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Abstract: Cardiac surgery patients infrequently mobilize during their hospital stay. It is unclear for
patients why mobilization is important, and exact progress of mobilization activities is not available.
The aim of this study was to select and evaluate accelerometers for objective qualification of in-
hospital mobilization after cardiac surgery. Six static and dynamic patient activities were defined
to measure patient mobilization during the postoperative hospital stay. Device requirements were
formulated, and the available devices reviewed. A triaxial accelerometer (AX3, Axivity) was selected
for a clinical pilot in a heart surgery ward and placed on both the upper arm and upper leg. An
artificial neural network algorithm was applied to classify lying in bed, sitting in a chair, standing,
walking, cycling on an exercise bike, and walking the stairs. The primary endpoint was the daily
amount of each activity performed between 7 a.m. and 11 p.m. The secondary endpoints were
length of intensive care unit stay and surgical ward stay. A subgroup analysis for male and female
patients was planned. In total, 29 patients were classified after cardiac surgery with an intensive care
unit stay of 1 (1 to 2) night and surgical ward stay of 5 (3 to 6) nights. Patients spent 41 (20 to 62)
min less time in bed for each consecutive hospital day, as determined by a mixed-model analysis
(p < 0.001). Standing, walking, and walking the stairs increased during the hospital stay. No
differences between men (n = 22) and women (n = 7) were observed for all endpoints in this study.
The approach presented in this study is applicable for measuring all six activities and for monitoring
postoperative recovery of cardiac surgery patients. A next step is to provide feedback to patients and
healthcare professionals, to speed up recovery.

Keywords: wearable technology; early ambulation; thoracic surgery; activity classification;
k-fold cross validation; LOO cross-validation; biomedical signal processing; patient monitoring

1. Introduction

Cardiac surgery consists mainly of coronary artery bypass grafting (CABG) followed
by valve surgery [1]. The hospital stay for these patients is 5 to 7 days after surgery.
Currently, automated monitoring of the mobilization process in the period surrounding
the surgery is sparsely applied in practice.
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In-Hospital Mobilization

For patients, the importance of postoperative mobilization is often unclear. Most
patients stay in bed during their hospital stay because they overestimate the intensity of
the physical activities [2]. Next, the hospital environment does not stimulate patients to be
physically active [3], and patients acquire a loss in muscle strength and aerobic capacity [4].

Hospitalized patients spent up to 50% lying in bed during daytime, despite the use of
enhanced recovery after surgery protocols [5]. Others found that only a minority of patients
had their meal outside of bed or walked during their hospital admission [6]. Inactivity
results in a prolonged hospital stay, increased cardiovascular mortality and morbidity, and
more readmissions to the intensive care unit (ICU) and to the hospital after discharge [7].

In-hospital exercises include breathing techniques, transfer between bed and chair,
and walking along the ward. In the USA, almost 20% of patients after cardiac surgery
received no physical therapy or inpatient cardiac rehabilitation, and when this is utilized,
often less than 30% of the hospital days are covered [8], without weekend day services [9].
Although interventions are hard to compare, the early mobilization of patients might
improve physiological functional capacity, might accelerate recovery, and might reduce
hospital length of stay [10,11]. Male patients after orthopedic and cardiac surgery showed
higher levels and a steeper increase in mobilization compared to female patients [12,13].

The success of hospital mobilization can be assessed with patient-reported [14,15] or
professional [16–18] scoring, or wearable devices [12,13,15,19–22]. Often these measures
are subjective, the wound area is near the intended sensor placement, or do not cover all
mobilization activities during the hospital stay. Some sensors have been used for cardiac
surgery patients [12,20,22].

Studies in a hospital setting can be done with existing combinations of embedded sen-
sors with proprietary algorithms but often depend on their limitations, such as prescribed
placement or limited detection of certain postures or movements [5]. Application of such a
sensor does show that monitoring physical activity can already lead to useful insights and
can be a tool to improve multidisciplinary care [5]. Therefore, we saw an opportunity to
look into the whole chain with a multidisciplinary team, covering practical elements from
sensor selection, understanding sensor data with (open-source) algorithms, and real-world
interpretations of labeled data over a hospital stay.

The aim of this study was to select and evaluate accelerometers for objective qualifica-
tion of in-hospital mobilization after cardiac surgery. Based on our previous experience with
accelerometers, we chose the investigated accelerometers due to their longer battery-life
ability, and practically feasible formats. Objective quantification was defined as determin-
ing six static and dynamic patient activities. The hypothesis was that the accelerometer was
able to measure patient mobilization activities for every phase of postoperative recovery.
First, requirements were formulated, and the available devices reviewed. Second, the best
device was selected and applied in a heart surgery ward. Third, the sensor data were
automatically interpreted and used to inspect the current mobilization process.

2. Materials and Methods
2.1. Device Selection
2.1.1. Device Requirements

Technical and clinical requirements were formulated after a literature research and
expert consultation with physical therapists, senior researchers in rehabilitation, telemoni-
toring and eHealth, and a former cardiac surgery patient (Table 1). The considerations of
each requirement are depicted in Supplementary Table S1.
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Table 1. Requirements for a device to classify in-patient physical activities after cardiac surgery,
ranked from highest to lowest importance.

Technical Requirements Clinical Requirements

1.
Classification of various activities

Static: Lying, sitting, standing
Dynamic: Walking, cycling, walking the stairs

1. No burden during the hospital stay and
no hindrance in mobilization

2. Sampling rate between 60 and 100 Hz 2. Minimal soft tissue deformation
3. Battery life for measuring up to 7 consecutive days 3. Device placement away from wound area

4. Local data storage up to 7 consecutive days 4. Meeting regulations regarding patient
privacy and integrity

5. Data extraction from the device 5. No impediment in daily nursing care
6. Device is CE certified

7. Total costs for clinical pilot study should
not exceed €3000

8.
Data analysis is attainable with supplied

software and/or is available with a
University license

2.1.2. Review and Selection of Available Devices

Based on the accelerometers we encountered in a broader literature search, eighteen
devices were deemed suitable for the requirements analysis.

Alphabetically, the ActiGraph wGT3X-BT (ActiGraph, LLC, Pensacola, FL, USA),
Activ8 A8015 (Remedy Distribution Ltd., Watford, UK), activPAL (PAL Technologies Ltd.,
Glasgow, UK), Alvita Ultimate HJ-325 (Omron Healthcare Inc., Lake Forest, IL, USA), AX3
(Axivity Ltd., Newcastle upon Tyne, UK), MOX1 (Maastricht Instruments B.V., Maastricht,
The Netherlands), BCGMCU/SCA11H (Murata Manufacturing Co., Ltd., Nagaokakyo,
Japan), Fibion (Fibion Inc., Jyväskylä, Finland), Health Watch (Philips, Drachten, The
Netherlands), HeartGuide (Omron Healthcare Inc., Lake Forest, IL, USA), Motiv Ring
(Motiv Inc., Seattle, WA, USA), MoveMonitor (McRoberts B.V., The Hague, The Nether-
lands), SenseWear Pro3 (Micro Star Instruments Co. Ltd., Taipei, Taiwan), VitalPatch (Vital
Connect Inc., San Jose, CA, USA), VivoSmart (Garmin B.V., Eemnes, The Netherlands), and
Wellsense Vu (Wellsense Inc., Birmingham, MI, USA) were considered. The technical and
clinical requirements’ evaluation is shown in Supplementary Table S2.

We found three devices to be eligible for use in a clinical setting (ActiGraph, AX3, and
MOX1), which met all the technical requirements. The other fifteen devices did not meet
the technical requirements. Decisive factors on device selection were based on sample rate
with battery life and price. MOX1 (€195) had a battery life less than seven days with a
sample rate between 60 and 100 Hz. The ActiGraph (€225) was almost twice as expensive
as AX3 (€123). The AX3 was selected for a clinical pilot study, based on the combination of
price, access to data, and no need for licensing or purchasing dedicated software.

2.2. Classification of Physical Activity Using Accelerometry

A triaxial accelerometer measures the sum of inertial and gravitational acceleration in
three directions [23]. It consists of a mass, suspended by a spring in a housing. Tri-axial
accelerometers have three single axis accelerometers mounted in a box with sensitive axes
in different directions, or as used in the AX3, have a sensor constructed using a single
mass [24]. Acceleration is directly proportional to an external force and thus reflects the
intensity and frequency of human movement. Accelerometers provide inclination sensing
in response to gravity with respect to reference planes when the accelerometers rotate.
The resulting inclination data is used to classify body posture orientations. Therefore, the
measured accelerometry data can identify postures and daily movements using a classifier.
The results can be related to a patient’s functional status [25,26].

The positions and orientations of body segments are stable over time during static
activities (e.g., lying, sitting, and standing). Static activities can therefore be identified by
body segment orientation with respect to gravitation [27]. Positions and orientations of
body segments vary over time during dynamic activities. During dynamic activities (e.g.,
walking, cycling, and walking stairs), body segments move naturally in a cyclical manner.
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For classification of activities, fixed-threshold classification [28–30], reference-pattern-
based classification [27], pattern-recognition strategies with statistical algorithms [27],
conventional or fuzzy logic [31], and artificial neural networks [32,33] were investigated.
Machine learning algorithms, including deep learning algorithms, demonstrated high classifi-
cation accuracy for human physical activity from tri-axial accelerometer data [34–36].

The leg and arm were chosen for placement of the sensors, informed by recurring
accelerometer placement for human activity recognition [37] and the expected comfort
restrictions. Wound location, and expected added value of measuring both the upper and
lower body to differentiate lying, sitting, and standing, were also considered. To investigate
placement on the arm and leg, and the resulting accelerometer data, a pilot was run with 5
non-clinical subjects wearing 8 sensors. This context-dependent decision process led to the
choice of placement of 2 sensors, as seen in Figure 1.
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Figure 1. The AX3 accelerometers were placed lateroproximal on the right upper arm and anterodistal
on the right upper leg. Permission was obtained for use of this photograph for publication.

The next step towards classification is choosing an appropriate type of algorithm in
combination with the provided (preprocessing of) data. Body acceleration was obtained
by passing the acceleration signal through a high-pass filter with a cut-off frequency of
0.8 Hz. The measured data were divided into subsequent segments of 256 samples (2.56 s)
based on an average person’s walking cadence. For the selected activities, it was possible
to efficiently provide correctly labeled data by giving participants instructions to perform
all 6 activities in an ordered calibration session. Based on the provision of a labeled data
set and re-purposing existing open-source code for human activity recognition [38], an
artificial neural network (ANN) was implemented.

2.3. Artificial Neural Network Algorithm Implementation and Validation

The ANN was trained by generating a number of features from the raw data stream.
Previously indicated time/frequency-domain and heuristic features were used to this
end, with presumed a high discriminatory ability and low computational cost [37]. For
the training process, the following features previously described by Bunkheila [38] were
included before selection: averaged total (i.e., static and dynamic) acceleration, root mean
square of dynamic acceleration, autocorrelation of acceleration (height main peak, height,
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and position of the second peak), spectral peaks (height and position of the first six peaks),
and spectral power (total power of five adjacent predefined frequency bands).

In an attempt to further improve recognition by building on Janidarmian et al. [37],
the following features were also included: the median of total acceleration, the standard
deviation of dynamic acceleration, and the median absolute deviation and magnitude
of both total and dynamic acceleration. For simplicity, only the suggested time-domain
features from [37] were included. For both sensors, data from all three axes were used,
leading to a total of 160 features. The script used a feed-forward network comprised of one
hidden layer with eighteen hidden nodes.

A neighbourhood component analysis (NCA) was applied as a feature selection
technique. Only features with a feature weight ≥ 0.1 were kept using MATLAB’s feature
selection NCA implementation (fsnca [39]), where the default solver type was SGD with an
accompanying maximum of 30 iterations. This resulted in a feature selection of 59 features
(see Supplementary Table S3). The sample size was reduced fitting the class with the lowest
number of samples and then randomly selected. Static activities were performed more often
than dynamic activities, to a ratio of 3 to 1. The results will be discussed in Section 3.1.2.

A standard K-fold (K = 10) and Leave-One-Subject-Out (LOO) cross-validation was
used to determine the performance on the trained data. Where the latter is a better repre-
sentation to investigate inter-subject differences, the former is a standard cross-validation,
leading to comparative results but is susceptible to intra-subject data contamination. The
main purpose of the study is alignment towards clinical implementation. This validation
was thus not intended to be performance-driven but instead as verification for objective
measurement of mobilization.

2.4. Clinical Application at a Cardio-Thoracic Surgery Ward
2.4.1. Study Design and Population

The MOVEMENTT study (Mobilization Observation and Validation with acceleroMe-
try at thoraxceNTrum Twente) is a prospective single-center cohort study, reported as per
the STROBE recommendations for observational research [40]. Adult patients undergoing
cardiac surgery (CABG, valve surgery and combined CABG and valve surgery) between 2
June and 31 July 2020 were recruited at Thoraxcentrum Twente, Medisch Spectrum Twente,
a tertiary nonacademic teaching hospital in Enschede, the Netherlands. Patients did not
make additional hospital visits, and therefore conformed to hospital measures during the
coronavirus pandemic.

Patients with a Katz Index of Independence in Activities of Daily Living functioning
(KATZ-ADL) score larger than 2 before surgery (i.e., the patient is not independent in
daily life mobilization) [41], patients with an ICU stay exceeding 72 h, patients with
postoperative cerebrovascular accidents, and patients mentally incompetent (including
postoperative delirium) were excluded from the study. The sample size was determined
to be 20 patients for sufficient evaluation of the accelerometer. This is larger than the
median of 10 (1–36) patients recently reported in a large survey on accelerometer pattern
recognition studies [35].

The study ended at discharge from the hospital and thus no follow-up was obtained.
This study was exempted from the Medical Research Involving Human Subjects Act by
the Medical Ethics Committee Twente (METC Twente: K20-14) and was approved on 31
March 2020 by the local institutional review board.

Patients were recruited on hospital admission one day before cardiac surgery. After
signing informed consent, two AX3 accelerometers were attached lateroproximal on the
right upper arm and anterodistal on the right upper leg (Figure 1). Hereafter, standardized
exercises were performed, labelling measurements for lying, sitting, standing, walking,
cycling, and walking the stairs (see Supplementary File 1 for the protocol); then the sensors
were removed.

After surgery and ICU discharge, patients were transferred to the cardio-thoracic
surgery ward. The sensors were attached, fixed with Tegaderm™ patches, and the mea-
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surements started, continuing 24/7. Measurements ended after 7 days or at earlier hospi-
tal discharge.

All patients received physical therapy twice a day until the 3rd postoperative day and
then once a day. A standardized program starting from ICU discharge included:

• Day 1: Breathing exercises, coughing techniques, control mobilization of the upper
and lower extremities, and transfer from bed to chair with assistance;

• Day 2: Exercises as on Day 1. Self-transfer from bed to chair with or without assistance,
and ambulation with assistance for 20 m at the surgical ward;

• Day 3: Exercises as on Day 2. Ambulation with an increase in distance (±15 m) and
frequency (3 times), cycling for 5–10 min at 0–10 Watt, depending on the hemody-
namic stability;

• Day 4: Exercises as on Day 3. Walking the stairs (1 floor) with assistance, information
on home mobilization, and an increase cycling duration (5–10 min) and power (5–
10 Watt).

Each patient-specific exercise program was based on the evaluation findings, comor-
bidities, and patient goals. Patients were stimulated to mobilize outside these sessions by
nurses and other caregivers.

2.4.2. Variables and Outcomes

The primary endpoint of this study was the daily duration of each activity performed
between 7 a.m. and 11 p.m. in minutes. The secondary endpoints were the length of
ICU stay (nights) and surgical ward stay (nights). Routine baseline characteristics were
determined based on the body mass index (BMI, kg/m2) and European System for Cardiac
Operative Risk Evaluation II (EuroSCORE II) definitions [42].

2.4.3. Statistical Analysis

Continuous variables were tested for normality with visual inspection of histograms
and skewness/kurtosis measures. A p-value of less than 0.05 was set as statistically
significant. Variables were analyzed with unpaired t-tests or Mann–Whitney U tests for
continuous variables and for categorical variables with a Fisher Exact test.

Accuracy is defined as the ratio (%) of correct predictions to the total input samples.
Precision, or positive predictive value, is the ratio (%) of correct classified samples of all
samples belonging to the respective class. Recall, or the true positive rate, is the ratio (%) of
correct classifications of the samples that should have been identified in that class.

A prespecified gender subgroup analysis, as encouraged by the Institute of Medicine [43],
was performed. After inclusion of 20 patients, only 15% was female. As this was lower
than anticipated, the ethical review board approved the amended protocol to include up to
10 women (approved date: 9 July 2020). A linear mixed model with maximum likelihood
was used to determine differences in activity time over time (day-to-day minutes and
percentages), and the differences between male and female patients. Results are reported as
the mean ± SD, median (with the 25th to 75th percentiles), or mean (min–max). Frequencies
are reported as n (%).

3. Results
3.1. Clinical Study
3.1.1. Patient Characteristics

Out of 75 patients selected for eligibility, in total 44 patients were excluded based
on inability to perform the labelling measurement (n = 18), patient transfer from ICU to
surgical ward planned during weekend days (n = 9), no available sensors (n = 8), patients
referred from other hospitals (n = 6), or patients unwilling to participate (n = 3). Thus,
31 patients were included for the preoperative labelling measurements. Two patients had
an ICU stay longer than 72 h and were excluded from the analysis. The CONSORT study
flow diagram [44] is shown in Supplementary Figure S1.
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In this study, 22 male and 7 female patients were included, with no differences in
their baseline (Table 2) or periprocedural (Table 3) characteristics, except for patient length
(p < 0.001) and body surface area (p = 0.003). The majority of patients received isolated
CABG (52%), 31% received valve surgery, and 17% CABG with concomitant valve surgery.
Almost 47% of the performed CABG were handled off-pump, thus without cardiopul-
monary bypass (7 out of 15 patients).

Table 2. Baseline characteristics of the included patients.

Variable Total
(n = 29)

Male
(n = 22)

Female
(n = 7) p Value

Age, years 70 (64 to 74) 72 (64 to 74) 68 (56 to 75) 0.52
Length, cm 176 (170 to 180) 179 (172 to 183) 167 (164 to 169) <0.001
Weight, kg 84 ± 12 86 ± 11 79 ± 12 0.16

Body mass index, kg/m2 27 (25 to 30) 26 (25 to 293) 29 (24 to 36) 0.44
Body surface area (Du Bois), m2 2.00 ± 0.15 2.04 ± 0.13 1.86 ± 0.13 0.003

Diabetes, n (%) 6 (21) 3 (14) 3 (43) 0.13
Multivessel disease, n (%) 13 (45) 11 (50) 2 (29) 0.41

Recent myocardial infarction, n (%) 2 (6.9) 2 (9.1) 0 (0.0) 1.0
LVEF, n (%) 0.23
Poor, <30% 4 (14) 4 (18) 0 (0.0)

Moderate, 30–50% 12 (41) 7 (32) 5 (71)
Good, >50% 13 (45) 11 (50) 2 (29)
COPD, n (%) 1 (3.4) 1 (4.5) 0 (0.0) 1.0

Extracardiac arteriopathy, n (%) 3 (10) 3 (14) 0 (0.0) 0.56
Neurological dysfunction, n (%) 3 (10) 2 (9.1) 1 (14) 1.0
Previous cardiac surgery, n (%) 0 (0.0) 0 (0.0) 0 (0.0) 1.0

NYHA class, n (%) 0.54
I 12 (41) 8 (36) 4 (57)
II 7 (24) 5 (23) 2 (29)
III 10 (35) 9 (41) 1 (14)
IV 0 (0.0) 0 (0.0) 0 (0.0)

Urgency, n (%) 0.29
Elective 23 (79) 16 (73) 7 (100)
Urgent 6 (21) 6 (27) 0 (0.0)

Emergent/Salvage 0 (0.0) 0 (0.0) 0 (0.0)
Preoperative hemoglobin, mmol/L 8.7 ± 1.2 8.8 ± 1.2 8.2 ± 0.98 0.22

Preoperative aspirin 18 (62) 15 (68) 3 (43) 0.38
Preoperative anticoagulant agents 1 (3.4) 1 (4.5) 0 (0.0) 1.0

EuroSCORE I, logistic (%) 3.52 (1.47 to 6.09) 3.76 (1.49 to 6.04) 3.50 (1.22 to 6.31) 0.82
EuroSCORE II, logistic (%) 1.34 (0.89 to 2.01) 1.44 (0.89 to 2.36) 0.95 (0.69 to 1.53) 0.30

Values are expressed as n (%), mean ± standard deviation, or median (25th to 75th percentiles). 1 mmol/L hemoglobin = 1.61 g/dL
hemoglobin. COPD = Chronic obstructive pulmonary disease; EuroSCORE = European system for cardiac operative risk evaluation; LVEF
= Left ventricular ejection fraction; NYHA = New York Health Association.

The median ICU stay was 1 (1 to 2) night with no difference between male (1 (1 to 2))
and female (2 (1 to 2)) patients (U = 49, p = 0.13). Median surgical ward stay was 5 (3 to
6) nights, without a significant difference between male (5 (3 to 6)), and female (5 (3 to 7))
patients (U = 70, p = 0.73).

Thoracic drains were removed after 44 (39 to 47) hours after surgery. No perioperative
myocardial infarction, prolonged intubation, readmission to the ICU, cerebral vascular
accident, kidney failure, or gastrointestinal ischemia were observed. One pulmonary
infection was observed in the male subgroup (4.5%), one rethoracotomy in both groups
(male 4.5%, female 14%, p = 0.43) and one deep sternal wound infection occurred in the
male group (4.5%). No patients died during hospital stay.
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Table 3. Periprocedural and postoperative characteristics of the included patients.

Variable Total
(n = 29)

Male
(n = 22)

Female
(n = 7) p Value

Type of surgery, n (%) 0.84
CABG 15 (52) 12 (55) 3 (43)

Valve surgery 9 (31) 6 (27) 3 (43)
CABG + valve surgery 5 (17) 4 (18) 1 (14)

Cardiopulmonary bypass, n (%) 22 (76) 16 (73) 6 (86) 0.65
ICU stay, nights 1 (1 to 2) 1 (1 to 2) 2 (1 to 2) 0.13

Surgical ward stay, nights 5 (3 to 6) 5 (3 to 6) 5 (3 to 7) 0.73
Thoracic drains in situ, hours until removal 44 (39 to 47) 44 (39 to 47) 43 (39 to 77) 0.74

Discharge to, n (%) 1.0
Home 22 (76) 17 (77) 5 (71)

Referring hospital 7 (24) 5 (22) 2 (29)

Values are expressed as n (%) or median (25th to 75th percentiles). CABG = Coronary artery bypass grafting; ICU = Intensive care unit.

3.1.2. Preoperative Labelling Measurements

Labelled data from 31 participants was used for neural network training. Patients
were asked to subsequently stand, sit on a chair, and lie on a bench on their back, right, and
left side. Afterwards, patients walked back and forth on the corridor for 10 m, cycled on an
exercise bike, and took one flight of stairs up and down. Each posture and activity had a
duration of 30 s. On average, 11 m of labelled data were used for each patient. Segments
of measured data were manually labelled by a researcher and plotted with MATLAB (see
Figure S1 in Supplementary File 1). With visual inspection of the plots, the data samples
were labelled as one of the six activities. For training purposes, a 50% overlap was used.
No overlap was used for the actual postoperative activity classification.

The algorithm showed a 98% overall accuracy, as determined by a 10-fold cross-
validation and 96% for LOO validation using 160 or 59 features. All activities exceeded
90% on recall and precision (Table 4).

Table 4. Preoperative labelling of activities with K-fold cross validation (K = 10) and LOO validation.

Patient Activity K-Fold
(K = 10)

LOO
(n = 31)

160 Features 59 Features 160 Features 59 Features

Stationary Activities

Lying in bed, %
Recall 97 (92–99) 99 (96–99) 94 (59–100) 94 (66–100)

Precision 98 (95–99) 98 (96–100) 93 (71–100) 91 (53–100)
Sitting, %

Recall 98 (95–100) 98 (98–100) 93 (12–100) 92 (12–100)
Precision 98 (93–99) 99 (97–99) 94 (71–100) 94 (75–100)

Standing, %
Recall 99 (98–100) 99 (98–100) 99 (91–100) 99 (91–100)

Precision 100 (100–100) 99 (98–100) 99 (85–100) 99 (87–100)

Dynamic activities

Walking, %
Recall 98 (96–100) 95 (96–99) 98 (82–100) 99 (91–100)

Precision 94 (91–96) 98 (92–98) 94 (82–100) 99 (87–100)
Cycling, %

Recall 100 (100–100) 100 (99–100) 99 (86–100) 97 (77–100)
Precision 100 (100–100) 100 (99–100) 99 (76–100) 93 (82–100)

Walking the stairs, %
Recall 94 (90–96) 98 (92–99) 93 (42–100) 93 (42–100)

Precision 98 (97–99) 96 (96–100) 97 (85–100) 97 (85–100)
Accuracy, % 98 (97–98) 98 (98–99) 96 (85–100) 96 (85–100)

Data are median (min–max).
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The overall classification accuracy of the neural network, and that for male and female
patients, started and remained constant at 95 to 96% throughout the study (Supplementary
Figure S2). Both the recall and precision of the neural network was at least 78% (lying in bed)
and increased over 90% throughout the study for all individual activities (Supplementary
Figure S3).

3.1.3. Postoperative Mobilization Activities

Physical activities were obtained from 29 patients for 4 (2 to 5) days. One patient
(3.4%) reported inconveniences regarding placement of the accelerometers. Patients spent
41 (20 to 62) min less time in bed for each consecutive hospital day, as determined by
the mixed-model analysis (p < 0.001). For an overview of the relative time spent for all
activities per hospital day, see Figure 2.
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Figure 2. Relative time spent per activity per postoperative day at the cardio-thoracic surgery ward
between 7 a.m. and 11 p.m. A decrease in lying in bed (orange) and an increase in sitting (sky blue)
were observed during the hospital stays. The number of included patients decreased because of the
varying length of stay and discharge from the hospital.

For all individual activities, see Table 5 for the fixed effects analysis and Figure 3 for
the absolute and relative time spent for each activity per postoperative day. Thus, the
model can be described by Equation (1):

Yj = (β0 + β1) + β2Timej (1)

where Yj is the patient activity as a function of the jth day, β0 is the mean estimate of Day 1
(intercept), β1 the increase of male over female patients, β2 the slope of the time component,
and Time is the number of days after Day 1 as a function of the jth day.

The relative percentages of each activity changed during hospital stay (p = 0.01 for
cycling and p < 0.001 for all other activities). For both absolute activity duration and relative
percentage, no significant differences between men and women were observed (Table 5).

Non-sedentary activities, such as standing, walking, and walking the stairs, increased
during hospital stay (all p < 0.004), but not cycling (p = 0.07). From Day 3, the time spent
cycling was stable (Figure 3i). Accelerometers are not able to measure an increase in
resistance for exercise bikes. Therefore, no improvement could be measured for cycling
during this study.
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Anthropometric parameters, such as patient length, weight, and body surface area,
were not in the original protocol, but patient length and body surface area were significantly
different between male and female patients. Patient length and body surface area were
added as a single covariate to the linear mixed models for all primary endpoints. Length
was a significant covariate in the model for lying in bed with only time (days after ICU
discharge), F (1, 23.892) = 6.089, p = 0.02. Body surface area was also significant in a model
for lying in bed, F (1, 46.359) = 4.173, p = 0.047.

Some patient movements were classified as cycling or walking the stairs on Day 1.
According to the protocol and patient files, none of these activities were reported on Day 1.
Misclassifications of the algorithm might occur when patients transfer between activities.
As these transfers are of short duration and is similar for all patients for all postoperative
days, this should have no effect on our interpretation of the results.

Table 5. Patient activities during their hospital stay between 7 a.m. and 11 p.m., as measured with
the accelerometer, and the fixed effects analysis (n = 29).

Patient Activity
Mean Estimate
Day 1 (95% CI)

(Intercept)

Increase per
Day (95% CI)

(Time)

Overall Increase for
Men Compared to
Women (95% CI)

Stationary Activities

Lying in bed

Minutes per day 413 (340 to 487) −41 (−62 to −20),
p < 0.001

11 (−78 to 100),
p = 0.81

Percentage per day 60% (52 to 68) −6.5% (−8.7 to −4.2),
p < 0.001

0.05% (−11 to 11),
p = 0.99

Sitting

Minutes per day 294 (208 to 379) 19 (−5.3 to 44),
p = 0.12

−72 (−175 to 31),
p = 0.17

Percentage per day 40% (32 to 48) 3.8% (1.7 to 6.0),
p < 0.001

−2.1% (−13 to 9.0),
p = 0.70

Standing

Minutes per day 14 (−0.1 to 28) 5.7 (1.8 to 9.5),
p = 0.004

−2.0 (−21 to 17),
p = 0.83

Percentage per day −0.57% (−2.7 to 1.5) 2.1% (1.6 to 2.7),
p < 0.001

1.4% (−2.0 to 4.7),
p = 0.41

Dynamic activities

Walking

Minutes per day −0.39 (−2.6 to 1.8) 2.0 (1.5 to 2.6),
p < 0.001

1.1 (−2.4 to 4.7),
p = 0.53

Percentage per day −0.12%
(−0.91 to 0.67)

0.55% (0.36 to 0.74),
p < 0.001

0.81% (−0.48 to 2.1),
p = 0.21

Cycling

Minutes per day 1.4 (−3.9 to 6.8) 1.4 (−0.13 to 2.9),
p = 0.07

4.2 (−2.4 to 11),
p = 0.21

Percentage per day −0.08%
(−0.74 to 0.58)

0.24% (0.06 to 0.43),
p = 0.01

0.51% (−0.34 to 1.4),
p = 0.23

Walking the stairs

Minutes per day 0.42 (−1.0 to 1.9) 0.68 (0.27 to 1.1),
p = 0.001

0.64 (−1.3 to 2.5),
p = 0.50

Percentage per day −0.15% (−0.40 to
0.09)

0.17% (0.11 to 0.24),
p < 0.001

0.13% (−0.20 to 0.46),
p = 0.43

Values are expressed as the estimate effect (95% confidence interval with the lower and upper boundaries).
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Figure 3. Cont.
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(c,d) sitting in a chair; (e,f) standing; (g,h) walking; (i,j) cycling; (k,l) walking the stairs. Lines represent the mean with 
95% confidence interval and the p-values depict the effect of time (days) on each activity. Fixed axes are used for 
comparison with additional inlays to show details. 
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Figure 3. Patient activities at the cardio-thoracic surgery ward as labelled with the average time spent on each activity
between 7 a.m. and 11 p.m. on the left panels, and the relative time as percentage on the right panels: (a,b) lying in bed;
(c,d) sitting in a chair; (e,f) standing; (g,h) walking; (i,j) cycling; (k,l) walking the stairs. Lines represent the mean with 95%
confidence interval and the p-values depict the effect of time (days) on each activity. Fixed axes are used for comparison
with additional inlays to show details.
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4. Discussion

The aim of this study was to select and evaluate accelerometers for objective qualifica-
tion of in-hospital mobilization after cardiac surgery with six static and dynamic patient
activities. This study was designed in a practical manner, to be relevant for healthcare
professionals, researchers, and patients.

4.1. Device Selection

After the literature review and expert consultation, three sensors were deemed suitable
for objective qualification of in-hospital mobilization after cardiac surgery. The final
choice for the AX3 sensor was mainly based on price, battery life, openly accessible
sensor data, and not purchasing additional software. Many stakeholders were involved,
including rehabilitation and sensor researchers, physical therapists, a cardiac surgeon, and
a patient. In our current study, only accelerometer data were considered; future studies
might consider different types of data to further improve classification [35].

4.2. Clinical Evaluation

The aforementioned approach to measure mobilization activities appeared feasible.
There were no technical problems with the AX3 devices as all data was usable for the
analysis, and the Tegaderm™ patches did not unbind prematurely from the skin. One
patient experienced some inconvenience from wearing the sensors. This study combined
two accelerometers placed at both the upper and lower extremity. To the best of our
knowledge, no research has been conducted with this approach to objectify in-hospital
mobilization after cardiac surgery. All six activities were performed by patients and were
recorded with the accelerometer.

In a previous study, an increase in the metabolic equivalent of tasks (METs) ≥3 and
step count were observed after cardiac surgery in 83 patients receiving low-intensity
physical therapy [12]. Light activities (METs < 3) increased from 3 ± 6 min on the 1st day
after ICU discharge to 22 ± 24 min at Day 4. In our study, both light activities (standing
and walking), and activities with moderate intensity (cycling and walking the stairs) were
more frequently performed and earlier during postoperative stay. Light activities in our
study were performed for 1 (1 to 5) min on the 1st day and increased to 55 (41 to 100) min
on the 4th day. The difference can be explained by having standard physical therapy for all
patients and using more active mobilization activities in our setting.

Previous studies reported higher functional levels and faster mobilization for male pa-
tients [12,13]. Men might have a more competitive attitude to mobilization or overestimate
self-reported activities. Women also might be more hesitant to mobilize after surgery. In
this study, no effect of sex was observed for any of the activities observed.

Some of the baseline and perioperative and postoperative variables might affect
mobilization activities. The original study protocol did not include patient length and body
surface area. It turned out, as expected, that these parameters are significantly different
between male and female patients. Both factors were significant covariates in a linear
mixed model for quantifying lying in bed only. Both parameters remained significant in a
model with sex as fixed factor. However, lying in bed was still not significant between male
and female patients (p = 0.08). Future studies should include anthropometric parameters,
i.e., patient length, weight, BMI, and body surface area, to correct for differences in the
baseline characteristics between male and female patients.

To generate hypotheses for future studies, all parameters from Tables 2 and 3 were
added to the linear mixed model as a fixed factor or covariate. Although p-values < 0.05
can be considered as significant, with these multiple comparisons, type I errors are likely to
occur. Only length and body surface area were significant covariates for the static activities.
For the dynamic activities, only previous neurological dysfunction had an impact on two
activities: walking (both absolute and relative) and walking the stairs (both absolute and
relative). The results from the mixed models are added as Supplementary File 2.
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An accelerometer for measuring inpatient mobilization was tested for 29 patients. A
recent survey showed that previous studies included a median of 10 (1–36) patients [35]. The
neural network precision and recall per activity for this study exceeded 78%, as determined
with LOO validation over n number patients, even from n = 2. After n = 10, both the precision
and recall for all individual activities exceeded 90%, and remained stable (Supplementary
Figure S3). Nonetheless, the difference between K-fold (K = 10) and LOO cross-validation,
especially looking at the range and difference in training size, might warrant careful
inspection. This calls for future work to investigate an analysis on unseen subjects. The
sample size with the calibration step included is deemed sufficient to draw conclusions on
the neural network performance. No differences in neural network performance between
male and female patients were observed.

The study was designed for measuring, with two accelerometers, all six activities after
cardiac surgery. As a sensitivity analysis, the accuracy of only one accelerometer was also
calculated. With the upper arm sensor only, an accuracy of 80% (77–83) was obtained with
K-fold cross validation, and 74% (17–95) with LOO validation. For the upper leg, the neural
network scored the activities accurate for 95% (94–95) and 92% (76–100), respectively. For
future studies, only one accelerometer on the upper leg should be considered for measuring
the postoperative mobilization activities after cardiac surgery. It is likely that our approach
is suitable for classification of mobilization for other types of surgery or other patient
groups, as long as sensor placement does not affect the wound area. Furthermore, these
in-hospital sensor data might prove beneficial as a baseline measurement for the intake of
outpatients for cardiac rehabilitation.

4.3. Limitations

Preoperative labeling might have introduced misclassifications as all patients walked
without support. Patients in their early postoperative stay walk slower and sometimes
with a walker or physical therapist support. This might have overestimated standing and
underestimated walking. Postoperative activity forms were designed to estimate mobiliza-
tion activities from a professional perspective, and compare these with the classifications.
These forms were too generic to detect misclassifications. However, the data retrieved from
the forms were consistent with the actual classifications.

For time-efficiency reasons, only the reduced feature set was used to classify the
activities after surgery, although in retrospect a more thorough NCA threshold choice for
feature selection is advised for future work [45]. The cutoff ≥0.1 was deemed appropriate
based on MATLAB’s fcnca function [39], and visual inspection of the histograms. No
sensitivity analysis was performed on setting the cutoff for features larger than zero, but
which is recommended for future research.

Patients were discharged from ICU staring at 10:30 a.m. and therefore the 1st day
measurements missed some hours in the absolute data analysis. Indeed, low absolute time
spent on lying in bed and sitting (Figure 3a,c) was observed on Day 1. Using proportional
time (Figure 3b,d) might reflect the activities better on days with incomplete data collection.
Using both parameters should be used for future studies as well.

Small positional changes of the sensors have strong effects on the sensor output [46].
Before our clinical pilot study started, four positions were considered on both the arm and
leg. The best positions were identified in a calibration study in four healthy subjects. Po-
tential sensor position changes during the study were not identified. To increase reliability,
a user-friendly position of the sensor, no clipping of true accelerations, and a tight body fit
were recommended [46]. The sensor placement in our study on the upper leg might war-
rant further inspection from a biomechanical standpoint due to possible inclusion of soft
tissue (e.g., muscle movement). Importantly, this sensor in combination with placement on
the upper arm did not hamper free movement. Furthermore, 97% of the included patients
did not report inconvenience. Sensors for the preoperative calibration measurements and
postoperative quantification were attached by one researcher according to prespecified
landmarks. With this approach, a tight fit and similar positions were achieved.
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The clinical pilot was designed to classify in-hospital mobilization activities. Future
research should investigate how this information can be used to improve rehabilitation.
Physical therapists and nurses can tailor their strategies with reliable information on
performed activities. With persuasive designs and serious gaming, patients could be
motivated to achieve higher levels of functional independence. New technical and clinical
requirements might be formulated, because direct feedback is different from analysis
after hospital discharge. The next step is to provide feedback to patients and healthcare
professionals, to speed up recovery.

5. Conclusions

Commercially available devices for in-hospital mobilization after cardiac surgery were
screened for suitability in a literature review and one device selected for evaluation. Static
and dynamic activities, e.g., lying, sitting, standing, walking, cycling, and walking the
stairs, were classified with an AX3 accelerometer for postoperative patients at a cardiac
surgery ward. Patients spent 41 (20 to 62) min less time in bed for each consecutive hospital
day (p < 0.001) based on the sensor data. Non-sedentary activities, such as standing,
walking, and walking the stairs, increased during the hospital stay (all p < 0.004), but not
cycling (p = 0.07). No differences between male and female patients were observed for
all endpoints.

The approach presented in this study deems applicable for monitoring postoperative
recovery of patients in similar contexts.
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220/21/6/1979/s1, Figure S1: CONSORT patient flow diagram of MOVEMENTT study, Figure S2:
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network recall and precision per activity using n number of patients in training data set, Table S1:
Technical and clinical requirements for devices used to classify inpatient physical activity after cardiac
surgery, Table S2: Application of technical and clinical requirements on 18 wearable devices, Table S3:
Feature selection after neighbourhood component analysis, File S1: Neural network training protocol,
File S2: Results from mixed model analysis.
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