing the
FER model, all facial segments from the images must be extracted and resized from the
original images because each image of CK+ has a larger background segment than a face.
Otherwise, the unnecessary background pixels cause the FER model to be poorly trained
and slow down the training speed. Despite the small number of facial images from the CK+
dataset, the performance results outperformed the FER 2013 dataset by applying the data-
augmentation technique. If the face images were properly extracted before the training,
the trained Xception algorithm performance generally showed between 86% and 88% if
the split ratio of the training and the testing dataset is 70 to 30. Kim et al. [18] claim that
the data-augmentation technique resolves a small amount of data from the CK+ dataset.
They achieved over 90% validating accuracy, and the ratio of training and testing was 90 to
10. Nevertheless, they do not show or demonstrate real-time performance. Their results
only display the estimated validation accuracy during the training process. Similarly,
Liu et al. [19] claim that their FER performance show improvement without demonstrating
the absolute performance from a different set of data. The real-time performance or unseen
testing dataset is required to show the absolute performance of the FER system. Although
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a validation accuracy is more than 90% with a small amount of face data during the FER
model training, the real-time performance is still low, as we discovered. Lucey et al. [3],
who created and shared the CK+ dataset, admitted that they required a massive amount of
the FER data to have a robust performance of real-world emotion classification.

After these problems from recent FER researchers, we cautiously emphasize how
inspecting training and testing data is heavily influential on FER performance. In our
approach, the FIT machine can solve these challenges and manage the FER datasets effi-
ciently. The FIT machine collected 8173 facial images even without bringing volunteers
to participate in our laboratory. We used the current face detected system, called the
multi-task cascade neural network (MTCNN) [20], which is better performance than the
Haar cascade classifier method. We mention the confusion matrix evaluation from the
unseen private testing dataset of FER 2013 to confirm the estimated real-time performance
and prove how a small number of face images as CK+ shows an unsatisfactory real-time
performance. Using the FIT machine, a small number of datasets in the CK+ dataset become
a supplement for merging the different FER datasets.

3. Proposed FIT Machine

The FIT machine [21] from Figure 1 coverts a recorded video clip or any foreign
datasets into facial images as a part of our desirable FER training and testing datasets. In
other words, once a downloaded YouTube video clip or any foreign datasets enter the
FIT machine, the FIT machine starts to convert from a video as an input into the cropped,
resized, and categorized facial images as the output. The FIT machine consists of the data
receiver, the face detector as the MTCNN, the image resizer [22], and the data segregator
as the pre-trained Xception algorithm model [23].

Figure 1. Proposed FIT machine diagram.

In the FIT machine, the data receiver converted video into images. Suppose we set
20 frames per second from a 2-min video clip, the data receiver generated around 2400
images. After a recorded video went through the data receiver, the face extractor as
MTCNN, which was introduced by Zhang et al. [20], detected and extracted the facial
image parts of each video frame. MTCNN is obtainable via typing “pip install MTCNN”
without implementing it from scratch. If the data receiver had a foreign dataset as a comma-
separable value (CSV) format or raw images, it converts them into images before entering
MTCNN as the face extractor.

From Figures 2–4, MTCNN has P-Net, R-Net, and O-Net. During the face detection,
the input image enters P-Net, and R-Net takes P-Net output. O-Net takes the output from
R-Net at the end. From P-Net through O-Net, the MTCNN algorithm is getting more
complicated and has deeper layers. The number of layers and parameter computation is
increased during the process of face detection. All sample images are supposed to enter
through these networks to generate the best-detected faces. First, the different-generated-
sized input images enter P-Net. P-Net initially chooses the possible face frames from the
given input images. R-Net inspects the given initial frames from P-Net, then it removes the
face frames specifically which do not meet a threshold score. Finally, O-Net chooses the
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best face frames from the given output from R-Net. The binary cross-entropy loss from
Equation (1) is used to train the MTCNN and is expressed as

Ldet
i = −[[ydet

i log{p(ydet
i )}] + (1− ydet

i )[log{1− p(ydet
i )}]] (1)

where ydet
i is the ground truth of the detected face from input samples, while p(ydet

i ) is
the probability of predicted and detected faces. Applying a natural logarithm on p(ydet

i )

produces an error rate of the predicted face. ydet
i log{p(ydet

i )} is the loss of the detected face,
while (1− ydet

i )log{1− (pydet
i )} is the non-detected face.

In addition to the structure of MTCNN, all activation layers are used by the parametric
rectified linear unit (PRelu), which is an improved version of the traditional rectified linear
unit (ReLU) or the leaky-ReLU. The PReLU can adjust the slope as a training parameter.
The PReLU equation is described as

f (xi) =

{
αixi, xi ≤ 0
xi, xi > 0

(2)

where xi is the input of the i-th channel, and αi is a slope value at the negative xi input
and a trainable parameter. The slope can be adjusted during the training time. If αi is
zero, Equation (2) becomes the traditional ReLU activation function. Or, the Leaky-ReLU
activation function if αi is 0.01.

At the end of the MTCNN process as the face extractor, it can generate at least 6800
cropped facial images from a single video clip because each video frame could contain
more than 2 or 3 faces. Later, the cropped facial images will be resized after passing through
the image resizer.

After the facial images were resized, they met the data segregator as the pre-trained
Xception model [23], which segregates into the adequately labeled directories. The pre-
trained Xception algorithm was initially trained based on the FER 2013 dataset. The
advantage of the Xception algorithm is higher accuracy and faster training speed than
algorithms that were tested and showed the results in Section 4.1. The critical element of
the Xception algorithm from Figure 5 has a depth-wise separable convolution layer and
some shortcut structures. A depth-wise separable convolution layer splits each channel
of the input and filter separately, convolves them by each channel, and later split one
element of 3 channels to be convoluted until all elements have been convoluted. The
depth-wise separable convolution layer reduces the number of parameters compared with
the conventional convolution layer. The algorithm also has some shortcut structure that
skips over the block of the depth-wise separable convolution layers. Instead, it has the
blocks of the conventional convolution layer and the batch normalization layer. The metric
loss measurement of the Xception algorithm was applied by the categorical cross-entropy
loss function from Equation (3).

The train–test splitter split the group of training and testing datasets in a 70 to 30 ratio.
Building the FIT machine made it possible to remove the irrelevant face image, correct
the classification of the facial images, and create the intelligence signal process lab (iSPL)
dataset, our independent dataset, on a massive scale in a short amount of time. After we
created the FIT machine, we built our lab dataset, called the iSPL dataset at Kyungpook
National University. In our approach, we collect some additional facial images and merge
them into the existing datasets. Finally, we loaded the pre-trained Xception algorithm
from the data segregator, trained it by the newly updated dataset, and redeployed it into
the pre-trained Xception model. Until the FER system reaches the ideal performance, the
FIT machine process will be endlessly repeated. By the end, the pre-trained Xception
algorithm becomes the newly improved data segregator and emotion classifier, while the
unsupervised learning dataset improved to be the finest supervised learning dataset.
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Figure 2. P-Net diagram.

Figure 3. R-Net diagram.

Figure 4. O-Net diagram.
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Figure 5. The Xception algorithm diagram.

4. Experimental Analysis

We evaluated the FER system performance from different existing algorithms such
as the simple-CNN, PyFER, MobileNet, Inception V.1, ResNet 50, and the Xception algo-
rithm and datasets such as FER 2013, CK+, iSPL, and the merged datasets. All different
algorithms [23–27] were implemented in Keras of Tensorflow with Python v.3.6. The FIT
machine was implemented in OpenCV2, os.walk, the pre-trained MTCNN as a face detec-
tor, and NumPy.resize() as an image resizer. Every dataset except the FER 2013 dataset
split the number of facial images into 70% and 30% respectively for training and testing be-
cause the FER 2013 dataset had initially split for training and testing dataset as established
earlier. The training conditions for each algorithm were a mini-batch sample size of 32, an
initial learning rate of 0.01, the Adam optimizer, the categorical cross-entropy loss function,
150 epochs, 50 variable number of patience, Tensorflow-GPU V. 2.0, Intel(R) Core(TM)
i5-10600K CPU@4.10GHz, an 32GB RAM, and GeForce RTX 2070. All training and testing
results were applied to the data-augmentation technique and the proposed FIT machine.
The FIT machine extracted facial parts and resized all face images into 48 × 48 pixels to fit
the size of the FER 2013 dataset. The rest of this section is organized as follows. Section 4.1
shows the experimental results based on the different algorithms and different FER datasets.
Section 4.2 describes the experimental results from the individual FER datasets, including
the demonstration of how FER 2013, CK+, iSPL datasets were merged.

4.1. Choosing the Best of the State-of-Art Algorithms

Different FER datasets are supposed to be tested within the 100 epochs to choose
the best algorithm for the FER system. The algorithm performance from Table 1 shows
the different numbers of the validation accuracy, loss, and training time. The Xception
algorithm showed better performance than most of the algorithms except the residual
neural network (ResNet 50) [25] at the FER 2013 dataset training. ResNet 50 shows the
competitive performance compared with the validation accuracy of the Xception algorithm.
Nonetheless, the Xception algorithm training speed was three times faster than ResNet 50
within 100 epochs. In terms of validation accuracy, loss, and training speed, the Xception
algorithm generally performed better than others given the result in Table 1. The validation
loss is based on the categorical cross-entropy loss function [28], which is expressed as

D(L, P) = − ∑
x∈X

L(x)log{P(x)} (3)
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where D(L, P) means a distance between the ground truth label and the probability of
labeled class from the predicting model. x ∈X means the one emotion classification out of
the seven emotion classifications. P(x) in the natural logarithm is the predicted probability
of the emotion distribution of class x, while L(x) is for the actual binary form of a facial
image label.

From Tables 1 and 2, as the number of total parameters increased until the Xception
algorithm, the performance increased. ResNet 50 has the highest total number of parameters
from all tested algorithms based on the number of input pixels 48 × 48 from Table 2.
ResNet 50 has 25,692,935 total parameters and displayed higher performance than all
tested algorithms except the Xception algorithm, which has 208,871 total parameters to
train. Despite the small number of total parameters compared to all tested convolution
neural networks, the Xception algorithm showed the best performance from the given
datasets. The Xception algorithm contains the depth-wise separable convolution layer,
which does not increase the additional parameters to train but has a faster training speed
than all tested algorithms except the Simpler-CNN algorithm. To test with the magnified
and merged datasets containing FER 2013, CK+, and iSPL, the algorithm training speed
must be as high as the performing accuracy.

Table 1. The performance of different algorithms and datasets as all given datasets were applied by data augmentation and
FIT machine.

Algorithm

Performance

FER 2013 CK+ iSPL

Accuracy (%) Loss Training Time (s) Accuracy (%) Loss Training Time (s) Accuracy (%) Loss Training Time (s)

Simple-CNN 59.18 1.0689 1932 85.24 0.4425 64 95.02 0.1622 443
PyFER 60.16 1.0942 1859 82.29 0.7632 75 95.15 0.2032 600
MobileNet 61.13 1.0351 2867 80.81 0.6469 119 97.31 0.0966 775
Inception V. 1 61.12 1.0563 4504 87.45 0.492 201 96.57 0.1628 1037
ResNet 50 64.22 1.0065 9938 85.61 0.519 323 97.72 0.0976 2219
Xception 63.99 1.0393 3234 88.52 0.3862 96 97.92 0.0778 653

Table 2. The number of parameters from different algorithms.

Algorithms Total Parameters Trainable Parameters Non-Trainable Parameters

Simple-CNN 642,935 651,463 1472
PyFER 3,934,199 3,933,239 960
MobileNet 3,246,407 3,224,519 21,888
Inception v.1 6,386,373 6,386,373 0
ResNet 50 25,692,935 25,639,815 53,120
Xception 208,871 206,375 2,496

4.2. The FER Datasets

In this subsection, all different FER datasets are demonstrated and showed the per-
formance of the Xception algorithm [23]. The epoch variable was 150, and the variable
value of the patience was 50. In other words, the training progress of the Xception algo-
rithm stops when no further improvement of validation loss occurs 50 times. The graphs
from Figures 6–12 demonstrate the Xception algorithm training process within the given
individual FER dataset.

The confusion matrix evaluation results from Figures 13–16 show the performance
of the pre-trained Xception algorithm, which had been initially trained with the given
individual FER dataset. The unseen private testing dataset was tested with the pre-trained
Xception algorithm. The unseen private testing dataset was a part of the FER 2013 dataset
but not used for the Xception model training. We also applied the FIT machine on the
unseen private testing dataset to remove some irrelevant facial images which were unfit
for the model testing. These figures showed how the pre-trained Xception algorithm based
on the individual FER dataset detects new emotional faces properly. The results from
Tables 3–6 display the summary of Figures 13–16. The pre-trained Xception algorithm per-
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forms well on the unseen private testing dataset if the test samples were densely populated
from the left top corner to the confusion matrix figures’ right bottom corner. The results
from these figures represented real-time camera testing. The result from Tables 3–6 was
computed based on the following Equations (4)–(6) as parts of the categorical evaluation
metrics:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

F1 = 2× P× R
P + R

(6)

where TP, FP, FN, P, R, and F1 respectively stand for true positive, false positive, false
negative, precision, recall, and f-1 score. Precision from Equation (4) is the percentage of
accuracy from the true positive detection TP out of the total predicted positive TP + FP.
Recall that Equation (5) is based on the true positive detection TP out of the total actual
positive TP + FN. Wang et al. [29] summarized those equations, and the f1-score from
Equation (6) is for balancing the precision and recall when it comes to uneven dataset dis-
tribution.

4.2.1. The FER 2013 Dataset

The FER 2013 dataset was obtained in a comma-separable values (CSV) format, where
was very hard to perceive the facial emotion from a series of pixel values. FER 2013 has
28,655 facial images for training and around 7166 facial image files for the testing. The
public testing dataset has 3582 facial images, while the private testing dataset has 3584. The
total number of facial images in the FER 2013 dataset is around 35,821. Each facial image
size is 48× 48 pixels, and there are seven different labeled classified emotions such as anger,
disgust, fear, happiness, neutral, sad, and surprised. As mentioned in the dataset reliability
in Section 2, we converted the CSV file into the images. All faces in the picture have various
poses of front, side, half-side, or half-rotated. By inspecting the dataset meticulously, 83
irrelevant facial images were found. Others were not relevant to the adequately labeled
directory. These problems could be resolved by operating the FIT machine, removing the
irrelevant facial images, and reorganized the misplaced face images.

From Figure 6, we trained and tested the Xception algorithm performance without
the FIT machine using the FER 2013 dataset. The performance of the FER system showed
60.99% of validation accuracy and 1.1529 of the validating categorical cross-entropy error
distance as Equation (3) during the training of the Xception algorithm from Figure 6.
Converting the CSV file into images allowed for quick inspection of some irrelevant or
mis-labeled face images. This malicious face data is supposed to be removed or correctly
labeled before training the Xception algorithm. Otherwise, the pre-trained model of the
Xception algorithm showed poor performance.

In our approaches, clearing out the irrelevant images and the facial images correctly
labeled by using the FIT machine, the FER system performance slightly improved by 3%
validation accuracy as compared with the results from Figures 6 and 7. We also discovered
that the gap between training and testing graphs was reduced. The Xception algorithm
with the sole FER 2013 reached 63.99% of validation accuracy during the training process
from Figure 7. The face images of the FER 2013 dataset were mostly and appropriately
prepossessed, while a small number of them were not, so the performance was slightly im-
proved.

Figure 13 shows the pre-trained Xception algorithm using unseen private testing
dataset from FER 2013. The confusion matrix results from Figure 13 confirmed to have
61.7% precision from Equation (4), 58.8% recall from Equation (5), and 59.4% f1-score from
Equation (6) before we applied the FIT machine. After applying the FIT machine, Table 3
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showed the result of 63% precision, 61% the recall, and 61% f1-score. However, removing
some irrelevant facial images could potentially reduce the number of the available facial
images, and relabeling the facial images could cause the imbalanced number of the facial
images in each label-categorized directory. From Figure 13 and Table 3, although we
improved the overall classification performance, some performance was reduced. To
substitute the missing facial images, any small dataset, especially CK+, had to be merged
into the FER 2013 dataset.

(a) (b)
Figure 6. Before applying FIT machine on the FER 2013 dataset. (a) model accuracy. (b) model loss.

(a) (b)
Figure 7. After applying the FIT machine on the FER 2013 dataset. (a) model accuracy. (b) model loss.

4.2.2. The CK+ Dataset

The CK+ dataset consists of 920 trainable images and eight classified emotions: anger,
disgust, contempt, fear, happiness, neutral, sadness, and surprise. All image sizes are
640 × 490 pixels. The face images of the CK+ dataset have only frontal face pose and a
small number of face pictures compared to the FER 2013 dataset. All volunteer face images
have larger background segmentation than their facial segmentation. Without resizing to
the 48 × 48 pixels, the pre-trained Xception algorithm based on the 640 × 490 pixels image
was unable to test due to the mismatching size of the unseen private testing dataset, which
is 48 × 48 pixels. Moreover, the Xception algorithm is not flexible with a different size
of the input images. Initially, we only resized those images into 48 × 48 pixels without
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properly extracting the facial segments. From Figure 8, the training process of the Xception
algorithm under the CK+ dataset showed much better results than the training of Xception
algorithm from FER 2013 dataset. The graph result from Figure 8 had 86.66% of validation
accuracy and 0.5382 of the validating categorical cross-entropy error distance.

Nevertheless, the unseen private testing dataset showed worse performance than the
training with the FER 2013 dataset from Figure 14a and Table 4. The results of the precision,
recall, and f1-score were 17%, 14%, and 12.7%, respectively. Each face image was supposed
to be adequately cropped and resized to improve the system performance. To improve the
system performance from resizing the images, operating the FIT machine is necessary to
remove the large background segmentation.

The FIT machine matched the sizes of the unseen private dataset and removed the
background segmentation. After extracting and resizing all facial segments, the Xception
algorithm for the FER system was adequately trained and tested. The graph result from
Figure 9 showed the 88.52% of validation accuracy and 0.3862 of validation loss, and
the result of the confusion matrix evaluation from the unseen private testing dataset,
which significantly improved to 32% precision, 27% recall, and 22% f1-score as shown in
Figure 14b and Table 4. Although the newly trained Xception algorithm was improved
the system performance under the influence of the CK+ dataset and the FIT machine, it
still led to worse performance than FER 2013 dataset. In our camera test, the pre-trained
Xception algorithm from CK+ dataset merely detects facial emotions but performed well
on the FER 2013, so these results from Figure 14 similarly represent our camera test. The
small number of facial images in the CK+ dataset to train even with data augmentation
still led to a biased result during the model training process.

Moreover, we previously split 90 to 10 training and testing with 10-fold cross-
validation [30], which could lead to better performance than splitting 70 to 30 for the
ratio of training and testing datasets. Regardless of these methods, the pre-trained Xception
algorithm has some problems for new face detection. The 10-fold cross-validation experi-
ment displayed bias evaluation among real-world evaluation. Our goal of the FER research
is to apply for real-world testing to resolve the insufficient number of face emotion data
to train and test. Therefore, training the Xception algorithm with the CK+ dataset caused
defective performance from the unseen private testing dataset and failed to generalize the
facial emotion in the real world due to its lack of facial emotion variations.

(a) (b)
Figure 8. The performance results from the CK+ dataset, which did not extract the facial segment but only resized. (a)
model accuracy (b) model loss.
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(a) (b)
Figure 9. The performance results from the CK+ dataset, which extracted only facial segments from the FIT machine. (a)
model accuracy (b) model loss.

4.2.3. The iSPL Dataset

Before creating the FIT machine, all video clips had different playtime lengths and
different sizes of resolutions. Some had 640 × 450 pixels of the video clip resolution, but
others had 1920 × 1080 pixels. Some video clips scenes do not have any faces or contain
more than two faces in different positions. Most CNNs, including the Xception algorithm,
do not have flexibility in the input image different sizes and cause a technical program error
due to mismatching the input size. Training the Xception algorithm with the non-identical
size input image would be impossible without the FIT machine. Although we managed to
resize all video frames, the resized images without proper face extraction for training and
testing could degrade the FER dataset quality. The 2-min video clips could have more than
7200 frames if a video clip has 60 frames per second. Manually collecting the facial images
from the video clips would waste our time and energy.

Initially, we resized those images into 48× 48 pixels to reduce the training computation
without applying the FIT machine. Abnormally, the performance of the Xception algorithm
from Figure 10 reached 99.22% of validation accuracy and 0.0188 of validation loss. We
have discovered that even a bad dataset could show outstanding performance to the
Xception algorithm. Testing with the unseen private testing dataset from Figure 15a and
Table 5 showed how biased results affect the FER system performance. The result of the
precision, recall and f1-score from Table 5 was 16.32%, 16.20%, 9.92% respectively. Training
the Xception algorithm from the iSPL dataset without applying the FIT machine might
perform well on training and validating, but it hardly detected the strong emotions from
new faces in real-time testing.

With the FIT machine, iSPL dataset [21] was correctly created. iSPL dataset is used to
compare the state-of-art algorithm performance or add more available facial images into
original datasets. All people in the dataset emotionally expressed during the real-time
critical events. The dataset contained 8173 facial images, and each person’s facial emotion
was sequentially recorded. The size of each iSPL dataset facial image was 48 × 48 pixels,
and it contains seven categorical emotions: anger, disgust, fear, happiness, neutral, sadness,
and surprise. All facial images were converted into gray-scale to reduce the input channel.
If one classified label had insufficient facial images as less than 1000 facial images, the
trained FER system would not identify that specific emotion correctly. Therefore, we stored
1000 facial images into each directory as we kept balancing the number of facial images in
every labeled directory.

Training the Xception algorithm with the iSPL dataset and applying it to the FIT
machine reached 97% validation accuracy from Figure 11 but had 3% less validation
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accuracy than Figure 10’s result. On the other hand, the confusion matrix evaluation from
Figure 15b and Table 5 had 17% improvement compared to the iSPL dataset without the FIT
machine. From Tables 4 and 5, the confusion matrix evaluation under condition of the iSPL
dataset with the FIT machine had 6% additional improvement from the CK+ dataset. Still,
the pre-trained Xception algorithm with the iSPL dataset did not outperform the FER 2013
dataset from Table 3. The small-sized FER dataset such as CK+ or iSPL dataset performed
poorly in the real-time testing according to results from Tables 4 and 5. Rather than using
the singular CK+ or iSPL dataset, we were deterministic that if CK+ and iSPL datasets
could be merged into the FER 2013 dataset and substituted to our missing facial images of
FER 2013 dataset if we could improve the performance further by increasing the number of
face images to train and test.

(a) (b)
Figure 10. The performance results from the iSPL dataset without applying the FIT machine. (a) model accuracy
(b) model loss.

(a) (b)
Figure 11. The performance results from the iSPL dataset with the FIT machine. (a) model accuracy (b) model loss.

4.2.4. The Merged Dataset

Ultimately, merging the different datasets [31] used to be a tedious processes before
the creation of the FIT machine because each dataset has its unique transformation of
facial images. For example, CK+ has a larger background segment than the facial segment.
Unlike CK+, FER 2013 has a smaller portion of a background segment than the face
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segment but contained irrelevant face images. Merging them without standardizing those
two different datasets would render poor performance during the model training or have
a software problem due to the mismatching input size. Also, manually cropping and
resizing the massive number of facial images seemed quite exhausting before training the
Xception algorithm.

To merge three different datasets, we applied the FIT machines to all existing datasets
from Figure 17. After all, facial images from CK+ and iSPL dataset were cropped correctly
and resized as they fit into the FER 2013 dataset, the split train and test program randomly
split into training and testing datasets. The distributing ratio for the training and testing
dataset was 70 to 30 according to Figure 18. The contempt-labeled category has been
omitted due to a few facial images that caused the merged dataset’s distribution to become
imbalanced and hardly detected the contempt emotion. Finally, the three different datasets
were merged before we started the training process of the Xception algorithm

After the Xception algorithm was trained with the merged datasets, the graph results
from Figure 12 showed better performance than training with only the FER 2013 dataset
from Figure 6. From Figure 12, the validation accuracy of the merged datasets and Xception
algorithm reached 77.94%, while the conventional approach reached 60.99% from Figure 6.

From Table 6, the merged datasets showed improvement in facial classification, and
the system precision, recall, and f1-score were reached 66.62%, 66.88%, and 66.67%. The
testing samples from Figure 16 were more densely populated at the left-leaning diagonal
line compared to Figures 14 and 15. The FIT machine made it possible to create the merged
dataset without concerning the unique FER dataset transformation. We improved the
validation accuracy by 16.95% over the FER 2013 dataset from Figure 6. The estimated
5% improvement from Table 6 means that the pre-trained algorithm correctly captures
more face emotions from the camera test and segregates more face emotions within correct
labeled classifications compared to the conventional approach from Figure 16a. However,
the samples from disgust, sadness, and surprise classification results were slightly dropped
due to the poor training of the Xception algorithm. Further improvement is required by
operating the FIT machine with the newly trained Xception algorithm.

(a) (b)
Figure 12. The proposed results from merging FER 2013, CK+, and iSPL datasets operating the FIT machine. (a) model
accuracy. (b) model loss.
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(a) (b)
Figure 13. Evaluating the pre-trained Xcepetion algorithm after training with only the FER 2013 dataset. (a) Confusion
matrix evaluation before applying with the FIT machine. (b) Confusion matrix evaluation after applying with the FIT
machine.

(a) (b)

Figure 14. Evaluating the pre-trained Xception algorithm performance after training with the CK+ dataset. (a) Confu-
sion matrix evaluation before applying with the FIT machine. (b) Confusion matrix evaluation after applying with the
FIT machine.
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(a) (b)
Figure 15. Evaluating the pre-trained Xcepetion algorithm after training with the iSPL dataset. (a) Confusion matrix
evaluation before the FIT machine result (b) Confusion matrix evaluation after the FIT machine result.

(a) (b)
Figure 16. The Xception algorithm was evaluated performing a confusion matrix after training the FER 2013 dataset or the
merged datasets of the FER 2013, the CK+ and the iSPL datasets (a) the confusion matrix evaluation after training with only
the FER 2013 dataset but without applying the FIT machine. (b) confusion matrix evaluation after training with the merged
dataset and the FIT machine.
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Figure 17. Merging the CK+, the FER 2013, and the iSPL datasets by using the FIT machine.

Figure 18. The Data Distribution.

Table 3. The summarized performance of Figure 13.

Datasets Precision (%) Recall (%) F1_Score (%)

Only the FER 2013 before the FIT Machine 61.6532 58.7689 59.4004
Only the FER 2013 after the FIT Machine 63.0118 61.0729 61.0932

Table 4. The summarized results of Figure 14.

Datasets Precision (%) Recall (%) F1_Score (%)

Only the CK+ before the FIT Machine 17.3592 14.3741 12.7031
Only the CK+ after the FIT Machine 32.0083 27.8542 22.4103

Table 5. The summarized results of Figure 15.

Datasets Precision (%) Recall (%) F1_Score (%)

Only the iSPL+ before the FIT Machine 16.3159 16.1966 9.9174
Only the iSPL+ after the FIT Machine 39.4900 33.2531 33.9923
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Table 6. The summarized results of Figure 16.

Datasets Precision (%) Recall (%) F1-Score (%)

Only the FER 2013 after the FIT Machine 63.0118 61.0729 61.0932
The Merged Datasets 66.6236 66.8845 66.6779

From Table 7, the optimizer, learning rate, momentum, and epsilon were used as the
hyperparameters. We analyzed the FER system performance based on different optimizers
such as Adam and the stochastic gradient descent (SGD) with different learning rates. The
learning rates used for our situation are 1, 0.1, 0.01, 0.001, and 0.0001. During the Xception
algorithm training, the learning rate was automatically reduced and reaches the optimal
gradient point. The momentum as the hyper-parameter of the SGD optimizer, we used 0.3,
0.6, and 0.9 values. In the case of epsilon as the hyper-parameter of Adam optimizer, we
used 1.0× 10−6, 1.0× 10−7, 1.0× 10−8, and 1.0× 10−9 values. The SGD with a learning
rate of 1 showed the worst performance due to the high learning rate used in the Xception
algorithm. The epsilon as 1× 10−6 showed better performance in validation loss and the
system provides accurate results if the dataset arrangement were perfectly segregated.

Table 7. The results of conducting the different hyperparameters experiments from the merged datasets.

Optimizer Initial-LR Momentum V. Accuracy (%) V. Loss Precision (%) Recall (%) F1-Score (%)

SGD 1 0.0 0.1298 Infinity 0.0000 0.0000 0.0000
SGD 0.1 0.0 76.5550 0.6775 64.5930 65.1306 64.6584
SGD 0.01 0.0 74.9003 0.7127 65.0916 65.4057 65.0358
SGD 0.001 0.0 70.2153 0.8621 58.8519 60.4195 59.2480
SGD 0.0001 0.0 64.8724 0.9844 55.4958 57.1182 55.9766
SGD 0.01 0.3 75.1196 0.7274 64.1630 64.6492 64.1351
SGD 0.01 0.6 75.0598 0.7250 63.8704 63.9528 55.9766
SGD 0.01 0.9 76.1762 0.6911 55.4958 57.1182 55.9766

Optimizer Initial-LR Epsilon V. Accuracy (%) V. Loss Precision (%) Recall (%) F1-score (%)

Adam 1 1.0× 10−7 20.2751 2.3080 6.3535 25.2063 10.1489
Adam 0.1 1.0× 10−7 58.1738 1.1357 51.2177 53.3356 51.9438
Adam 0.01 1.0× 10−7 76.2360 0.6665 64.6893 65.0275 64.6610
Adam 0.001 1.0× 10−7 77.0933 0.6656 66.4377 66.7125 66.3362
Adam 0.0001 1.0× 10−7 73.8237 0.7615 61.8960 62.5859 62.1137
Adam 0.001 1.0× 10−6 76.6148 0.6603 65.3901 65.6808 65.4316
Adam 0.001 1.0× 10−8 77.2727 0.6732 65.8512 66.2654 65.9031
Adam 0.001 1.0× 10−9 77.1730 0.6605 66.3113 66.5061 66.3348

In contrast, some researchers argue that data augmentation resolves the lack of facial
samples for training. Even with the data-augmentation technique, training with a small
dataset hardly detects new face emotions. We always use data augmentation to train all
algorithms regardless of the training sample size as we prevent the possible overfitting
problem during the deep neural network training. However, we still failed to generalize
the outside world facial emotions. The data augmentation does not augment the number
of facial images nor a complete solution of generalizing the representation for the outside
world facial emotions. Through these experiments, operating the FIT machine could
become another option than the data-augmentation technique.

5. Conclusions

This paper proposed a FIT machine for the FER dataset manager as it could remove
any irrelevant data, reorganize existing datasets, collect an additional dataset, and merge
all existing datasets. The FIT machine makes an unsupervised learning dataset to be a
supervised learning dataset. Creating facial images for the FER dataset or a facial-related
dataset could be cheaper for many FER developers with the FIT machine. The FIT machine
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could be useful for many researchers and developers who want to create an independent
or customized FER dataset to enhance the FER system performance even faster.
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