
sensors

Article

Deep PUF: A Highly Reliable DRAM PUF-Based
Authentication for IoT Networks Using Deep Convolutional
Neural Networks

Fatemeh Najafi 1, Masoud Kaveh 2, Diego Martín 1,* and Mohammad Reza Mosavi 2

����������
�������

Citation: Najafi, F.; Kaveh, M.;

Martín, D.; Reza Mosavi, M. Deep

PUF: A Highly Reliable DRAM

PUF-Based Authentication for IoT

Networks Using Deep Convolutional

Neural Networks. Sensors 2021, 21,

2009. https://doi.org/10.3390/

s21062009

Academic Editor: Raffaele Bruno

Received: 19 January 2021

Accepted: 8 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ETSI de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain;
fa_najafi@elec.iust.ac.ir

2 Department of Electrical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran;
m_kaveh@elec.iust.ac.ir (M.K.); m_mosavi@iust.ac.ir (M.R.M.)

* Correspondence: diego.martin.de.andres@upm.es

Abstract: Traditional authentication techniques, such as cryptographic solutions, are vulnerable to
various attacks occurring on session keys and data. Physical unclonable functions (PUFs) such as
dynamic random access memory (DRAM)-based PUFs are introduced as promising security blocks
to enable cryptography and authentication services. However, PUFs are often sensitive to internal
and external noises, which cause reliability issues. The requirement of additional robustness and
reliability leads to the involvement of error-reduction methods such as error correction codes (ECCs)
and pre-selection schemes that cause considerable extra overheads. In this paper, we propose deep
PUF: a deep convolutional neural network (CNN)-based scheme using the latency-based DRAM
PUFs without the need for any additional error correction technique. The proposed framework
provides a higher number of challenge-response pairs (CRPs) by eliminating the pre-selection and
filtering mechanisms. The entire complexity of device identification is moved to the server side that
enables the authentication of resource-constrained nodes. The experimental results from a 1Gb DDR3
show that the responses under varying conditions can be classified with at least a 94.9% accuracy
rate by using CNN. After applying the proposed authentication steps to the classification results,
we show that the probability of identification error can be drastically reduced, which leads to a highly
reliable authentication.

Keywords: DRAM latency-based PUF; IoT; authentication; convolutional neural network

1. Introduction

A large number of modern cryptographic protocols are based on physical unclonable
functions (PUF) implementations, which are used for key agreement and device authentica-
tion [1–5]. Memory-based PUFs are popular among other implemented PUFs due to being
a major component in many electronic devices and requiring minimum (or no) additional
circuit for PUF operation [6,7]. Dynamic random access memory (DRAM)-based PUFs
provide large address space and utilize several controllable properties to generate unique
identifiers for identification and authentication purposes [8–11]. Recently, researchers have
proposed DRAM latency-based PUFs, which can be used to provide random device sig-
natures by exploiting the timing parameters (e.g., activation (tRCD), precharge time (tRP),
etc. [12,13]). Reliability and robustness are two fundamental properties of a desirable PUF,
which prove the independence of output responses on internal/external noises and ambient
conditions. Most of the existing PUFs use some post-processing techniques, which require
helper data algorithms and complex error correction codes (ECCs) to extract reliable re-
sponses and conduct a proper authentication procedure [8,14]. However, these methods
cause significant hardware/computational overheads and additional Non-volatile mem-
ory (NVM) to store helper data in addition to their security defects [15–17]. Most of the

Sensors 2021, 21, 2009. https://doi.org/10.3390/s21062009 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8810-0695
https://orcid.org/0000-0002-2389-644X
https://doi.org/10.3390/s21062009
https://doi.org/10.3390/s21062009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062009
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062009?type=check_update&version=1

Sensors 2021, 21, 2009 2 of 16

proposed DRAM PUFs employ different pre-selection mechanisms to eliminate dependent
or unstable cells and decrease the ECC overheads [12,13]. Pre-selection mechanisms con-
sist of running multiple tests on the PUF and selecting the qualified cells using selection
algorithms. These approaches limit the challenge-response pairs (CRP) space and entail
additional runtime and costs. In such a way, resource-constrained nodes in the internet of
things (IoT) applications cannot benefit from a DRAM PUF-based authentication.

In [18], Yue et al. proposed a DRAM-based authentication scheme without the need
for PUFs in which a deep convolutional neural network (CNN) is utilized to authenti-
cate DRAM Integrated Circuits (ICs) using raw power-up values. This method is secure
against machine learning attacks and eliminates error correction mechanisms. However,
this scheme can result in increased runtime because of requiring power cycles to extract
power-up characteristics. Using CNN to extract unique features of DRAM at the device
side can cause extra overhead for resource-constrained nodes.

Most of the existing PUF-based authentication methods for IoT applications exploit
strong PUFs, such as delay-based PUFs, which require dedicated circuits. Addition-
ally, most of these methods rely on complex error correction algorithms to extract re-
liable responses, leading to add extra overheads to the device [19,20]. Using DRAMs
as the major components of many devices can eliminate the need for dedicated PUF
circuits. Some latency-based DRAM PUFs, which do not need power cycles and wait-
ing periods, can be evaluated as appropriate approaches to configure a lightweight
authentication [12,13,18,21,22]. In this paper, we propose deep PUF that utilizes all la-
tency failures in different DRAM blocks to expand the CRP space and organize a robust
authentication without employing any pre-selection algorithms or post-correction mecha-
nisms. We also move the entire burden of CNN implementation and device identification
to the server-side to overcome the challenges of resource-constrained devices. The major
contributions of this paper can be summarized as follows:

• We propose deep PUF as a two-stage mechanism, including multi-label classification
and challenge verification, to provide a robust and lightweight device authentication
without error-correcting codes and other pre-filtering methods.

• We implement two types of latency-based proposals (tRCD and tRP PUFs) as the fast
runtime accessible DRAM PUFs and analyze their characteristics to train the CNN.

• Finally, we develop a CNN model using experimental data and analyze the robustness
and security of the proposed deep PUF.

The remainder of this paper is organized as follows: Section 2 explains the background
and motivations. Section 3 presents the proposed deep PUF. Sections 4 and 5 demonstrate
DRAM experiments and CNN development results, respectively. Section 6 discusses
deep PUF performance and security, and Section 7 concludes the paper and mentions
future directions.

2. Background and Motivation
2.1. DRAM Operation and Timing Parameters

The hierarchy of a DRAM device organization is presented in Figure 1. As shown in
Figure 1a, a DRAM cell is the lowest level of DRAM structure, which stores one bit of data
based on the charge of its capacitor. A cell encodes value “1” when the capacitor is fully
charged and value “0” as it is fully discharged. The cells are written to or read from using
the access transistors, which are enabled by the wordline and the bitline connects the cells of
each column. Figure 1b shows how these components form a two-dimensional subarray of
a DRAM module. The combination of numerous subarrays forms a bank and banks are
cooperated to organize a DRAM chip, as shown in Figure 1c. To activate a row, the row
decoder enables the corresponding wordline, and then the stored information is transferred
to the sense amplifiers. When the row is accessed, the data can be read/written using rd/wr
commands [23]. Each read operation consists of multiple states, and the memory controller
produces different commands and manages the states (see Figure 2). In the precharge
state, all bitlines are precharged, and other open wordlines are deactivated after using the

Sensors 2021, 21, 2009 3 of 16

precharge (PRE) command. Before any rd/wr command can be generated, the corresponding
wordline must be opened via the activation (ACT) command. Next, rd/wr commands can be
sent to the opened row, subject to a minimum required time (activation time, tRCD). For a
subsequent read/write operation, it is necessary to issue a PRE command to deactivate
the opened row. The next row will be accessible after a specified time named precharge
time (tRP). There are also other timing parameters such as tRAS and tCL that are used by the
memory controller to manage DRAM operations [24–27].

Sensors 2021, 21, x FOR PEER REVIEW 3 of 16

decoder enables the corresponding wordline, and then the stored information is trans-
ferred to the sense amplifiers. When the row is accessed, the data can be read/written us-
ing rd/wr commands [23]. Each read operation consists of multiple states, and the memory
controller produces different commands and manages the states (see Figure 2). In the pre-
charge state, all bitlines are precharged, and other open wordlines are deactivated after us-
ing the precharge (PRE) command. Before any rd/wr command can be generated, the cor-
responding wordline must be opened via the activation (ACT) command. Next, rd/wr com-
mands can be sent to the opened row, subject to a minimum required time (activation
time, tRCD). For a subsequent read/write operation, it is necessary to issue a PRE command
to deactivate the opened row. The next row will be accessible after a specified time named
precharge time (tRP). There are also other timing parameters such as tRAS and tCL that are
used by the memory controller to manage DRAM operations [24–27].

Ro
w

 D
ec

od
er

Sense Amplifiers

M
em

ory Controller

DRAM chips

I/O logic

Ba
nk

Ba
nk

Ba
nk

⋮
wordline

Access
Transistor

Storage
Capacitor

bi
tli

ne

(a) (b) (c)

Figure 1. DRAM organization [12]. (a) DRAM cell. (b) DRAM subarray. (c) DRAM device.

Figure 2. DRAM timing at read operation [13].

2.2. DRAM PUF Technologies
In this section, we explain the existing DRAM-based PUFs and their strategies to en-

hance robustness and reliability.
A variety of works have discussed the concept of using DRAM as the major hardware

of most modern systems to organize an intrinsic PUF. DRAM cells do not have zero values
at the start-up time and the capacitor in each cell is initialized to a random value caused
by manufacturing variations, which is utilized to provide device signatures and configure
a DRAM PUF [22]. The requirement of power cycles and a period of time before response

ACT READ PRE ACT

Command

Data

tୖେୈ

 ோ஺ௌݐ

tୖ୔

 ࢀࢁࡻࡰ

tେ୐

Figure 1. DRAM organization [12]. (a) DRAM cell. (b) DRAM subarray. (c) DRAM device.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 16

decoder enables the corresponding wordline, and then the stored information is trans-
ferred to the sense amplifiers. When the row is accessed, the data can be read/written us-
ing rd/wr commands [23]. Each read operation consists of multiple states, and the memory
controller produces different commands and manages the states (see Figure 2). In the pre-
charge state, all bitlines are precharged, and other open wordlines are deactivated after us-
ing the precharge (PRE) command. Before any rd/wr command can be generated, the cor-
responding wordline must be opened via the activation (ACT) command. Next, rd/wr com-
mands can be sent to the opened row, subject to a minimum required time (activation
time, tRCD). For a subsequent read/write operation, it is necessary to issue a PRE command
to deactivate the opened row. The next row will be accessible after a specified time named
precharge time (tRP). There are also other timing parameters such as tRAS and tCL that are
used by the memory controller to manage DRAM operations [24–27].

Ro
w

 D
ec

od
er

Sense Amplifiers

M
em

ory Controller

DRAM chips

I/O logic

Ba
nk

Ba
nk

Ba
nk

⋮
wordline

Access
Transistor

Storage
Capacitor

bi
tli

ne

(a) (b) (c)

Figure 1. DRAM organization [12]. (a) DRAM cell. (b) DRAM subarray. (c) DRAM device.

Figure 2. DRAM timing at read operation [13].

2.2. DRAM PUF Technologies
In this section, we explain the existing DRAM-based PUFs and their strategies to en-

hance robustness and reliability.
A variety of works have discussed the concept of using DRAM as the major hardware

of most modern systems to organize an intrinsic PUF. DRAM cells do not have zero values
at the start-up time and the capacitor in each cell is initialized to a random value caused
by manufacturing variations, which is utilized to provide device signatures and configure
a DRAM PUF [22]. The requirement of power cycles and a period of time before response

ACT READ PRE ACT

Command

Data

tୖେୈ

 ோ஺ௌݐ

tୖ୔

 ࢀࢁࡻࡰ

tେ୐

Figure 2. DRAM timing at read operation [13].

2.2. DRAM PUF Technologies

In this section, we explain the existing DRAM-based PUFs and their strategies to
enhance robustness and reliability.

A variety of works have discussed the concept of using DRAM as the major hardware
of most modern systems to organize an intrinsic PUF. DRAM cells do not have zero
values at the start-up time and the capacitor in each cell is initialized to a random value
caused by manufacturing variations, which is utilized to provide device signatures and
configure a DRAM PUF [22]. The requirement of power cycles and a period of time before
response generation to extract unbiased signatures are the most important challenges of
this technique. Retention-based PUF is another well-studied mechanism, which generates
DRAM PUF-based random and unique patterns by preventing the refresh operation for
a period of time (waiting time). Retention-based PUFs require a long period of time to
extract sufficient failure. This method exploits the pre-selection of blocks and helper data
algorithms to extract the robust responses for key generation and authentication purposes.
Therefore, retention-based PUFs include significant time, hardware and storage overheads.

Sensors 2021, 21, 2009 4 of 16

Latency-Based DRAM PUFs

As mentioned in the DRAM organization, there are specified timing constraints to
schedule the DRAM operations correctly. Altering these parameters can affect the reliability
of DRAM information and result in data leakage. Latency-based structures benefit this
feature to construct a PUF. The tRCD-based PUF is formed by reducing the minimum
time period required to activate rows to be accessed [12]. This structure applies a filtering
mechanism to eliminate unstable bits in different iterations to enhance the PUF’s robustness
and repeatability. A separate DRAM rank is needed to count and store the latency failures
of each iteration. The evaluation time of PUF responses is noticeably increased due to the
filtering phase. However, this mechanism is not adequate, and ECC approaches are still
required to perform a reliable PUF.

Another technique is proposed in [13] that is based on tRP-reduction and disrupts
precharge procedure to obtain erroneous data. The tRP-based technique categorizes the
cells on the basis of their dependency on input patterns and measurements. Then, only the
independent cells are qualified to be used. Next, the specific selection algorithm is designed
to choose the acceptable cells and improve the robustness of PUF. In such a scenario,
the CRP space is noticeably contracted, and the effects of environmental variations are
not considered.

2.3. Post-Processing and Pre-Selection Algorithms

Most of the existing PUF technologies such as DRAM PUFs utilize helper data al-
gorithms and ECCs to improve the reliability and robustness [14,19,20,28–30]. However,
using helper data may leak some information about the secret keys, and ECC circuits cause
significant hardware and software overheads. Temporal majority voting (TMV) is one of
the simplest ECCs, which is a repetition code and is based on sampling PUF cells multiple
times and selecting the majority sample. Bose Chaudhuri Hocquenghem (BCH) codes are
another popular ECC that are usually utilized as a final error-correction technique. It is
inefficient to use BCH codes alone when the bit-error rate (BER) of native responses is high.
Thus, some additional stages are required to be applied to raw PUF responses before using
ECC mechanisms due to varying characteristics and unpredictable behaviors of DRAM
cells in different measurements under normal/unstable ambient conditions.

As mentioned above, current DRAM PUFs, including latency-based ones, mask unsta-
ble and unsuitable cells using filtering processes or selection algorithms [12,13]. However,
these solutions limit the CRP space by disqualifying the unacceptable cells and cause
extra time and implementation overheads. Additionally, they need specific algorithms to
determine the accurate location (address information) of selected cells to indicate them in
the challenges [31,32].

2.4. Motivation

As stated in Section 2.2, the current solutions of error-reduction in DRAM PUFs cause
additional costs and cannot be efficiently implemented, particularly when the PUF is
embedded in a resource-restricted IoT device. Adding considerable hardware overheads
and increasing the implementation complexity on the device side, as well as limiting
the CRP space of DRAM PUF, are some of the most important disadvantages of exist-
ing error-reduction methods and the key motivations of this work. Last but not least,
it has been shown that most of error-reduction schemes such as fuzzy extractors have
their own security defects [14]. The deep PUF mechanism eliminates the need for error-
reduction strategies and their overheads using a two-stage deep CNN-based mechanism
for a lightweight authentication.

3. Proposed Deep PUF

Our proposed method substantially focuses on an authentication technique which is
suitable for device identification with no extra overheads for resource-constraint nodes
in an IoT network. In this work, we first generate DRAM PUF responses for different

Sensors 2021, 21, 2009 5 of 16

challenges over multiple measurements under various temperature conditions. We create a
CRP database including each challenge with its corresponding responses (Section 4). Next,
we take the advantages of CNNs to extract the shared features of generated responses
as well as failure patterns. In such a way, the developed CNN learns the shared features
of several responses generated for each challenge. Then, it will be able to recognize
corresponding responses produced in all operating conditions. This method will help us
to address the error-reduction issues and confront reliability requirements to organize an
authentication technique. Deep PUF can be used as a standalone security mechanism or as a
part of multi-factor authentication (MFA). The proposed authentication process is generally
divided into two major stages: (i) an enrollment phase and (ii) an authentication phase.

3.1. Enrollment

Figure 3 illustrates the entire enrollment procedure. It is made up of three steps:
reading the DRAM PUF responses, converting them to gray-scale images and training
the CNN.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16

• Stability of operating conditions: locating the PUF device in a stable ambiance in
which the variety of conditions (e.g., temperature, voltage) is not appreciable, causes
more consistency inside each class and results in better accuracy. Due to the PUF
sensitivity to environmental conditions, in an environment with varying tempera-
tures, the number of bit failures in each measurement and the way the failures are
distributed may cause samples to be far different than usual. In this case, deep PUF
requires involving the responses of all possible temperatures to extract entire failure
features, thereby leading an accurate classification.

• Variety of blocks and input patterns: one scenario is to organize the classes using
only a single memory block and writing different patterns into it as the challenges,
and the other one is exploiting various blocks. If only one memory block is utilized
to perform the PUF, it is necessary to provide the challenges based on different input
data patterns. However, in the case of using multiple blocks, the challenges can be
configured by the same data for all blocks.

ܴଵଵܴଶଵ ܴଵଶ 			⋯ܴଶଶ 			… ܴଵ௠ܴଶ௠⋮ ⋮									⋱ 	⋮ܴ௡ଵ ܴ௡ଶ 		⋯ ܴ௡௠
CଵCଶ⋮C୬

255					132				253		…217				127				243		…	215				159				231		…
⁝											⁝										⁝			

Train

Test

Train

Test

128@3× 3
32@3× 3

16@3× 3

32@3× 3
16@3× 3

Fully connected

Input Image

222× 222

C1 C2 C3 C4 C5
Pool Pool

Ro
w

De
co

de
r

Sense Amplifiers

Binary	 response	(R୧୨) Binary to unsigned integers Gray-scale image Images
(b) Visualization process

(a) DRAM read operation

(c) Training the CNN

 Challenges

n×m responses

M
(no. of samples)

N
(no. of
classes)

Images

server

Figure 3. Enrollment Phase.

3.2. Authentication Phase
Figure 4 shows the authentication procedure as well as the major parts of server and

device. In each authentication request from the PUF device, the server sends one of the
challenges (prearranged class labels) to the device to configure a particular DRAM block
as a PUF. Next, the device generates the corresponding response and sends it to the
trusted server. Then, the server authenticates the device in two steps:
1. The received raw bits are classified using CNN, structured during the enrollment

phase.
2. The detected label is compared with the original challenge.

The device will be authenticated if the class label in which the response was catego-
rized matches the original challenge. Otherwise, if the class of received response and the
sent challenge are different, the authentication will be discarded, and the server will reject
the device’s request to exchange data. In this structure the burden of device authentication
is completely moved to the server, which has almost no resource limitations. Therefore,
deep PUF enables an authentication process for resource-constrained nodes without any
extra implementation overheads.

Figure 3. Enrollment Phase.

In the first stage, the characterization of DRAM responses based on a particular
DRAM PUF technology (e.g., tRCD based, tRP based, etc.) over multiple iterations and
under various ambient conditions is analyzed. Then, considering the necessary features
to develop a successful classifier, challenges are selected, which contain the address of
memory blocks and the input data patterns. The output responses as well as failure bits for
each challenge are categorized without any modification (see Figure 3a). The number of
measurements to obtain the comprehensive features of whole possible responses for each
challenge can be effectively set based on intrinsic robustness evaluation.

To organize the training dataset for CNN, we transform binary responses into two-
dimensional arrays of unsigned integers and finally gray-scale images via the visualization
phase (see Figure 3b). Therefore, the required dataset is constructed during the first and
second steps. After creating the dataset of the PUF device, it is necessary to extract the chief
and common features of the samples (responses) of each class (challenge) by training a
CNN. The CNN developing procedure, including the hyper-parameter settings, should be
optimized in consideration of PUF characteristics. The most important and influential

Sensors 2021, 21, 2009 6 of 16

factors of PUF during CNN training and performance optimization (classification accuracy)
are robustness and uniqueness.

• Robustness: determines the effects of different operating conditions on output re-
sponses. This property affects the similarity of samples in a single class and accuracy
of classification results. Robustness of DRAM PUF can be calculated using intra-
Hamming distance (HD) or intra-Jaccard index values.

• Uniqueness: enough difference between two responses using two distinct DRAM
blocks results in uniqueness. This factor shows the difference of samples belonging to
separate classes and can be determined by computing inter-class HD. Figure 3c depicts
the developed deep CNN which is trained on the generated dataset and learns the
failures behavior under various measurements.

We recognize two major variables which significantly affect the classification accuracy
and finally the authentication performance.

• Stability of operating conditions: locating the PUF device in a stable ambiance in which
the variety of conditions (e.g., temperature, voltage) is not appreciable, causes more
consistency inside each class and results in better accuracy. Due to the PUF sensi-
tivity to environmental conditions, in an environment with varying temperatures,
the number of bit failures in each measurement and the way the failures are distributed
may cause samples to be far different than usual. In this case, deep PUF requires
involving the responses of all possible temperatures to extract entire failure features,
thereby leading an accurate classification.

• Variety of blocks and input patterns: one scenario is to organize the classes using
only a single memory block and writing different patterns into it as the challenges,
and the other one is exploiting various blocks. If only one memory block is utilized
to perform the PUF, it is necessary to provide the challenges based on different input
data patterns. However, in the case of using multiple blocks, the challenges can be
configured by the same data for all blocks.

3.2. Authentication Phase

Figure 4 shows the authentication procedure as well as the major parts of server and
device. In each authentication request from the PUF device, the server sends one of the
challenges (prearranged class labels) to the device to configure a particular DRAM block as
a PUF. Next, the device generates the corresponding response and sends it to the trusted
server. Then, the server authenticates the device in two steps:

1. The received raw bits are classified using CNN, structured during the enrollment
phase.

2. The detected label is compared with the original challenge.

The device will be authenticated if the class label in which the response was catego-
rized matches the original challenge. Otherwise, if the class of received response and the
sent challenge are different, the authentication will be discarded, and the server will reject
the device’s request to exchange data. In this structure the burden of device authentication
is completely moved to the server, which has almost no resource limitations. Therefore,
deep PUF enables an authentication process for resource-constrained nodes without any
extra implementation overheads.

Sensors 2021, 21, 2009 7 of 16Sensors 2021, 21, x FOR PEER REVIEW 7 of 16

DRAM PUF

Trusted server
Device

Trained CNN

Request

Challenge

Response

List of challenges
used in the
enrollment

Comparator

Cᇱ C
 Original challenge sent to the device Cᇱ: The class in which the received

response is classified

C :

ᇱܥ = ܥ
The device is authenticated

Step1

Step2

Figure 4. The authentication phase includes communication process and verification steps in the
server.

4. DRAM Experiments and Observations
In this section, we present DRAM PUF implementation results and check the behav-

ior of responses that are generated using latency-based technologies (i.e., tRCD and tRP
PUFs). The experimental evaluations are conducted using a DDR3 DRAM module.
Figure 5 shows our experimental setup. We examine the characteristics of both latency
PUFs to make a better decision considering the CNN requirements. We read DRAM val-
ues in different conditions to evaluate the robustness and uniqueness of DRAM blocks.

DDR3
DRAM

XC6SLX45
FPGA

Figure 5. Experimental setup.

Table 1 shows the parameter values of our experiments that are the same for both
evaluated structures. To measure the robustness of each PUF, we extract multiple re-
sponses over several iterations at varying temperatures (25–55 °C). Figure 6a shows the

Figure 4. The authentication phase includes communication process and verification steps in
the server.

4. DRAM Experiments and Observations

In this section, we present DRAM PUF implementation results and check the behavior
of responses that are generated using latency-based technologies (i.e., tRCD and tRP PUFs).
The experimental evaluations are conducted using a DDR3 DRAM module. Figure 5 shows
our experimental setup. We examine the characteristics of both latency PUFs to make a
better decision considering the CNN requirements. We read DRAM values in different
conditions to evaluate the robustness and uniqueness of DRAM blocks.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16

DRAM PUF

Trusted server
Device

Trained CNN

Request

Challenge

Response

List of challenges
used in the
enrollment

Comparator

Cᇱ C
 Original challenge sent to the device Cᇱ: The class in which the received

response is classified

C :

ᇱܥ = ܥ
The device is authenticated

Step1

Step2

Figure 4. The authentication phase includes communication process and verification steps in the
server.

4. DRAM Experiments and Observations
In this section, we present DRAM PUF implementation results and check the behav-

ior of responses that are generated using latency-based technologies (i.e., tRCD and tRP
PUFs). The experimental evaluations are conducted using a DDR3 DRAM module.
Figure 5 shows our experimental setup. We examine the characteristics of both latency
PUFs to make a better decision considering the CNN requirements. We read DRAM val-
ues in different conditions to evaluate the robustness and uniqueness of DRAM blocks.

DDR3
DRAM

XC6SLX45
FPGA

Figure 5. Experimental setup.

Table 1 shows the parameter values of our experiments that are the same for both
evaluated structures. To measure the robustness of each PUF, we extract multiple re-
sponses over several iterations at varying temperatures (25–55 °C). Figure 6a shows the

Figure 5. Experimental setup.

Table 1 shows the parameter values of our experiments that are the same for both
evaluated structures. To measure the robustness of each PUF, we extract multiple responses
over several iterations at varying temperatures (25–55 ◦C). Figure 6a shows the intra-Jaccard

Sensors 2021, 21, 2009 8 of 16

of PUF responses using both tRCD and tRP reduction-based methods. The intra-Jaccard
index determines the similarity of two PUF responses for the same challenge. This is
calculated as R1∩ R2

R1∪ R2
for two sets of responses, where R1 ∩ R2 indicates the size of the

shared failures and the R1 ∪ R2 is the total number of failures in R1 and R2. A Jacard
index close to 1 shows the more similarity between R1 and R2. In this work, this metric is
used to check the repeatability and robustness of DRAM PUF responses. These results are
based on the average values that we have gathered by checking multiple samples at each
temperature. We also have tested the sensitivity of PUF responses to temperature variations
by intra-HD calculations; the results are shown in Figure 6b, indicating the reliability of
DRAM PUF responses and also the similarity of samples creating a class. Another principal
factor affecting the performance of deep PUF is uniqueness, which measures the difference
between failure distributions into two different memory blocks. We have analyzed this
factor by comparing multiple samples belonging to various blocks of the DRAM module
using inter-HD. Table 2 presents the average uniqueness for tRCD and tRP-based methods
considering the average number of bit failures in each block.

Table 1. Experimental parameters used for tRCD and tRP reduction-based DRAM PUFs.

Reduced time 5 ns
Block size 200 Kb

Input pattern All “1” s
Block address Various

Number of tested blocks 200

Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

intra-Jaccard of PUF responses using both tRCD and tRP reduction-based methods. The in-
tra-Jaccard index determines the similarity of two PUF responses for the same challenge.
This is calculated as ୖభ∩	ୖమୖభ∪	ୖమ for two sets of responses, where Rଵ ∩ Rଶ indicates the size of
the shared failures and the Rଵ ∪ Rଶ is the total number of failures in Rଵ and Rଶ. A Jacard
index close to 1 shows the more similarity between Rଵ and Rଶ. In this work, this metric
is used to check the repeatability and robustness of DRAM PUF responses. These results
are based on the average values that we have gathered by checking multiple samples at
each temperature. We also have tested the sensitivity of PUF responses to temperature
variations by intra-HD calculations; the results are shown in Figure 6b, indicating the re-
liability of DRAM PUF responses and also the similarity of samples creating a class. An-
other principal factor affecting the performance of deep PUF is uniqueness, which
measures the difference between failure distributions into two different memory blocks.
We have analyzed this factor by comparing multiple samples belonging to various blocks
of the DRAM module using inter-HD. Table 2 presents the average uniqueness for tRCD
and tRP-based methods considering the average number of bit failures in each block.

Table 1. Experimental parameters used for tRCD and tRP reduction-based DRAM PUFs.

Reduced time 5ns
Block size 200 Kb

Input pattern All “1”s
Block address Various

Number of tested blocks 200

(a) (b)
Intra-Jaccard Index ∆T(Ԩ)

RCD PUF (probability of failure:6.5 %)

In
tra

-H
am

m
in

g
D

ist
an

ce
 (%

)

RP PUF (probability of failure: 11%) RP PUF
RCD PUF

Pr
ob

ab
ili

ty
 (

%
)

v

Figure 6. (a) Distributions of intra-Jaccard indices calculated between responses for tRCD
and tRP PUFs. (b) The average intra-Hamming distance (HD) for tRCD and tRP PUFs with
different temperatures (reference temperature is 25 °C).

Figure 6. (a) Distributions of intra-Jaccard indices calculated between responses for tRCD and tRP

PUFs. (b) The average intra-Hamming distance (HD) for tRCD and tRP PUFs with different tempera-
tures (reference temperature is 25 ◦C).

Sensors 2021, 21, 2009 9 of 16

Table 2. Average inter-HD for tRCD and tRP PUFs.

Mechanism Average Inter-HD Average Probability of Failure
(for 200 Blocks)

RCD PUF 12.15% 6.5%
RP PUF 20.21% 11%

After analyzing the robustness and uniqueness for both tRCD and tRP PUFs, we re-
alize that they have desirable characteristics to develop a classifier and organize deep
PUF. These characteristics include the similarity among the samples into each class and
variety among samples from different classes. Table 3 summarizes the generic HD val-
ues for stable and unstable conditions, which can be two possible scenarios during a
deep PUF configuration. We focus on the tRCD-based PUF that comparatively has more
intra-class consistency.

Table 3. Inter-class (HD) and intra-class HD, considering environmental conditions.

Mechanism
Stable Environmental Conditions Unstable Environmental Conditions

Intra-Class HD Inter-Class HD Intra-Class HD Inter-Class HD

RCD PUF 0.32% 12.7% 1.44% 11.64%

RP PUF 1.05% 21.1% 3.41% 19.33%

5. Development of CNN Model
5.1. Dataset Creation

Each DRAM PUF is configured by sending M challenges to the device and generating
N responses for each of them. The CNN is trained on and organized to classify these
challenges from N × M responses. Each challenge is defined as a class label, and the
corresponding responses are the class samples. The value of N can be adjusted by the total
number of classes and the environmental conditions, which significantly determine the
consistency of samples in each class. In order to examine the effect of important variables,
including stability of ambient conditions and variety of input patterns (see Section 3),
we generate four datasets considering the following scenarios:

1. The same input pattern (all “1”s) is used to characterize all blocks and the operating
conditions are stable (room temperature and nominal voltage).

2. Different input patterns (0x00, 0x01 . . . 0xFF) are used for different blocks and the
conditions are stable.

3. The same input pattern is used to characterize all blocks and the operating conditions
are unstable.

4. Different input patterns are used for different blocks and the conditions are unstable.

The inputs of the network are visualized DRAM data, which are converted to gray-
scale images, as demonstrated in Section 3. The samples of different classes are randomly
shuffled and each dataset is divided into 80% training, 20% testing data. Table 4 includes
the main features of generated datasets.

Table 4. The specifics about the generated datasets.

Total number of images in each dataset 9000
Number of classes (challenges) 100
Number of samples (responses) 90

Tested temperatures 25–55 ◦C
Percentage of training data 80

Percentage of test data 20
The resolution of images (pixels) 222 × 222

Sensors 2021, 21, 2009 10 of 16

5.2. Training the Classifier

The proposed deep PUF consists of convolution, max-pooling and fully connected
layers. The summary of our network model is presented in Table 5. The activation function
of all layers except the output layer is the rectified linear unit (ReLU). Classification is
performed by determining the probability of different classes using the Softmax. In this
classifier, we utilize categorical cross-entropy as the loss function and the Adam algorithm
as the optimizer. Algorithm 1 shows the proposed scheme in form of a pseudo-code
containing dataset generation, training process and testing process.

Algorithm 1 Convolutional neural network (CNN)-based classification

Dataset generation
Input: a set of challenges, including the address of PUF segment and input pattern:
(C1, C2, . . . , CN)
Output: collections of images corresponding to different challenges: (S1, S2, . . . , SN)
Process: // build N folders: folder_1, folder_2, . . . , folder_N
for i = 1 to N do //N: number of classes

for k = 1 to M do // M: number of measurements
Write the input− pattern in the address using Ci ;
Change the timing parameter (tRCD);
Read the DRAM segment → Rk ;
Visualize(Rk) //Convert the Rk to integer values and a gray-scale image
Store R1, R2, . . . , RM into the folder_i ;

end for
end for
Output: a dataset including N folders with M images in each folder.

Training process
Input: a collection of labeled images (responses): (s1, s2, . . . , sM, sM+1, . . . , sMN)
Output: a collection of features assigned to different labels
Process:
for k = 1 to e do // e: number of epochs

for i = 1 to M×N do // N: number of classes, M: number of samples for each class
Get the sample with the label → (si , yi);
Gain the features → fi; // after applying the defined layers
Assign the features to the label (fi , yi);

end for
for j = 1 to N do

Build collection of features for each class→ (Fj,Yj);
end for
Build F = (F1, F2, . . . , FN)
Update the features → F ;

end for
Build the final collection of features
Output: (F1, Y1), (F2, Y2), . . . , (FN , YN)

Testing process
Input: x // testing sample
Process:
apply the CNN
Select (x′, y′), p(x′, y′) = max{p1(x′, y1), p2(x′, y2), . . . , pN(x, yN)} // p: the probability
vector calculated by Softmax
function
Assign y′ to the x

Sensors 2021, 21, 2009 11 of 16

Table 5. Architecture of the convolutional neural network (CNN) used for classification.

Layer Dimension

Convolution 2D (222, 222, 128)
Convolution 2D (220, 220, 32)

Max pooling (109, 109, 32)
Convolution 2D (107, 107, 16)
Convolution 2D (105, 105, 32)

Max pooling (52, 52, 32)
Convolution 2D (50, 50, 16)

Max pooling (24, 24, 16)
Flatten 9216
Dense 145
Dense 75
Dense Number of classes

5.3. Performance Metrics

The proposed network is simulated using the Keras library of Python and TensorFlow
backend. In this work, we analyze CNN performance considering two major variables
described in Section 3, using datasets based on four presented scenarios (see Section 5.1).
Table 6 shows the accuracy results of training the network. The influence of using the data
augmentation technique is examined and is presented in Table 6. This technique improves
the accuracy of classification by expanding the training dataset.

Table 6. Accuracy of classification considering different scenarios (N = 100, M = 90).

Experimental
Conditions

Accuracy of Classification (%)

Same Input Pattern for All Blocks Different Input Patterns

Augmented Data Original Data Augmented Data Original Data

Stable temperature 96.12 94.66 97.79 97.15
Various temperatures 92.29 91.03 94.9 94.33

In the worst scenario (unstable environments and the same inputs), the accuracy of
classification is 92.29%, which can achieve 97.79% in the case of applying different input
patterns in a stable condition.

Additionally, for a classification problem with N challenges, the number of samples
for each label (M) is an influential parameter to achieve better accuracy. In this work,
the authors have accomplished the classification process using 90 samples for each class,
which is a reasonable decision for a PUF-based mechanism leading to a cost-effective
enrollment procedure. However, it is functional to add more samples to each class in order
to generate a more comprehensive dataset and achieve satisfactory accuracy depending on
the application. Figure 7 illustrates the average accuracy of classification after 60-epoch
training as a function of the number of samples in each class, considering the different num-
ber of classes. The experiment is performed by writing the same input pattern into various
memory blocks at room temperature. The results indicate that it is feasible to achieve an
error less than 10−1 and even near 10−2 by adjusting the number of measurements during
the enrollment phase.

Sensors 2021, 21, 2009 12 of 16

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

various memory blocks at room temperature. The results indicate that it is feasible to
achieve an error less than 10−1 and even near 10−2 by adjusting the number of measure-
ments during the enrollment phase.

Accuracy vs. number of samples for each class

Figure 7. Probability of error in classification as a function of the number of measurements for the
different number of classes (N = 20, 50 and 100).

6. Security Analysis and Discussion
6.1. Security and Robustness

The security and robustness of authentication mechanisms are generally measured
using two popular metrics: the false acceptance rate (FAR) and the false rejection rate
(FRR). Generally, these two undesirable errors are defined considering the major PUF
properties (intra-HD and inter-HD), and there is a tradeoff between them which can be
controlled by a threshold for obtaining a suitable FAR and FRR [33]. The threshold is de-
termined by effective parameters depending on the application. In this paper, FAR refers
to the probability that a wrong response is verified as the true response from the target
device and FRR is the probability of wrongly rejecting the target entity’s response. Based
on the proposed authentication mechanism, the classification of received response is a
major stage in accepting or rejecting it. When the server sends a challenge to the target
device, the probability that the corresponding response is rejected directly depends on the
result of classification of the response, which is compared to the original class in the next
stage. Thus, the accuracy of classification significantly affects the FRR, and the probability
of misclassification determines the FRR. However, the FAR value is not directly influ-
enced by the rate of classification error and depends on CNN features. Assuming that a
wrong response from an invalid device is received, it can be classified in each class with
the same probability due to the uniqueness of PUF responses generated by different
DRAM blocks. Therefore, the FAR is about 1/N, where N indicates the number of classes
of the trained CNN. In Figure 8, the values for the FAR and FRR for deep PUF are shown
and compared to some other PUFs. The threshold used for controlling the tradeoff be-
tween FAR and FRR can be determined by the number of classes. With a smaller number
of classes (N = 60), the FAR and FRR achieve an equal value (0.016), but as N increases,
the FAR and the accuracy of classification decrease leading to a higher FRR. However, the
dependence of accuracy on other features (e.g., number of samples in each class and CNN

Figure 7. Probability of error in classification as a function of the number of measurements for the
different number of classes (N = 20, 50 and 100).

6. Security Analysis and Discussion
6.1. Security and Robustness

The security and robustness of authentication mechanisms are generally measured
using two popular metrics: the false acceptance rate (FAR) and the false rejection rate (FRR).
Generally, these two undesirable errors are defined considering the major PUF properties
(intra-HD and inter-HD), and there is a tradeoff between them which can be controlled
by a threshold for obtaining a suitable FAR and FRR [33]. The threshold is determined
by effective parameters depending on the application. In this paper, FAR refers to the
probability that a wrong response is verified as the true response from the target device
and FRR is the probability of wrongly rejecting the target entity’s response. Based on
the proposed authentication mechanism, the classification of received response is a major
stage in accepting or rejecting it. When the server sends a challenge to the target device,
the probability that the corresponding response is rejected directly depends on the result
of classification of the response, which is compared to the original class in the next stage.
Thus, the accuracy of classification significantly affects the FRR, and the probability of
misclassification determines the FRR. However, the FAR value is not directly influenced
by the rate of classification error and depends on CNN features. Assuming that a wrong
response from an invalid device is received, it can be classified in each class with the same
probability due to the uniqueness of PUF responses generated by different DRAM blocks.
Therefore, the FAR is about 1/N, where N indicates the number of classes of the trained
CNN. In Figure 8, the values for the FAR and FRR for deep PUF are shown and compared
to some other PUFs. The threshold used for controlling the tradeoff between FAR and FRR
can be determined by the number of classes. With a smaller number of classes (N = 60),
the FAR and FRR achieve an equal value (0.016), but as N increases, the FAR and the
accuracy of classification decrease leading to a higher FRR. However, the dependence of
accuracy on other features (e.g., number of samples in each class and CNN model) can
address this issue and enable a desirable FRR. In such a scenario, it will be possible to
minimize both the FAR and FRR considering the major features, such as increasing the
accuracy and the number of CNN classes simultaneously.

Sensors 2021, 21, 2009 13 of 16

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16

model) can address this issue and enable a desirable FRR. In such a scenario, it will be
possible to minimize both the FAR and FRR considering the major features, such as in-
creasing the accuracy and the number of CNN classes simultaneously.

More generally, when a device is being authenticated, the probability of error during
the response verification is influenced by both inter-device HD and inter-class HD. in
Deep PUF, generating enough samples of each class using different ambient conditions,
provides more involvement and minimizes the FRR. However, in other mechanisms, the
response space is not large enough, and it is difficult to control both these errors.

Figure 8. The values for false acceptance rate (FAR) and false rejection rate (FRR) for deep PUF.

6.2. Performance Comparisons
Deep PUF employs the tRCD-based PUF mechanism to generate raw DRAM data, pro-

posed in [12]. This method uses a filtering procedure to extract the reliable cells and form
the output response, which significantly increases the evaluation period. Deep PUF ena-
bles a lower evaluation time than tRCD-based PUF technology due to removing the filtering
mechanism. The evaluation period of deep PUF can be measured in a way similar to tRCD-
based PUFs, expressed by Equation (1). ܶ = [(݀ܽ݁ݎ	ℎܿܽ݁	݊݅	ݏ݁ݐݕܾ	݂݋	ݎܾ݁݉ݑ݊)/(݁ݖ݅ݏ_݇ܿ݋݈ܾ)] × (1) (݀ܽ݁ݎ	ℎܿܽ݁	ݎ݋݂	݀݁݀݁݁݊	݁݉݅ݐ)

We also experimentally measure the evaluation time of deep PUF to confirm Equa-
tion (1). The average result of multiple evaluations is 0.95ms, which is almost equal to the
value calculated by Equation (1). This period is much lower than tRCD-based PUF’s evalu-
ation time, which is 88.2ms. Note that the evaluation time has been measured for the PUF
operation on the device and does not include the time of authentication process on the
server side. Furthermore, tRCD-based PUF needs at least two DRAM ranks: one for PUF
operation and one for counting the latency failures. The proposed deep PUF is operational
with only one rank and is appropriate for low-cost systems. Additionally, both tRCD-based
[12] and tRP-based PUFs [13] require post-processing error correction algorithms that cause
significant time and hardware overheads. On the other hand, retention-based PUFs [12,28]
require a long period of time (order of minutes) to extract sufficient failure bits and gen-
erate reliable signatures, which makes the DRAM rank unavailable for a long time.

Figure 8. The values for false acceptance rate (FAR) and false rejection rate (FRR) for deep PUF.

More generally, when a device is being authenticated, the probability of error dur-
ing the response verification is influenced by both inter-device HD and inter-class HD.
In Deep PUF, generating enough samples of each class using different ambient condi-
tions, provides more involvement and minimizes the FRR. However, in other mechanisms,
the response space is not large enough, and it is difficult to control both these errors.

6.2. Performance Comparisons

Deep PUF employs the tRCD-based PUF mechanism to generate raw DRAM data,
proposed in [12]. This method uses a filtering procedure to extract the reliable cells and
form the output response, which significantly increases the evaluation period. Deep PUF
enables a lower evaluation time than tRCD-based PUF technology due to removing the
filtering mechanism. The evaluation period of deep PUF can be measured in a way similar
to tRCD-based PUFs, expressed by Equation (1).

T = [(block_size)/(number o f bytes in each read)]× (time needed f or each read) (1)

We also experimentally measure the evaluation time of deep PUF to confirm Equation (1).
The average result of multiple evaluations is 0.95ms, which is almost equal to the value
calculated by Equation (1). This period is much lower than tRCD-based PUF’s evaluation time,
which is 88.2ms. Note that the evaluation time has been measured for the PUF operation
on the device and does not include the time of authentication process on the server side.
Furthermore, tRCD-based PUF needs at least two DRAM ranks: one for PUF operation and one
for counting the latency failures. The proposed deep PUF is operational with only one rank
and is appropriate for low-cost systems. Additionally, both tRCD-based [12] and tRP-based
PUFs [13] require post-processing error correction algorithms that cause significant time and
hardware overheads. On the other hand, retention-based PUFs [12,28] require a long period
of time (order of minutes) to extract sufficient failure bits and generate reliable signatures,
which makes the DRAM rank unavailable for a long time.

6.3. Security Discussion and Countermeasures against Possible Attacks

In this authentication structure, the server only stores the list of original challenges
and the information of trained CNN. Therefore, the responses are not stored in the server

Sensors 2021, 21, 2009 14 of 16

storage. This property improves the security against the insider attack that can be executed
by a malicious entity with authorized server data access.

Snooping-based and modeling attacks take place when multiple CRPs related to the
same memory block are accessed and learned by the adversary [34]. These attacks can
be prevented by exploiting various and separate blocks of the DRAM during the deep
PUF configuration. Since, as the implementation results indicate, different memory blocks
entail various features, it is difficult to model all blocks of a DRAM chip using the limited
leaked CRPs.

PUF re-use attacks are theoretically possible in the deep PUF-based authentication
mechanism, as the server may send identical challenge to a PUF device. In such a way,
if the adversary can intercept in the process, the authentication system can suffer from
re-use attacks. One alternative way to avoid such attacks is to utilize a simple encryption
algorithm to enhance the security of transmitted data [18]. One-time-use protocol is
another way, which can be employed to prevent re-use attacks considering the application
requirements [35]. Another solution is to include erasability and certifiability as two
additional features in PUF application [36]. The property of certifiabilty provides an
offline certification to check and verify the expected features from the PUF responses.
Erasability can be conducted using reconfiguration methods, which are compatible with
DRAM PUF organization. We leave the implementation and validation of these techniques
to future work.

7. Conclusion and Future Work

In this paper, we present a new DRAM PUF-based authentication method that exploits
a deep CNN to configure a strong PUF with an expanded CRP space and light-weight
implementation. This method eliminates additional error-correction mechanisms and
their overheads. The experimental analysis of DRAM latency-based PUFs with their
characterizations under various conditions and the feasibility of developing a precise
CNN are elaborated in this paper. We organize a CNN-based classifier using real DRAM
data. We examine the effects of major parameters by generating four datasets based on
four key scenarios and applying them to CNN. Based on simulation results, we show
that in the case of using various input patterns for different blocks at varying ambient
conditions, the proposed classifier can achieve 94.9% accuracy. We also propose a two-
step authentication technique, including response classification and label verification.
This method can noticeably minimize identification errors and leads to higher reliability
than classification accuracy. The proposed scheme can be employed as a stand-alone
mechanism or as a part of multi-factor authentication. Additionally, our proposed deep
PUF moves all implementation overheads to the server and is appropriate for low-cost
and resource-constrained devices. Finally, we demonstrate that deep PUF significantly
reduces the evaluation time and hardware overheads compared with the existing DRAM
PUFs. One direction for the future work may be derived from studying how to extend the
proposed approach to other strong PUFs and analyzing existing techniques to protect deep
PUF against possible attacks to achieve a secure and light-weight authentication protocol.

Author Contributions: Conceptualization, F.N., M.K., D.M., and M.R.M.; Funding acquisition,
D.M.; Investigation, F.N. and M.K.; Methodology, F.N. and M.K.; Supervision, M.R.M. and D.M.;
Validations, F.N., M.K., D.M., and M.R.M.; Original draft writing, F.N.; Review and editing, M.K.,
M.R.M. and D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the National Iranian Gas Company for
its unwavering supports.

Sensors 2021, 21, 2009 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Helfmeier, C.; Boit, C.; Nedospasov, D.; Seifert, J. Cloning physically unclonable functions. In Proceedings of the IEEE International

Symposium on Hardware-Oriented Security and Trust, Austin, TX, USA, 2–3 June 2013; pp. 1–6.
2. Herder, C.; Yu, M.; Koushanfar, F.; Devadas, S. Physical unclonable functions and applications: A tutorial. Proc. IEEE 2014, 102,

1126–1141. [CrossRef]
3. Kaveh, M.; Martín, D.; Mosavi, M.R. A lightweight authentication scheme for V2G communications: A PUF-based approach

ensuring cyber/physical security and identity/location privacy. Electronics 2020, 9, 1479. [CrossRef]
4. Kaveh, M.; Mosavi, M.R. A lightweight mutual authentication for smart grid neighborhood area network communications based

on physically unclonable function. IEEE Syst. J. 2020, 14, 4535–4544. [CrossRef]
5. Yanambaka, V.P.; Mohanty, S.P.; Kougianos, E.; Puthal, D. PMsec: Physical unclonable function-based robust and lightweight

authentication in the internet of medical things. IEEE Trans. Consum. Electron. 2019, 65, 388–397. [CrossRef]
6. Xiao, K.; Rahman, M.T.; Forte, D.; Huang, Y.; Su, M.; Tehranipoor, M. Bit selection algorithm suitable for high-volume production

of SRAM-PUF. In Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
Arlington, VA, USA, 6–7 May 2014; pp. 101–106.

7. Xiong, W.; Schaller, A.; Anagnostopoulos, N.A.; Saleem, M.U.; Gabmeyer, S.; Katzenbeisser, S.; Szefer, J. Run-time accessible
DRAM PUFs in commodity devices. In Cryptographic Hardware and Embedded Systems—CHES 2016; Gierlichs, B., Poschmann, A.Y.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 432–453.

8. Schaller, A.; Xiong, W.; Anagnostopoulos, N.A.; Saleem, M.U.; Gabmeyer, S.; Skoric, B.; Katzenbeisser, S.; Szefer, J. Decay-based
DRAM PUFs in commodity devices. IEEE Trans. Dependable Secur. Comput. 2018, 16, 462–475. [CrossRef]

9. Rosenblatt, S.; Chellappa, S.; Cestero, A.; Robson, N.; Kirihata, T.; Iyer, S.S. A self-authenticating chip architecture using an
intrinsic fingerprint of embedded DRAM. IEEE J. Solid State Circuits 2013, 48, 2934–2943. [CrossRef]

10. Tang, Q.; Zhou, C.; Choi, W.; Kang, G.; Park, J.; Parhi, K.K.; Kim, C.H. A DRAM based physical unclonable function capable
of generating > 1032 challenge response pairs per 1Kbit array for secure chip authentication. In Proceedings of the 2017 IEEE
Custom Integrated Circuits Conference, Austin, TX, USA, 30 April–3 May 2017; pp. 1–4.

11. Chen, S.; Li, B.; Cao, Y. Intrinsic Physical Unclonable Function (PUF) sensors in commodity devices. Sensors 2019, 11, 2428.
[CrossRef] [PubMed]

12. Kim, J.S.; Patel, M.; Hassan, H.; Mutlu, O. The DRAM Latency PUF: Quickly evaluating physical unclonable functions by
exploiting the latency-reliability tradeoff in modern commodity DRAM devices. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture, Vienna, Austria, 24–28 February 2018; pp. 194–207.

13. Talukder, B.M.S.B.; Ray, B.; Forte, D.; Rahman, M.T. PreLatPUF: Exploiting DRAM latency variations for generating robust device
signatures. IEEE Access 2019, 7, 81106–81120. [CrossRef]

14. Delvaux, J.; Gu, D.; Schellekens, D.; Verbauwhede, I. Helper data algorithms for PUF-based key generation: Overview and
analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 889–902. [CrossRef]

15. Yu, M.; Devadas, S. Secure and robust error correction for physical unclonable functions. IEEE Des. Test Comput. 2010, 27, 48–65.
[CrossRef]

16. Paral, Z.; Devadas, S. Reliable and efficient PUF-based key generation using pattern matching. In Proceedings of the 2011 IEEE
International Symposium on Hardware-Oriented Security and Trust, San Diego, CA, USA, 5–6 June 2011; pp. 128–143.

17. Hiller, M.; Merli, D.; Stumpf, F.; Sigl, G. Complementary IBS: Application specific error correction for PUFs. In Proceedings of the
2012 IEEE International Symposium on Hardware-Oriented Security and Trust, San Francisco, CA, USA, 3–4 June 2012; pp. 1–6.

18. Yue, M.; Karimian, N.; Yan, W.; Anagnostopoulos, N.A.; Tehranipoor, F. DRAM-based authentication using deep convolutional
neural networks. IEEE Consum. Electron. Mag. 2020, 1. [CrossRef]

19. Banerjee, S.; Odelu, V.; Kumar, A.; Chattopadhyay, S.; Rodregues, J.J.P.C.; Park, Y. Physically secure lightweight anonymous user
authentication protocol for internet of things using physically unclonable functions. IEEE Access 2019, 7, 85627–85644. [CrossRef]

20. Byun, J.W. End-to-end authenticated key exchange based on different physical unclonable functions. IEEE Access 2019, 7,
102951–102965. [CrossRef]

21. Hashemian, M.S.; Singh, B.; Wolff, F.; Weyer, D.; Clay, S.; Papachristou, C. A robust authentication methodology using physically
unclonable functions in DRAM arrays. In Proceedings of the Design, Automation and Test in Europe Conference, Grenoble,
France, 9–13 March 2015; pp. 647–652.

22. Tehranipoor, F.; Karimian, N.; Yan, W.; Chandy, J.A. DRAM-based intrinsic physically unclonable functions for system-level
security and authentication. IEEE Trans. Scale Integr. Syst. 2017, 25, 1085–1097. [CrossRef]

23. Chang, K.K.; Kashyap, A.; Hassan, H.; Ghose, S.; Hsieh, K.; Lee, A.; Li, T.; Pekhimenko, G.; Khan, S.; Mutlu, O. Understanding
latency variation in modern DRAM chips: Experimental characterization, analysis, and optimization. In Proceedings of the ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Science, Antibes, France, 14–18 June 2016;
pp. 323–336.

24. Lee, D.; Kim, Y.; Pekhimenko, G.; Khan, S.; Seshadri, V.; Chang, K.; Mutlu, O. Adaptive-latency DRAM: Optimizing DRAM timing
for the common-case. In Proceedings of the IEEE 21st International Symposium on High Performance Computer Architecture,
Burlingame, CA, USA, 7–11 February 2015; pp. 489–501.

http://doi.org/10.1109/JPROC.2014.2320516
http://doi.org/10.3390/electronics9091479
http://doi.org/10.1109/JSYST.2019.2963235
http://doi.org/10.1109/TCE.2019.2926192
http://doi.org/10.1109/TDSC.2018.2822298
http://doi.org/10.1109/JSSC.2013.2282114
http://doi.org/10.3390/s19112428
http://www.ncbi.nlm.nih.gov/pubmed/31141896
http://doi.org/10.1109/ACCESS.2019.2923174
http://doi.org/10.1109/TCAD.2014.2370531
http://doi.org/10.1109/MDT.2010.25
http://doi.org/10.1109/MCE.2020.3002528
http://doi.org/10.1109/ACCESS.2019.2926578
http://doi.org/10.1109/ACCESS.2019.2931472
http://doi.org/10.1109/TVLSI.2016.2606658

Sensors 2021, 21, 2009 16 of 16

25. Chandrasekar, K.; Goossens, S.; Weis, C.; Koedam, M.; Akesson, B.; Wehn, N.; Goossens, K. Exploiting expendable process-
margins in drams for run-time performance optimization. In Proceedings of the 2017 IEEE Design, Automation and Test in
Europe Conference and Exhibition, Dresden, Germany, 24–28 March 2014; pp. 1–6.

26. Keller, C.; Gürkaynak, F.; Kaeslin, H.; Felber, N. Dynamic memory-based physically unclonable function for the generation of
unique identifiers and true random numbers. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems,
Melbourne VIC, Australia, 28 July 2014; pp. 2740–2743.

27. Chang, K.K.; Yağlikçi, A.G.; Ghose, S.; Agrawal, A.; Chatterjee, N.; Kashyap, A.; Lee, A.; O’Connor, M.; Hassan, H.; Mutlu, O.
Understanding reduced-voltage operation in modern DRAM Devices: Experimental characterization, analysis, and mechanisms.
In Proceedings of the ACM on Measurement and Analysis of Computing Systems, New York, NY, USA; 2017; Volume 1, pp. 1–42.

28. Sutar, S.; Raha, A.; Raghunathan, V. D-PUF: An intrinsically reconfigurable DRAM PUF for device authentication in embedded
systems. In Proceedings of the IEEE International Conference on Compilers, Architectures, and Synthesis of Embedded Systems,
CASES, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10.

29. Mathew, S.; Satpathy, S.K.; Anders, M.A.; Kaul, H.; Hsu, S.K.; Agarwal, A.; Chen, G.K.; Parker, R.J.; Krishnamurthy, R.K.; De, V. A
0.19pJ/b PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable secure key generation in 22nm
CMOS. In Proceedings of the IEEE International Solid-state Circuits Conference Digest of Technical Papers, San Francisco, CA,
USA, 9–13 February 2014; pp. 278–279.

30. Patel, M.; Kim, J.S.; Mutlu, O. The Reach Profiler (REAPER): Enabling the mitigation of DRAM retention failures via profiling at
aggressive conditions. In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), Toronto, ON, Canada, 24–28 June 2017; Volume 45, pp. 255–268.

31. Bohm, C.; Hofer, M. Physical Unclonable Functions in Theory and Practice; Springer: Cham, Switzerland, 2012; pp. 239–248.
32. Hiller, M.; Yu, M.D.; Sigl, G. Cherry-picking Reliable PUF Bits with differential sequence coding. IEEE Trans. Inf. Forensics Secur.

2016, 11, 2065–2076. [CrossRef]
33. Maes, R. PUF-Based entity identification and authentication. In Physically Unclonable Functions: Constructions, Properties and

Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–141.
34. Shi, J.; Lu, Y.; Zhang, J. Approximation attacks on strong PUFs. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2019, 39, 2138–2151.

[CrossRef]
35. Ostrovsky, R.; Scafuro, A.; Visconti, I.; Wadia, A. Universally composable secure computation with (malicious) physically

unclonable functions. In Eurocrypt LNCS; Springer: Berlin/Heidelberg, Germany, 2013; pp. 702–718.
36. Ruhrmair, U.; Dijk, I. PUFs in security protocols: Attack models and security evaluations. In Proceedings of the IEEE Symposium

on Security and Privacy, Berkeley, CA, USA, 19–22 May 2013; pp. 286–300.

http://doi.org/10.1109/TIFS.2016.2573766
http://doi.org/10.1109/TCAD.2019.2962115

	Introduction
	Background and Motivation
	DRAM Operation and Timing Parameters
	DRAM PUF Technologies
	Post-Processing and Pre-Selection Algorithms
	Motivation

	Proposed Deep PUF
	Enrollment
	Authentication Phase

	DRAM Experiments and Observations
	Development of CNN Model
	Dataset Creation
	Training the Classifier
	Performance Metrics

	Security Analysis and Discussion
	Security and Robustness
	Performance Comparisons
	Security Discussion and Countermeasures against Possible Attacks

	Conclusion and Future Work
	References

