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Abstract: In wireless sensor networks, the reliability of communication can be greatly improved by
applying low-density parity-check (LDPC) codes. Algorithms based on progressive-edge-growth
(PEG) pattern and quasi-cyclic (QC) pattern are the mainstream approaches to constructing LDPC
codes with good performance. However, these algorithms are not guaranteed to remove all short
cycles to achieve the desired girth, and their excellent inputs are difficult to obtain. Herein, we
propose an algorithm, which must be able to construct LDPC codes with the girth desired. In
addition, the optimal input to the proposed algorithm is easy to find. Theoretical and experimental
evidence of this study shows that the LDPC codes we construct have better decoding performance
and less power consumption than the PEG-based and QC-based codes.
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1. Introduction

The wireless sensor network (WSN) [1,2] is a distributed network, which consists of
lots of small sensor nodes. Information from the environment is collected by the sensors
and is delivered over the wireless channel to a central station where the desired data can be
obtained by users. Due to the features such as scalability and self-organization, WSNs have
a wide range of applications in the areas of medical care [3], target tracking [4], military [5],
environmental monitoring [6] and so on [7–9]. Ensuring reliable communication is the
most basic requirement of WSNs. However, since sensor nodes of WSNs are tiny in size
and rely on lightweight batteries, they are heavily constrained by limited memory and
processing power. In this case, using efficient block coding is needed. Low-density parity-
check (LDPC) codes [10] have remarkable error-correcting performance, which can greatly
improve the reliability of communication [11,12]. In addition, the low coding and decoding
complexity of LDPC codes can reduce power consumption, thus extending the lifetimes of
WSNs [13–15].

LDPC code was proposed by Gallager in 1962 [10]. It attracts an enormous amount of
interest because of its capacity-approaching performance and low-complexity iterative decod-
ing combined with the belief-propagation (BP) algorithm [16,17]. BP can provide optimum
decoding when the LDPC code is cycle-free, so it is important to reduce the impact of cycles.

The girth is the low bound of the lengths of all cycles in an LDPC code, and a larger
girth indicates that the code evades more short cycles. Algorithms based on progressive-
edge-growth (PEG) pattern [18–20] and quasi-cyclic (QC) pattern [21,22] are the two main
kinds of LDPC code construction algorithms used to create codes with large girth. In
PEG-based algorithms, edges are greedily added into the LDPC code to maximize the
length of the current shortest cycle such that the algorithms manage to make the girth
larger. They are flexible and convenient to generate regular and irregular LDPC codes with
short or medium code length. As for the QC-based algorithms, an LDPC code is divided
into several parts and each part can be represented as either a zero matrix or a circulant
permutation matrix. Eliminating short cycles to maximize the girth can be realized by
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changing the shift value [21] of every circulant permutation matrix. These algorithms are
easy for hardware parallel implementation and the codes they constructed are space-saving.
Despite these strengths, neither PEG-based nor QC-based algorithms can overcome some
shortcomings which they consistently suffer from. Firstly, they just try to make the girth
larger rather than decide the value of it, so the LDPC codes they constructed still suffer the
loss of performance caused by short cycles. It would be unrealistic to raise the girth further
beyond their capacity because of unbearable computational costs. Secondly, the quality of
LDPC codes constructed via them has an over-reliance on their inputs, whereas excellent
inputs are rarely available.

To solve these problems, we put forward an algorithm for constructing LDPC codes
with arbitrary girth, and we call the algorithm the girth-cycle-embedding (GCE) algorithm.
The algorithm requires the girth as the only input, and the code is constructed by embed-
ding girth-member cycles into it. Our algorithm can overcome the above disadvantages
through theoretical analysis, and produces LDPC codes with better performance than codes
from PEG-based and QC-based algorithms in practice.

The rest of the paper is organized as follows: In Section 2, we introduce the represen-
tations of LDPC code, the concept of the cycle and its impact on LDPC code. In Section 3,
PEG-based and QC-based algorithms are reviewed in detail. Section 4 depicts the GCE
algorithm we proposed. Section 5 gives the performance evaluation of GCE, PEG-based
and QC-based algorithms. The conclusion are presented in Section 6.

2. Preliminaries

In LDPC codes, a cycle is a path which alternately passes through check nodes and
variable nodes [18] and ends at the same node it starts from. As an important factor,
the cycle significantly influences the performance of an LDPC code. There is a large volume
of published studies [23–25] indicating that shorter cycles are more harmful to the codes.
When decoding, the circulation of information among different nodes is beneficial to error
correction. However, the circulation of information is hindered by the existence of cycles,
thus wrong information in cycles can not be updated by extrinsic information in time
and makes errors difficult to correct. As the length of cycles gets shorter, the frequency of
wrong information being recycled gets higher and the difficulty of error correction becomes
greater. The length of the shortest cycles in an LDPC code is called the girth. An LDPC
code with a large girth means that there are no cycles with lengths smaller than the girth,
so numerous LDPC code construction algorithms have a very important goal, maximizing
the girth. The hazard level of a cycle should be measured not only by its length but also
by its connectivity [23,26,27] which measures the impact of extrinsic paths on the cycle.
Currently, extrinsic message degree (EMD) [23], approximate cycle EMD (ACE) [26], etc.,
are used to quantify the connectivity. For two cycles of the same length, the cycle with
higher connectivity receives more extrinsic information via the extrinsic paths, thereby
breaking the information barrier faster. In other words, cycles with higher connectivity are
relatively harmless.

In view of the harm of short cycles, many LDPC code construction algorithms are
designed along the lines of maximizing the girth of LDPC codes, i.e., trying to avoid
generating or to eliminate short cycles, and improving the connectivity of the short cycles
when they cannot be avoided or removed. Next, we will introduce two main types of
construction algorithms.

3. Construction Algorithms of LDPC Codes

There are many construction algorithms of LDPC codes, among which PEG-based
and QC-based algorithms are the two main kinds of methods.

In the PEG-based algorithms, all the variable nodes are assigned targeted degrees
by a variable-node degree distribution [18,28]. Then, for each variable node vi, edges are
greedily added into the LDPC code to maximize the length of the shortest cycle which
vi participates in such that the algorithms manage to make the girth larger. The primary
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improvement direction of PEG-based algorithms is to develop better selection criteria, with
which a variable node can decide which check nodes to connect with edges. For instance,
in the PEG algorithm [18] the check node with the minimum degree will be chosen; in the
improved PEG algorithm [19], it selects the check node with the highest cycle connectivity
from check nodes with the minimum degree; generalized PEG algorithm [20] has harsher
criteria: highest cycle connectivity, shortest paths, minimum degree, etc. These PEG-based
algorithms are flexible and convenient to construct short-length and medium-length LDPC
codes. In addition, both regular and irregular LDPC codes can be generated. Moreover,
the codes created by these algorithms with an excellent variable-node degree distribution
perform very well, especially in the waterfall region [29] which is signal noise ratio (SNR)
or bit error rate (BER) region near the code threshold.

As for the QC-based algorithms, a matrix (LDPC code) is divided into many square
matrices of the same size. Each of these square matrices is either a zero matrix or a circulant
permutation matrix, which is obtained by cyclically right-shifting an identity matrix by p
positions and p is called the shift of this circulant permutation matrix. Eliminating short
cycles can be realized by giving suitable shift p for every circulant permutation matrix. In [21],
a Hill-Climbing algorithm was proposed to greedily adjust those shift values to create a
QC-LDPC code. In [22], the Hill-Climbing algorithm was improved in computational cost
and the quality of matrices. These QC-based algorithms can remove cycles and are easy for
hardware parallel implementation. The QC-LDPC codes they constructed save storage space
and perform well in the error-floor region [30] which is the region with high SNR or with
low BER.

Through the reviews of the PEG-based and QC-based algorithms above, we know
that they remain the mainstream approaches to constructing LDPC codes because of many
advantages. Despite these strengths, they consistently suffer from several shortcomings
which are difficult to overcome.

Firstly, we found that all the PEG-based algorithms have an over-reliance on variable-
node degree distribution [18,28]. It is one of the inputs of these algorithms and is used
to decide the degree of each variable node. When too many variable nodes are assigned
small degrees in one variable-node degree distribution, LDPC codes constructed may
not provide enough information to help with error correction. However, increasing the
number of variable nodes with large degrees is fairly easy to cause lots of short cycles.
Therefore, variable-node degree distribution balancing degrees of all the variable nodes
directly affects the quality of LDPC codes generated by the PEG-based algorithms. Several
methods, e.g., density evolution [31,32] and Gaussian approximation [33], exist currently
for creating variable-node degree distribution, but a major problem of them is that finite-
length codes applying these methods only achieve suboptimal or general performance,
and the performance even worsens for short-length codes. Thus, it is challenging to obtain
an excellent variable-node degree distribution which is suitable for the code length you
need. Secondly, there is no way to remove short cycles efficiently, because LDPC codes
created by PEG-based algorithms are not structured and computational cost is prohibitive
if all short cycles are detected and eliminated.

For structured LDPC codes generated by the QC-based algorithms, removing short
cycles can be realized via changing the shifts. However, the computational cost needed
grows exponentially with the increase of cycle length. Intuitively speaking, it is hard
enough to discover and eliminate all eight-member cycles. Next, constructing a superb base
matrix after determining its size is also a high-complexity question. Specifically, a m× n
matrix (LDPC code) is divided into an M× N base matrix, and each element of the base
matrix is a zero matrix or a Z× Z circulant permutation matrix, where Z = m/M = n/N.
Therefore, there are (Z+ 1)M×N possible combinations for the base matrix. At last, matrices
from the QC-based algorithms suffer relatively poor performance compared with matrices
from the PEG-based algorithms in the waterfall region.

Variants [34,35] of PEG-based and QC-based algorithms face similar drawbacks and
have other disadvantages. For example, although the algorithm in [34] can construct LDPC



Sensors 2021, 21, 2012 4 of 14

codes with arbitrary girth, it reaches exponential complexity and can only generate regular
LDPC codes [36,37].

4. Girth-Cycle-Embedding (GCE) Algorithm

As specified above, neither PEG-based nor QC-based algorithms can fully decide the
girth so that the LDPC codes they constructed still suffer the loss of performance caused
by short cycles. Furthermore, in these algorithms, the quality of LDPC codes is closely
related to the inputs, i.e., variable-node degree distribution and base matrix, whereas
excellent inputs are rarely available. In order to solve these problems, we put forward a
new algorithm for LDPC code construction. In the algorithm, the expected girth is designed
as the only input, and an LDPC code is constructed by way of embedding girth-member
cycles into it. The algorithm overcomes the disadvantages mentioned above and produces
LDPC codes with better performance than ones from PEG-based and QC-based algorithms.
We call the algorithm we proposed GCE algorithm.

In the GCE algorithm, we denote the girth by g which can be expressed as g = 2x
because the length of any cycle must be an even number. To aid in managing all nodes,
m check nodes are split into two sets, cnnew for check nodes with zero degree while cnold
for the others. In like manner, n variable nodes are divided into vnnew and vnold. In
addition, we have designed an operation called FindTwoNode with dist as an input, where
two nodes whose distance is dist are chosen and exported. In FindTwoNode operation,
support tree [18,23] spreading from one check node as the root is used. For ensuring that a
support tree has finite layers, all the nodes only appear in the tree once. Pseudocode of
FindTwoNode operation is given in Algorithm 1.

Algorithm 1 FindTwoNode.

1: C[0 · · · |cnold| − 1]←− sort all the check node in cnold in ascending order of degree
2: for j = 0 to |cnold| − 1 do
3: cj ←− C[j]
4: if the highest layer of Tree(cj) ≥ dist then
5: ñ←− randomly select one node with the minimum degree on distth layer
6: output: cj and ñ
7: end if
8: end for
9: output: failure

In FindTwoNode operation, one of two nodes is a check node from cnold, the other
is also a check node from cnold if dist is even or a variable node from vnold if dist is odd.
The detailed operation is as follows: sort all the check node in cnold based on the degree
in ascending order; get a check node cj in order and build a support tree spreading from
cj which is denoted by Tree(cj); if Tree(cj) can grow to the distth layer, randomly select
one node ñ with the minimum degree on this layer, and output cj and ñ; if not, build the
support tree of the next check node; the operation is considered a failure when all the
support trees are less than dist layers.

After illustrating the FindTwoNode operation, we will introduce the GCE algorithm
in detail. GCE is divided into four steps, each of which is a process of embedding girth-
member cycles into the LDPC code in different ways as below. The pseudocode and an
example of the GCE algorithm are shown in Algorithm 2 and Appendix A, respectively.

1. Initialize node sets and form the first cycle.
Initialize the node sets: cnnew = {0 · · ·m− 1}, vnnew = {0 · · · n− 1}, cnold = vnold =
∅. Then fetch x = g/2 check nodes from cnnew and x variable nodes from vnnew,
to form a girth-member cycle followed by putting these nodes into cnold and vnold,
respectively.
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2. Exhaust check nodes in cnnew.
Set a constant h:

h =

{
x/2− 1 (x is even)
(x− 1)/2 (x is odd)

. (1)

If |cnnew| is greater than or equal to h, execute FindTwoNode(x) when x is even or
FindTwoNode(x − 1) when x is odd. If FindTwoNode exports cj and ñ, connect cj
and ñ to create some girth-member cycles with h check nodes from cnnew and h + 1
variable nodes from vnnew, and put these h check nodes and h + 1 variable nodes into
cnold and vnold, respectively. Then repeat step 2.
If |cnnew| is positive and less than h, execute FindTwoNode(2(x − |cnnew| − 1)). If
FindTwoNode exports cj and ñ, connect cj and ñ to create some girth-member cycles
with |cnnew| check nodes from cnnew and |cnnew|+ 1 variable nodes from vnnew, and
put these |cnnew| check nodes and |cnnew| + 1 variable nodes into cnold and vnold,
respectively. Then skip to step 3.
If |cnnew| is zero, then skip to step 3.

3. Exhaust variable nodes in vnnew.
If |vnnew| is a positive number, then execute FindTwoNode with input (2x − 2). If
FindTwoNode exports cj and ñ, connect cj and ñ with a variable node from vnnew to
create some girth-member cycles, and put the variable node into vnold. Then repeat
step 3.
If |vnnew| is zero, then skip to step 4.

4. Increase the degrees of variable nodes.
Execute FindTwoNode(2x − 1). If FindTwoNode exports cj and ñ, connect cj and ñ
directly. Repeat step 4 until FindTwoNode fails.

Algorithm 2 Girth-cycle-embedding algorithm.

1: Form the first g-member cycle
2: while check nodes have not been exhausted do
3: if |cnnew| ≥ h then
4: if x mod 2 = 0 then
5: cj, ñ← FindTwoNode(x)
6: else
7: cj, ñ← FindTwoNode(x− 1)
8: end if
9: else

10: cj, ñ← FindTwoNode(2(x− |cnnew| − 1))
11: end if
12: Connect cj and ñ to form g-member cycles
13: end while
14: while variable nodes have not been exhausted do
15: cj, ñ← FindTwoNode(2x− 2)
16: Connect cj and ñ to form g-member cycles
17: end while
18: while cj, ñ← FindTwoNode(2x− 1) succeeds do
19: Connect cj and ñ directly
20: end while

Except for step 1, steps 2–4 are executed with the help of FindTwoNode operation.
Cycles with lengths less than g are avoided by setting the input of FindTwoNode reasonably,
hence no more operations are needed to remove these cycles. As for cycles with lengths
greater than or equivalent to g, their harm is significantly reduced by improving their
connectivity in steps 2–4. Moreover, the only uncertain input in the GCE algorithm is
the girth g, which greatly lowers the external influence on the quality of LDPC codes.
The advantages above are shown directly in the experiments. Of course, GCE remains
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some shortcomings, for example leading to too small average variable-node degree and
weakening the performance if g is too large or too small. However, compared with
obtaining an excellent variable-node degree distribution for the PEG-based algorithms and
a superb base matrix for the QC-based algorithms, the complexity of selecting an optimal g
in GCE algorithm is low enough.

For an algorithm, it needs to consider space complexity and time complexity. Gener-
ally, the O-notation can be used to denote the asymptotic upper bound of space or time
complexity [38]. We calculate the space and time complexity of GCE algorithm, some PEG-
based and QC-based algorithms [18–22], and present the results in Table 1. It is observed
that the GCE algorithm is not as good as the QC-based algorithms [21,22] in terms of space
complexity, but it also remains linear. As for time complexity, the GCE algorithm has the
lowest one compared to other algorithms. This indicates that the GCE algorithm has the
least computational consumption when constructing an LDPC code in the asymptotic case.

Table 1. Space and time complexity of different algorithms.

Algorithm Space Complexity Time Complexity

Progressive-edge-growth (PEG) [18] O(m + n) O(n2)
Improved PEG [19] O(m + n) O(n2)

Generalized PEG [20] O(m + n) O(n2)
Hill-Climbing [21] O((m + n)/p) O(mn/p)

Improved Hill-Climbing [22] O((m + n)/p) O(mn/p)
Girth-cycle-embedding (GCE) O(m + n) O(m + n)

5. Simulation Results

In this section, we executed three experiments to verify the advantages of the GCE
algorithm. Before the experiments, we have constructed six matrices (LDPC codes) with
code rate 1/2 (3072 check nodes and 6144 variable nodes) for the experiments. Three
of them were created by using three PEG-based algorithms, i.e., PEG algorithm [18],
improved PEG algorithm [19] and generalized PEG algorithm [20]. The variable-node
degree distribution required was obtained by density evolution [31,32] and published
in [32]. In QC-based algorithms, the Hill-Climbing algorithm [21] and the improved Hill-
Climbing algorithm [22] were utilized to construct two matrices which both had 3× 6
base matrices initialized in a random manner. The last matrix was generated via the GCE
algorithm we proposed in Section 4 and its girth g was set to 12.

5.1. Decoding Performance

Decoding with LDPC codes can correct errors in messages and thus guarantee the
communication reliability of WSNs. For the comparison of decoding performance of
finite-length LDPC codes, we chose to perform decoding simulations instead of running
some analysis algorithms [39,40] which are inapplicable to the GCE algorithm. We first
evaluated the decoding performance of the above six finite-length matrices with BP decoder
introduced in [16,17] on the binary symmetric channel (BSC). Figure 1 presents the results
with BER as the function of crossover probability Pc. For the convenience of reporting the
results, all the matrices are numbered consecutively from 1 to 6: 1. PEG algorithm [18];
2. improved PEG algorithm [19]; 3. generalized PEG algorithm [20]; 4. Hill-Climbing
algorithm [21]; 5. improved Hill-Climbing algorithm [22]; and 6. GCE algorithm. It is
apparent that there is not much difference in the performances of PEG-based matrices 1–3,
while for two QC-based matrices, matrix 5 performs better than matrix 4.

We observe that matrix 6 achieves the optimal performance when Pc is less than 0.066.
Particularly in the error-floor region, the gaps between the curve of matrix 6 and the others
are rather striking. For example, when Pc equals to 0.057, BER is (3.26± 0.28)× 10−6 for
matrices 1–3 and is 9.77× 10−8 for matrix 6, which span more than an order of magnitude.
Obviously, as Pc increases and goes into the waterfall region, matrix 6 gradually loses
its advantage in decoding performance compared with matrices 1–3, nevertheless it still
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remains absolutely dominant compared with matrices 4 and 5. In order to verify the LDPC
codes constructed by GCE outperform the LDPC codes constructed by other algorithms
on different channels, we carried out two more decoding experiments over the binary
erasure channel (BEC) and the additive white Gaussian noise channel (AWGNC), which
are presented in Figures 2 and 3, respectively. It is apparent that GCE algorithm surpasses
the other algorithms in the error-floor region over different channels, which suggests that
LDPC codes from GCE algorithm can provide more reliable communication for WSNs.
The reason for outstanding decoding performance of the GCE algorithm is analyzed in
Appendix B.
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Figure 1. Comparison of decoding performance of the progressive-edge-growth (PEG)-based codes,
quasi-cyclic (QC)-based codes and the code from the girth-cycle-embedding (GCE) algorithm at
different Pc values over binary symmetric channel (BSC).
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Figure 2. Comparison of decoding performance of the PEG-based codes, QC-based codes and the
code from the GCE algorithm at different erasure probability Pe over binary erasure channel (BEC).
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Figure 3. Comparison of decoding performance of the PEG-based codes, QC-based codes and the
code from the GCE algorithm at different SNR over additive white Gaussian noise channel (AWGNC).

5.2. Power Consumption

Since the power of sensor nodes is limited, LDPC codes that achieve the same decoding
effect but consume less energy are needed. Power consumption for decoding can be
measured by the iteration number of BP decoder. A good LDPC code can effectively reduce
the iteration number of BP decoder and such save energy. Therefore, we performed an
experiment to calculate the average iteration numbers corresponding to the PEG-based
codes, QC-based codes and the code from GCE algorithm, and present the results in
Figure 4 with Equation (2) below,

Riter = (Ialgorithm − IGCE)/IGCE, (2)

where Ialgorithm is the average iteration number with an LDPC code from one construction
algorithm of LDPC codes, and IGCE is the average iteration number with an LDPC code
from the GCE algorithm. From Figure 4, it can be seen that the LDPC code from GCE has
the lowest iteration numbers at different crossover probabilities Pc. Assuming that the
energy consumed per iteration is equal, the LDPC code from GCE can save 4% to 28% of
energy compared to the LDPC codes obtained by other algorithms, which can effectively
extend the lifetime of sensor nodes in WSNs.

5.3. Optimal Girth

An LDPC code construction algorithm is easy to wield, meaning that the user can
easily get the optimal input to the algorithm. In Section 4, we know that compared with
obtaining an excellent variable-node degree distribution for the PEG-based algorithms and
a superb base matrix for the QC-based algorithms, it is much easier to find the optimal
girth for the GCE algorithm, which is illustrated in Figure 5. In the test, seven matrices
were generated via the GCE algorithm with girths g 6∼18, and 2× 103 key pairs were
simulated for each of three Pc values. Then, BER was calculated for each matrix and each
Pc. As we can see in Figure 5, the optimal girths are the same, i.e., 12 for all of the Pc values.
The curves on both sides of the optimal girth are all monotonic. Therefore, by choosing one
Pc optionally and taking advantage of the monotonicity, we can approach and finally find
the optimal girth for any code rate and any code length.
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Figure 4. Comparison of iteration numbers of the PEG-based codes, QC-based codes and the code
from the GCE algorithm with Riter from Equation (2) as the function of Pc over binary symmetric
channel (BSC).
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Figure 5. Comparison of decoding performance of the LDPC codes from the GCE algorithm with
different girths (6–18) at different Pc values (0.06, 0.065, 0.07).

6. Conclusions

LDPC code is a good candidate for channel coding of WSN and can be constructed
by PEG-based and QC-based algorithms. The aim of the present research was to discuss
the ways to overcome the shortcomings of PEG-based and QC-based algorithms. We solve
the problems by proposing GCE algorithm for constructing LDPC codes of any desired
girth to avoid generating short cycles. The experimental result shows that the LDPC codes
we construct have better decoding performance than the PEG-based and QC-based codes,
especially in the error-floor region. LDPC codes constructed by GCE can effectively reduce
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the iteration number of decoding, thus reducing the power consumption of WSNs. In
addition, the optimal input to GCE algorithm is easy to find.
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Appendix A

In this section, we provide an example of constructing an LDPC code with 16 check
nodes and 23 variable nodes by GCE algorithm. The input of the GCE algorithm, i.e., the
girth of the code, is g = 2x = 10. For the convenience of presenting cycles, the LDPC code
is represented by a non-standard Tanner graph [41] without restriction on the locations
of nodes. In addition, all the nodes are numbered in the order in which they are used.
The entire process of the example is shown in Figure A1. For each subgraph, black lines
indicate the new part; gray lines represent the previous part; ten-member cycles containing
the new part are displayed with red lines.

In the first step of GCE algorithm, we initialize the node sets cnnew = {0 · · · 15},
vnnew = {0 · · · 22}, cnold = vnold = ∅, and form the first ten-member cycle as shown in
Figure A1a with 5 check nodes and 5 variable nodes from cnnew and vnnew, respectively.

In the second step, we execute FindTwoNode to find two check nodes, c0 and c3 whose
distance is x− 1 = 4, and fetch 2 check nodes from cnnew and 3 variable nodes from vnnew
to connect c0 and c3, forming another ten-member cycle. Repeat the same action to find
and connect four other check-node pairs: (c1, c5), (c2, c4), (c6, c8), (c7, c12), and obtain four
other ten-member cycles as indicated in Figure A1b. So far, |cnnew| = 1 < h = 2, and in
order to exhaust the last check node we find c0 and c9 with distance 6 by FindTwoNode
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and connect them with the last check node and 2 variable nodes from vnnew. As presented
in Figure A1c, two ten-member cycles are newly generated. Up to this point, all the check
nodes have participated in the construction of the LDPC code, i.e., |cnnew| = 0.

(a) (b)

(c) (d)

(e) (f)

Figure A1. An example of constructing a 16× 23 low-density parity-check (LDPC) code with girth 10 by
GCE algorithm. (a) Initialize node sets and form the first cycle. (b,c) Exhaust check nodes in cnnew.
(d) Exhaust variable nodes in vnnew. (e,f) Increase the degrees of variable nodes.

The result of the third step is plotted in Figure A1d. Two check nodes, c10 and c11 with
distance 8, are exported by FindTwoNode and connected with the last variable node v22
from vnnew. Thus all the variable nodes have been exhausted, i.e., |vnnew| = 0.

In the forth step, we generate two ten-member cycles as shown in Figure A1e by
connecting c13 and v3 with distance 9 directly. In like manner, we connect c14 and v20 in
Figure A1f. So far, the distance between any check and variable nodes is less than 9.

A 16× 23 LDPC code with girth 10 has been constructed after the steps above. We
transform the Tanner graph in Figure A1f into a matrix provided in Figure A2.
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Figure A2. A 16× 23 matrix transformed from the Tanner graph in Figure A1f.

Appendix B

To find the reason for the outstanding decoding performance of GCE algorithm, for
all the matrices in Section 5, we present their ACE spectra [26] associated with cycles of
lengths 4–10 in Table A1 and their maximum degrees of variable nodes in Table A2. The
ACE spectrum [26] of a matrix can be regarded as a vector where each element represents
the minimum ACE of all the cycles with a certain cycle length. The minimum ACE of
l-member cycles is positively related to the overall connectively of all the l-member cycles
in the matrix. When there are no l-member cycles, the corresponding minimum ACE in the
ACE spectrum is taken to be ∞.

Table A1. Approximate cycle extrinsic message degree (ACE) spectra of all the matrices.

Matrix
Length 4 6 8 10

1 ∞ 13 13 5
2 ∞ 27 13 10
3 ∞ 39 13 11
4 ∞ ∞ 4 5
5 ∞ ∞ 4 5
6 ∞ ∞ ∞ ∞

Table A2. Maximum degrees of variable nodes for all the matrices.

Matrix 1 2 3 4 5 6

Degree 15 15 15 3 3 7

As can be seen from Table A1, matrices 4 and 5 eliminate all six-member cycles while
matrices 1–3 do not, which explains why matrices 4 and 5 outweigh matrices 1–3 when Pc
is less than 0.061. Moreover, it is noted that matrix 6 evades all four-member to ten-member
cycles which can degrade the performance of any matrix, and thus outperforms the others.
With the increase of Pc, however, the matrices with high-degree variable nodes gradually
have the advantages. Connectivity of short cycles can be improved by raising the degrees
of variable nodes to increase extrinsic paths (see Table A1), such that the hazard of short
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cycles is weakened. The variable nodes with high degrees can provide more decoding
information to correct errors. In this respect, it is theoretically explained that matrices 1–3
with maximum degree 15 gradually perform better than matrices 4 and 5 with maximum
degree 3 as displayed in Table A2. In addition, though matrix 6 has no cycles of lengths
4–10, its maximum degree is relatively smaller than matrices 1–3. Therefore, when Pc
gets into the waterfall region, matrix 6 works worse than matrices 1–3. In summary, the
analysis above suggests that the matrices from the GCE algorithm we proposed have
better decoding performance than the matrices constructed by PEG-based algorithms and
QC-based algorithms, especially in the error-floor region.
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