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Abstract: Aroma is one of the main attributes that consumers consider when appreciating and select-
ing a coffee; hence it is considered an important quality trait. However, the most common methods
to assess aroma are based on expensive equipment or human senses through sensory evaluation,
which is time-consuming and requires highly trained assessors to avoid subjectivity. Therefore, this
study aimed to estimate the coffee intensity and aromas using a low-cost and portable electronic
nose (e-nose) and machine learning modeling. For this purpose, triplicates of nine commercial coffee
samples with different intensity levels were used for this study. Two machine learning models were
developed based on artificial neural networks using the data from the e-nose as inputs to (i) classify
the samples into low, medium, and high-intensity (Model 1) and (ii) to predict the relative abundance
of 45 different aromas (Model 2). Results showed that it is possible to estimate the intensity of
coffees with high accuracy (98%; Model 1), as well as to predict the specific aromas obtaining a high
correlation coefficient (R = 0.99), and no under- or over-fitting of the models were detected. The
proposed contactless, nondestructive, rapid, reliable, and low-cost method showed to be effective
in evaluating volatile compounds in coffee, which is a potential technique to be applied within
all stages of the production process to detect any undesirable characteristics on—time and ensure
high-quality products.
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1. Introduction

Coffee accounted for 52% of total volume, considering the hot drinks category in 2020
and is expected to grow 3.61% by 2021. However, a decrease of 2.4% was observed in
2020 compared to 2019 due to the COVID-19 pandemic [1]. The total volume of coffee
consumption in 2020 can be attributed to at-home consumption alone, which has grown
during the worldwide lockdown. As an example of this phenomena, in Australia, in March
2020, during the pandemic, the at-home consumption increased by 37%, with the coffee
beans being the type with the highest consumption growth (49%), followed by instant
premium coffee (48%), while coffee capsules or pods accounting for 23% growth [2].

Aromas and flavors are among the most important sensory attributes that consumers
consider when assessing coffee quality and liking [3-5]. These are mainly attributed to
the coffee variety, provenance, as well as roasting process, including time and temper-
ature [4,6,7]. Due to the differences derived from the provenance factor in the coffee
attributes, especially aromas that are major contributors to the coffee quality, producers
have opted to certify their products; this process ensures that consumers relate to the
specific aromas of the coffee associated with their origin, quality perception and, hence,
contributes to higher acceptability [7,8]. There are also different factors in the coffee brew-
ing that may affect the aroma in the final product; some of these are water temperature and
hardness, as well as the method or machine used. In the case of water temperature, if it is
not hot enough (ideal: 85-95 °C), volatile aromatic compounds are not fully incorporated
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and released, providing a coffee that is weak and low in aromatics [9]. Regarding water
hardness, Dadali et al. [10] found that coffee brewed with medium water hardness (Total
dissolved solids = TDS = 141 mg L) provides a product with more aromas compared to
soft (TDS = 60 mg L~!) and high water hardness (TDS = 424 mg L~ !). Caprioli et al. [11]
mentioned several studies in which different aroma profiles have been found for distinct
preparation methods such as boiled coffee brewing and pressurized espresso brewing.

To ensure that the final products (brewed coffee) will be acceptable by consumers,
different techniques are used to assess their quality traits. Traditional methods to assess
aromas in coffee consist of either instrumental techniques using gas-chromatography/mass-
spectroscopy (GC/MS) [12,13], or most commonly through sensory analysis using descrip-
tive sensory panels [14] and methods such as quantitative descriptive analysis (QDA®), or
expert panels. The latter tend to be less reliable as sensory panels are often subjected to
more biases, such as the habituation error [15]. Furthermore, these techniques tend to be
time-consuming, are destructive, and require larger sample sizes; they involve higher costs
and high expertise for data acquisition, analysis and interpretation [5,6,16-20].

Electronic noses (e-noses) were first designed and proposed in the early 1980s by
Persaud and Dodd [21], who developed an e-nose using semiconductor transducers and
finding that this was able to discriminate a broad range of odors. Following this, some
researchers have either developed or used commercial e-noses as an alternative to tradi-
tional methods to assess aromas or other chemometrics in food and beverages such as
beer [17,22-24], wine [16,25], meat [26], juices [27,28], saffron [29], and tea [30-32], among
others. Likewise, e-noses have been used in coffee to assess aromas and predict sensory
descriptors using artificial neural networks (ANN) [33], to predict the geographical ori-
gin using discriminant factorial analysis [4], to discriminate between civet and non-civet
coffee [5,34], and to predict the roasting degree using ANN [35], among others. However,
most of the e-noses used in the aforementioned studies are non-portable, and most of
them, despite having lower costs than GC/MS, are still cost-prohibitive for small and
medium companies.

The use of machine learning (ML) has been applied to different industries such as sus-
tainability of materials [36], techno-economics [37], molecular crystals engineering [38], en-
ergy [39], diagnostics in medicine [40] and, more recently, food /beverages [17,18,22,29,41]
and agriculture [42—-44]. This has been an effective tool to aid in the prediction and rapid
assessment of products; however, a common issue found when using ML is the overfitting
of the models because the generalization of the data is not achieved. This is usually found
in noisy datasets and when the number of selected neurons is too high, which provides high
accuracy, but poor performance [45,46]. Among the supervised ML algorithms, artificial
neural networks tend to be the most robust due to their nonlinearity and good capacity of
finding patterns among the inputs and targets. Furthermore, this is most convenient when
a single multitarget model is required, which is a feature that is not possible in other ML
algorithms [47,48]. Some studies that have presented multitarget ANN models include
the identification of proteomics from beer foamability analysis [49], prediction of beer
aromas and physicochemical data using foam-related parameters obtained from a robotic
pourer [50], prediction of beer acceptability of sensory attributes using e-nose data [22],
and prediction of sensory profiles of wine using near-infrared spectroscopy [51].

This study aimed to predict coffee aromas and roasting intensity using a newly
developed low-cost and portable (wireless) e-nose coupled with machine learning (ML)
modeling. Model 1 was developed using the e-nose data as inputs to classify samples into
low-, medium-, and high-intensity according to that reported in their label. On the other
hand, Model 2 was developed using the e-nose outputs as inputs to predict the relative
abundance based on the peak area of 45 aromas measured using GC/MS used as targets.

By adding low-cost sensor technology with coffee pouring devices or normal coffee
machines, the aroma profile from specific coffee and provenance can be maintained as a
quality assurance method. It would also offer an automated system to detect aroma profile
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variations due to unforeseen factors, such as water quality, temperature or other problems
in the brewing process that may affect consumer perception.

2. Materials and Methods
2.1. Samples Description

Samples used in this study consisted of nine coffees from Nespresso® pods (Nestlé
Nespresso S.A., Lausanne, Switzerland) with different intensities (Table 1). All samples
were measured in triplicates (three pods) and brewed in a Creatista Plus Breville machine
(Breville Group Ltd., Sydney, NSW, Australia) using a constant pouring volume of 110 mL
at78 °C.

Table 1. Samples used for the study, including their specifications and labels.

Sample Intensity Label Variety
Volluto 4 Coffee 14 Arabica
Capriccio 5 Coffee I5 Arabica/robusta
Genova Livanto 6 Coffee 16 Arabica
Roma 8 Coffee I8 Arabica/robusta
Firenze Arpeggio 9 Coffee I9 Arabica
Ristretto Italiano 10 Coffee 110 Arabica/robusta
India 11 Coffee I11 Arabica/robusta
Palermo Kazaar 12 Coffee I12 Arabica/robusta
Napoli 13 Coffee 113 Arabica/robusta

2.2. Electronic Nose Description and Data Extraction

A low-cost and portable e-nose developed by the Digital Agriculture Food and Wine
Group from The University of Melbourne (DAFW; UoM) and composed of nine different
gas sensors (Henan Hanwei Electronics Co., Ltd., Henan, China; Table 2) was used to
assess the coffee samples as described by Gonzalez Viejo et al. (2020). Modifications to the
method consisted of the time of calibration (30 s before and 30 s after measurements) and
time of exposure to each sample (1 min).

Table 2. Sensors included in the electronic nose and the gases to which they are sensitive.

Sensor Name Gas

MQ3 Ethanol

MQ4 Methane (CHy)

MQ7 Carbon monoxide (CO)

MQ8 Hydrogen (H)
MQ135 Ammonia/alcohol /benzene
MQ136 Hydrogen sulfide (H;S)
MQ137 Ammonia (NH3z)
MQ138 Benzene/alcohol/ammonia
MGS811 Carbon dioxide (CO,)

Data extraction was performed using a supervised automatic code written in Matlab®
R2020b (Mathworks Inc., Natick, MA, USA) to recognize stable e-nose signals within
each coffee pouring (beginning and endpoints). From the initial and endpoints detected
(Figure 1), ten subdivisions of the e-nose data are automatically performed to extract
average values per sensor, which are used as inputs for the ML modeling.
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Figure 1. Data extraction from e-nose outputs using a supervised customized code written in Matlab.
Initial (a) and final (b) stable signal detection and automatic subdivision in ten equidistant sampling
intervals to obtain ten averages.

2.3. Gas Chromatography-Mass Spectroscopy

The GC/MS method was used to identify volatile compounds found in the coffee
samples and their relative abundance to be used as targets to further develop the ML
model. For this purpose, the same samples measured using the e-nose were assessed for
volatile aromatic compounds using a gas chromatograph with mass selective detector
5977B (GC/MSD; Agilent Technologies, Inc., Santa Clara, CA, USA; detection limit 1.5 fg).
This was coupled with a PAL3 autosampler system (CTC Analytics AG, Zwingen, Switzer-
land) to measure the entire batch of samples in a single run. A total of 5 mL of each coffee
sample replicate was placed in a 20 mL using an 18 mm magnetic screw cap with polyte-
trafluoroethylene and silicone septum. To ensure no carryover effects, two blank samples
were included, one at the start and one at the end of the batch of samples. The method used
was as described by Gonzalez Viejo et al. (2019). An HP-5MS (Agilent Technologies, Inc.,
Santa Clara, CA, USA) column and headspace method with solid-phase microextraction
(SPME) divinylbenzene—carboxen—polydimethylsiloxane (DVB-CAR-PDMS) fiber (Agilent
Technologies, Inc., Santa Clara, CA, USA) were used. Furthermore, helium was used as the
carrier gas at a flow rate of 1 mL min~!. The inlet was set to splitless mode.

For volatile compounds identification, the National Institute of Standards and Tech-
nology library (NIST; National Institute of Standards and Technology, Gaithersburg, MD,
USA) was used. For this, only the compounds identified with a certainty > 80% were
reported. Compounds with a very low relative abundance and that were only present in
one or two samples were removed for the purposes of this study.

2.4. Statistical Analysis

An analysis of variance (ANOVA) was conducted using the data from e-nose and
GC-MS to assess significant differences (p <0.05) among samples and least significant
difference (LSD) post hoc test for pairwise comparisons (e« = 0.05) using XLSTAT v.2020.3.1
(Addinsoft, New York, NY, USA). Furthermore, a multivariate data analysis based on
principal component analysis (PCA) was conducted using the volatile aromatic compounds’
peak area and constructed with Matlab® R2020b to assess relationships among some of the
variables and identify associations with the samples. Furthermore, the PCA was developed
to assess groupings among the samples according to the roasting intensity level. The
principal components (PC) one and two were selected based on them summing > 60% of
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data variability, which is the cutoff point considered to test the significance of the PCA [52].
Factor loadings (FL) of the most representative variables of each PC were obtained.

A total of 25 supervised ML classifiers available in Matlab® R2020b Classification
Learner in the Statistics and Machine Learning Toolbox 12.0, which consist of decision
trees (three algorithms), discriminant analysis (two algorithms), logistic regression (one
algorithm), naive Bayes (two algorithms), support vector machine (SVM; six algorithms),
k-nearest neighbor classifiers (KNN; six algorithms), and ensemble classifiers (five algo-
rithms, were tested (data not shown). Along with this, 17 artificial neural network (ANN)
algorithms [47,53] were tested using a code written in Matlab® R2020b to assess all different
training algorithms in a loop and find the most accurate models based on the correlation
coefficient/accuracy and performance. For Model 1, the best results were obtained using
pattern recognition ANN with the mean values of ten sections of the highest and stable
segment of each sensor’s curve as inputs to classify samples into i) low (3-5), ii) medium
(6-9), and iii) high (10-13) intensity (Figure 2). For this model, the Bayesian regularization
training algorithm resulted in the highest accuracy and no overfitting signs. Data division
was random, with 70% of the samples used for training and 30% for testing using a means
squared error (MSE) performance algorithm. This is a two-layer feedforward model with
a tan-sigmoid function in the hidden layer and a Softmax function in the output layer.
Statistical data reported for this model consists of accuracy (%), error (%), MSE values and
receiver operating characteristics (ROC) curve.

Hidden Layer Output Layer Outputs

<

Inputs

Intensity
s LOw

Coffee in a beaker » Medium
with e-nose on top —+ High

3 targets

/ Enose /  Ma3s 10 neurons

output f—s MQ137

Hidden Layer Qutput Layer Outputs

Aromas

Peak area of
volatile aromatic
compounds

! ss:rngUQ©

Figure 2. Diagram of the pattern recognition Model 1 (top) to classify samples into low-, medium-,
and high-intensity, and regression Model 2 (bottom) to predict the peak area of 45 volatile aromatic
compounds using the outputs from the electronic nose as inputs for both models. Abbreviations: b:

bias; W: weights; sensors descriptions are presented in Table 2. Targets/outputs from Model 2 can be
found in Table 3 (Results and Discussion).

For Model 2, which was a regression model, only the 17 ANN supervised training
algorithms [47,53] were tested as other ML techniques do not allow multiple targets. This
model consisted of using the mean values of ten sections of the highest and stable segment
of each sensor’s curve as inputs to predict 45 volatile aromatic compounds (Figure 2). The
Levenberg-Marquardt training algorithm was selected as the best based on the highest
correlation coefficient (R) and performance with no overfitting signs. Data were divided
randomly as 70% for training, 15% for validation using an MSE performance algorithm,
and 15% for testing. For both models, a neuron trimming test (3, 5, 7, and 10 neurons)
was performed to select the models with no under- or overfitting signs, resulting in 10 the
optimal number of neurons for the two models. This is a two-layer feedforward model
with a tan-sigmoid function in the hidden layer and a linear transfer function in the output
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layer. Statistical data reported for this model consists of R, slope, MSE values and the
overall regression model figure.

The samples used for both models consisted of the number of different coffees (nine)
times the number of replicates (three) times the number of means from the e-nose curves
(ten), which equals 270 samples. A similar approach has been used in previous stud-
ies [16,17]. The number of samples used for the models is sufficient, considering that the
dataset is small enough to avoid having enough power to overfit the model [53,54].

3. Results and Discussion

Figure 3 shows significant differences (p < 0.05) between samples in all sensors from
the e-nose. It can be observed that the sensors with the highest voltage for all samples
were MQ3 and MQ4 sensors, being Coffee I10 with the highest voltage. A study conducted
using civet and non-civet coffee beans and measured using an e-nose that included some
of the sensors in the present paper reported MQ7 sensor (Carbon monoxide (CO)) as the
highest voltage followed by MQ3 (ethanol) and MQ4 [34]. The authors of the mentioned
paper did not specify the conditions in which the measurements were performed; however,
the fact that there is CO production during the roasting process of coffee beans [55] may
explain their high levels in the MQ7 sensor. Therefore, the lower voltage associated with
MQY7 in the samples presented in this paper may be associated with the brewing process.

10
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EMQ3 ®MQ4 mMQ7 mMQ8 ®mMQ135 mMQi136 mMQi37 mMQ138 mMG81i1

Figure 3. Stacked mean values of the electronic nose sensors showing the letters of significance
that depict significant differences between samples according to the ANOVA and least significant
differences (LSD) post hoc test (p < 0.05; « = 0.05). Differences are compared for each sensor among
samples (bar colors). Samples and sensors description can be found in Tables 1 and 2, respectively.
Error bars represent the standard error.

Table 3 shows the 45 identified volatile aromatic compounds using the GC/MS and
the associated aromas. Peak area and retention times, as well as ANOVA-LSD results
for each compound and sample, may be found in the Supplementary Material (Table S1).
There were non-significant differences (p > 0.05) between samples for compounds C2,
C5, C7, C8, 12, C27, and C31; all other compounds presented significant differences
(p < 0.05) between the coffee samples. In Table 3, it can be observed that most of the volatile
compounds are associated with coffee, cocoa, and nutty aromas, which have also been
reported in other published studies, some of these are furans such as 2,5-dimethylfuran (C2),
2-methoxymethyl furan (C8), 2-acetyl furan (C12), 2,2-methylenebisfuran (C31), furfuryl
propionate (C32); pyrazines such as 2-methylpyrazine (C7), 2-ethylpyrazine (C13), coffee
pyrazine (C20), and nutty pyrazine (C36), among others [12,13,56]. The most abundant
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compound based on the peak area for all samples was furfuryl acetate (C18), which has
been related to fruit, banana, and ethereal aromas (Table S1); other authors have also
found this compound in arabica [57], and robusta [58] coffees and they have associated
this compound also with a floral aroma. Some compounds related to smoke have also
been found, some of these are pyridine (C4) and phenols such as ortho-guaiacol (C33),
4-ethyl guaiacol (C43), and 4-vinyl guaiacol (C45), these are formed during the roasting
process of the coffee beans [58,59]. In this study, coffees with higher intensity presented
larger peak areas for compounds C4, C33, C43, and C45, than lower intensities (Table S1).
3-Methylfuran (C1), which is considered a toxic, carcinogenic compound, was identified.
This has been reported in studies from other authors and found to be formed during
the roasting process of coffee [60,61]; however, the International Agency for Research on
Cancer (IARC) has not found sufficient evidence of possible carcinogenic effects due to
coffee consumption [62].

Figure 4 shows that principal components one and two (PC1 and PC2) represented
77.55% of the total data variability. According to the factor loadings (FL; Table S2), the
PC1 was mainly represented by the phenols C17, and C43, and the furan C44, all with
FL = 0.20 on the positive side of the axis, and by furans C3 and C14, and aldehyde C9, all
with FL = —0.18, on the negative side. On the other hand, on the positive side of PC2, it
was mainly characterized by pyrazines C7 (FL = 0.30) and C13 (FL = 0.27), while on the
negative side, it was described by furans C23 (FL = —0.29) and C32 (FL = —0.30). It can be
observed that coffees were mainly grouped by intensity levels, represented with different
colors in the PCA. Contrary to all other samples, coffees of high-intensity levels (111-113)
were mainly associated with phenols, which, as previously mentioned, are mainly the
smoke aromas, which are formed during the roasting process.

— Furans — Pyrazines
— Pyrroles — Aldehydes
0.3+ c7 — Phenols — Others
» C13
02k Coffee

14 59

c21 C36 Coffee

0.1 Coffee cﬁo I13
i5e® Ga5ca3
goffee—C19¢33 &
. -

— %?C17 Coffee

PC2 (22.45%)
o

.01 L

.02 L

-0.3 1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
PC1 (55.10%)

Figure 4. Principal component analysis biplot depicting the volatile aromatic compounds and
coffee samples. Each vector color represents a functional group to which the compounds belong.
Abbreviations of the volatile aromatic compounds can be found in Table 3 and samples in Table 1.
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Table 3. Identified compounds from the gas chromatography mass-spectroscopy analysis, functional group, and their associated aromas.

Label Compound Functional Group Aroma * Label Common Name Functional Group Aroma *
C1 3-Methylfuran Furans Toxic compound C24 2-Acetyl-5-methylfuran Furans Musty /nutty /coconut/milky
C2 2,5-Dimethylfuran Furans Meaty / coffee/chocolate C25 2,2’-Bifuran Furans Medicinal /camphor
C3 2-Vinylfuran Furans Phenolic coffee grounds C26 2-Acetyl pyrrole Pyrroles Cherry/licorice/walnut/bready
C4 Pyridine Other Sour/smoke/ coffee /burnt C27 2,34-Trimethyl-2- Other Naturally found in Jatropha ribifolia
cyclopenten-1-one
C5 Toluene Other Sweet C28 Z_Ace;};rf(;?el ethyl Pyrroles Earthy /nutty /smoke/musty
Ce 3-Methylthiophene Other Fatty /winey C29 2,6-Diethyl pyrazine Pyrazines Nutty /hazelnut
Cc7 2-Methylpyrazine Pyrazines Nutty/cocoa/roasted /peanut C30 Coumaran Furans Green tea
Cc8 2-Methoxymethyl furan Furans Roasted coffee C31 2,2-Methylenebisfuran Furans Roasted/coffee
(6] 3-Furaldehyde Aldehydes Coconut C32 Furfuryl propionate Furans Banana/ coffee/spicy
C10 3-Furanmethanol Furans Burnt/tobacco C33 ortho-guaiacol Phenols Smoke/spice/vanilla/wood
C11 Styrene Other Sweet/balsam /resin C34 2-Methyl benzofuran Furans Phenolic/burnt
C12 2-Acetyl furan Furans Almond/cocoa/coffee/roasted C35 1- (5—111-(311;(;1?;?11111‘ealnyl)— Furans Green/hazelnut
C13 2-Ethylpyrazine Pyrazines Nutty /roasted/cocoa/coffee C36 Nutty pyrazine Pyrazines Earthy /nutty/coffee /roasted
. . . 2-Furfuryl-5-methyl .
C14 2-Butylfuran Furans Wine/sweet/spicy/fruity C37 foran Furans Naturally found in coffee
C15 Benzaldehyde Aldehydes Almond/cherry C38 1-Furfuryl pyrrole Pyrroles Coffee/bready /mushroom
C1e 5-Methyl furfural Aldehydes Spice/caramel /bready/coffee C39 Methyl salicylate Other Wintergreen mint
C17 Phenol Phenols Phenolic/plastic/rubber C40 Metdhi}sifggeuryl Furans Roasted coffee/sulfur/meaty
C18 Furfuryl acetate Other Fruity /banana/ethereal C41 Furfuryl isovalerate Furans Berry/grape/plum
C19 2—Etg§iféfrr:§thyl Pyrazines Roasted potato/roasted hazelnut C42 3-Phenyl furan Furans Cocoa/green/minty
C20 Coffee pyrazine Pyrazines Coffee bean/nutty/roasted C43 4-Ethyl guaiacol Phenols Spicy/smoky/clove
C21 Filbert pyrazine Pyrazines Nutty/musty/earthy/bready C44 Difurfuryl ether Furans Coffee/nutty/earthy /mushroom
1-Methyl-2-pyrrole . .
C22 carboxaldehyde Pyrroles Roasted /nutty C45 4-Vinyl guaiacol Phenols Woody/roasted /peanut/smoke
C23 2-Propanoyl furan Furans Fruity

* Associated aromas were obtained from The Good Scents Company [63].
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Figure 5 shows the matrix with significant correlations (p < 0.05) between the volatile
aromatic compounds grouped by functional groups from the GC-MS analysis and the
results from the nine e-nose sensors. It can be observed that MQ3 sensor was positively
correlated with furans (r = 0.42), phenols (r = 0.54), pyrroles (r = 0.55), and others (r = 0.60).
The “others” group comprises compounds that belong to esters, pyridines, aromatic hydro-
carbons, acetates, and ketones. Some compounds in the furans and other groups contain an
alcohol functional group, explaining their correlation with the MQ3 sensor. Even though
this sensor is most sensitive to alcohol, it also has a lower sensitivity to smoke, which may
explain its correlation with phenols, as well as pyrroles and furans, which are composed
of some compounds associated with smoke and burnt aromas [63]. MQ4 sensor was
positively correlated with pyrroles (r = 0.40) and others (r = 0.47); this sensor is mainly
sensitive to methane and butane but also has a lower sensitivity to alcohols and smoke,
which may explain these correlations. On the contrary, MQ7 was negatively correlated with
furans (r = —0.54) and pyrroles (r = —0.60). Furthermore, sensors MQ135, MQ136, MQ137
and MQ138 were negatively correlated with aldehydes (r = —0.44-—0.49) and positively
correlated with furans (r = 0.44-0.54), phenols (r = 0.57-0.63), pyrroles (r = 0.58-0.67) and
others (r = 0.50-0.58). Sensor MG811 was negatively correlated with furans (r = —0.40).
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Parameters

Figure 5. Matrix showing the significant correlations (p < 0.05) between the volatile aromatic com-
pounds functional groups and the sensors integrated into the electronic nose. Correlation coefficients
are depicted with different colors according to the color bar in which yellow represents the negative
correlations, while blue shows the positive correlations.

Given the correlations between the e-nose outputs and GC-MS results, two ML models
were developed using the e-nose outputs as inputs, as described in Section 2.4. Table 4
shows the accuracy of Model 1 to predict coffees’” intensity level as low, medium, and
high. It can be observed that the overall accuracy was 98% with training and testing stages
resulting in 100% and 94%, respectively. The lower training MSE value (<0.01) compared
to the testing stage (MSE = 0.04) confirms that there were no signs of under- or overfitting
of the model. Figure 6 shows the overall receiver operating characteristics (ROC) curve in
which the three categories are very close to the highest sensitivity (true positive rate).
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Table 4. Results from the artificial neural network pattern recognition model (Model 1) to clas-
sify coffee samples according to the intensity level, showing the accuracy and error of each stage.
Performance was assessed based on mean squared error (MSE).

Stage Samples Accuracy Error Performance (MSE)
Training 189 100% 0% <0.01
Testing 81 94% 6% 0.04
Overall 270 98% 2% -

Overall ROC

f

0.8

o}

e

n

o

.g 0.6

=

o

o 04

-

= Low Intensity (4 -6)
0.2 Medium Intensity (8 - 10)

- High Intensity (11 - 13)
0

0 0.5 1
False Positive Rate

Figure 6. Overall receiver operating characteristics (ROC) curve showing the true positive (sensitivity;
y-axis) and false-positive (specificity; x-axis) rates of the classification Model 1.

Table 5 shows that Model 2 had a very high accuracy in the training, validation
and testing stages based on the correlation coefficient (R = 0.99, R = 0.98, and R = 0.99,
respectively), with an overall accuracy R = 0.99. This, along with the lower training
MSE value (6.3 x 1010) compared to the validation and testing stages, shows no signs of
under- or overfitting. Furthermore, all stages presented a high slope close to the unity
(b ~1). Figure 7 shows the overall regression model with each volatile aromatic compound
depicted using a different marker and color, in which it can be observed that furfuryl
acetate appears as the highest peak area, as confirmed in Table S1.

Table 5. Statistical data of the artificial neural network regression model (Model 2) to predict the
peak area of volatile aromatic compounds. Performance was assessed based on mean squared error
(MSE). Abbreviations: R: correlation coefficient.

Stage Samples Observations R Slope Performance (MSE)
Training 188 8460 0.99 0.98 6.3 x 1010
Validation 41 1845 0.98 0.97 14.2 x 1010

Testing 41 1845 0.99 0.97 11.2 x 100

Overall 270 12,150 0.99 0.98 -
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Figure 7. Overall artificial neural network regression model showing the observed (x-axis) and predicted (y-axis) values of

the peak area of the volatile aromatic compounds (Model 2). Abbreviations: R: correlation coefficient, T: targets.

These models showed that the portable and low-cost e-nose coupled with ML is a
reliable and effective tool to assess coffee intensity levels and the relative abundance of
45 different volatile aromatic compounds. Even though there are already published studies
using e-noses to assess coffee aromas, and some also include the use of ML, they have been
implemented in different ways. Michishita et al. [33] used an e-nose coupled with ANN
to predict sensory descriptors; however, the authors used an «FOX4000 (Alpha M.O.S.,
Toulouse, France) commercial, non-portable and high-cost e-nose. Wakhid et al. [34] used
a similar e-nose along with ML for a more specific and limited use to classify samples
into civet or non-civet. The e-nose these authors presented only had five sensors that are
sensitive to gases such as CO,, methane, CO, and natural gas; however, they did not include
any sensor related to faulty aromas such as H,O, NH3 and aromatics such as benzene,
which are included in the present paper and have shown to be effective in detecting more
aromas in beverages such as beer and wine [16,17]. Romani et al. [35] presented a method
to predict the roasting time of coffee using a PEN2 (Airsense Analytics, Milano, Italy)
e-nose, which, although it claims to be portable, is still quite large and requires a bench,
and consumables such as specific vials to function. Besides this, the authors presented
an ANN regression model to predict the roasting time; however, their models, although
with high determination coefficients (R? > 0.96), only had eight data points, which is not
sufficient for any regression model.

The method presented in this study has some advantages over other similar proposed
techniques, as mentioned above. Further advantages include that the e-nose presented
in this study is portable, wireless, and low-cost compared to other commercial e-noses
and GC/MS equipment methods. Furthermore, the e-nose and models are validated
with robust technology, such as the GC/MS, verifying its high accuracy and objective
results. The fact that the e-nose is portable and fully wireless makes it more convenient for
transporting the device and measuring samples in any location with the potential to be
used in the field to be used to assess coffee beans. A disadvantage of the proposed method
would be the need for GC/MS data used as ground-truth to develop further models,
including additional samples with different characteristics to generate a more universal
artificial intelligence model accounting coffee provenance, brands, water temperature and
hardness effect, among others. However, once these further models have been developed
using the methodology proposed in this paper, they will be more robust, cost-effective and
accurate enough for repetitive sampling.
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Among the potential applications of this method are that it would allow coffee produc-
ers and brewers to assess their products in a more efficient and affordable way and associate
results with coffee quality based on its aroma, which may be measured in every batch of
coffee. This would also be useful for manufacturers to identify the most abundant aromas
that may be reported in their labels, which would be a more objective, less time-consuming,
and rapid method rather than using trained sensory panels. Further studies should focus
on the development of ML models to detect and identify faults.

4. Conclusions

The low-cost e-nose and ML models developed in this study can be integrated into
coffee pod machines to assess potential changes to original aroma profiles and intensities
due to water quality (hardness), different water temperatures or any other external factor
affecting the brewing process. The system proposed can be added to commercial machines
to secure specific quality and freshness of coffee grains related to provenance. Furthermore,
this system can be used as quality control at the commercialization point for consumers
to detect undesirable aromas. In this context, Model 1 would be useful to verify that the
product obtained the desired roasted intensity level, while Model 2 is proposed to assess
aromas in the coffee and ensure no undesirable compounds are present. Further studies
will focus on using the low-cost and portable e-nose to assess coffee brewed under different
conditions such as water temperature and hardness.
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0/21/6/2016/s1, Table S1. Identified compounds from the gas chromatography mass-spectroscopy
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Table 3; PC1 and PC2: Principal components one and two.
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