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Abstract: Observing how children manipulate objects while they are playing can help detect possible
autism spectrum disorders (ASD) at an early stage. For this purpose, specialists seek the so-called
“red-flags” of motor signature of ASD for more precise diagnostic tests. However, a significant
drawback to achieve this is that the observation of object manipulation by the child very often is
not naturalistic, as it involves the physical presence of the specialist and is typically performed in
hospitals. In this framework, we present a novel Internet of Things support in the form factory of a
smart toy that can be used by specialists to perform indirect and non-invasive observations of the
children in naturalistic conditions. While they play with the toy, children can be observed in their
own environment and without the physical presence of the specialist. We also present the technical
validation of the technology and the study protocol for the refinement of the diagnostic practice
based on this technology.
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1. Introduction

Autism Spectrum Disorder (ASD) is a severe multifactorial disorder characterized by
an umbrella of specific peculiarities in the areas of the social communication, restricted
interests, and repetitive behaviors [1]. The incidence of ASD is worldwide and recent
epidemiological data estimated it to be higher than 1/100 [2–4]. Repetitive and restricted
behaviors (RRB) that comprise repetitive and stereotyped movements, and restricted
behaviors and interests are core behavioral traits of ASD.

As reported by Yu-Ching [5], children with ASD show significantly higher frequencies
and degrees of repetitive and stereotyped movements with their bodies and the use of
objects—turning around, jumping, swinging back and forth, tapping the head, flapping
of hands, or spinning objects—than do toddlers who are TD (Typical Development) [6–8].
As indicated by Yu-Ching [5], the prevalence of overall motor deficits among people with
ASD ranged from 50% to 80% with different impairments in basic gross and fine motor
skills [9–12].

A recent meta-analysis of the motor literature in ASD revealed substantial motor
coordination deficits pervasive across ASD diagnoses [13].

Sensorimotor timing and integration tend to be a persistent deficiency, as stated by
Anzulewicz [14], although the essence of this disturbance and its impact on ASD as a
sensory, motor and cognitive prediction condition requires further work to better elucidate
it [15–17].

Nevertheless, motor timing and coordination disturbances can thwart the intentions
of an individual [18]. As Anzulewicz [14] has suggested, prospective motor timing tests
would tend to offer a means of testing young children for ASD if such motor markers could
be identified.
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Scientific studies, however, usually include optical motion monitoring, which is
an expensive laboratory-based device requiring skilled technological activity. Clinical
measurement of motor activity, on the other hand, is usually conducted by interpreter-
coded surveys, such as M-ABC [19] or Mullen Scales [20], and the motor signature is not
quantified precisely.

For clinical evaluation and research, more accessible and more reliable computational
measures of motor performance are required. In particular, children at risk for ASD show
less advanced abilities in grasping and object handling compared to infants who are TD in
the first year of life [21–23].

Despite considerable evidence indicating delayed social communication and motor
skills in ASD at-risk infants, few studies have looked at the movements of ASD infants in
the sense of free-play exploration.

Kaur et al. [22] studied the manipulation skills of children with ASD using objects
and found that infants at risk of ASD display a lower degree of object grasping and
intentional falling than infants aged 6 to 15 months who are TD. In an object-sharing task,
Srinivasan et al. [24] analyzed the movements of at-risk infants for ASD and found that
at-risk walking infants display lower rates of giving objects to others, less approaches to
caregivers, and lower step rates towards task-appropriate goals compared to those infants
who are TD.

New technological advances have recently miniaturized inertial motion sensors, gyro-
scopes and magnetometers, and incorporated these into mobile consumer microelectronics,
as documented by Anzulewicz [14]. In mobile phones, laptops, and in wearable devices
such as smart watches and wristbands, they are now ubiquitous. These emerging technolo-
gies have, however, not yet been used to test motor function in children with ASD.

In this work, we present the development of the MoVEAS system, that makes use
of a smart toy based on Internet of Things (IoT), machine learning and inertial motion
sensors technologies.

MoVEAS can be used as a support to the specialist to assess the object manipulation
behavior in children with ASD and TD through the automatized analysis of free-play
movement performance in order to identify the motor signs of ASD. In particular, the ASD
specialist can rely on the information about the type/quality of child play produced by
MoVEAS to support his or her diagnostic decisions. Furthermore, still on the base of the
information of MoVEAS, if the play session is video recorded, the specialist can rely on
MoVEAS to find fragments of the video recordings that may deserve a deeper inspection,
thus avoiding a lengthy, manual analysis. In our preliminary works, we presented the hard-
ware and the basic data fusion algorithm [25–27] of MoVEAS, its preliminary validation
conducted with two children and aimed at testing the hardware and the communication
and data collection procedure in real conditions [25]. Here, we present the final version
of the system that includes the full activity recognition stack validated in laboratory and
that it is ready for an experimental pilot. Specifically, the activity recognition component
of MoVEAS has been validated by means of a dataset of movement patterns created in
laboratory, representative of several possible movements that can be applied to the toy
during play.

The rest of the paper is organized as follows: Section 2 reports the state of the art
concerning the combination of IoT and artificial intelligence to recognize human activities,
Sections 3 and 4 introduce the MoVEAS system and its validation, respectively, and Section 5
presents the protocol for the pilot study. Finally, Section 6 draws the conclusions.

2. State of the Art

In recent years there has been a growing interest in pervasive technologies and sensor
systems aimed at refining the detection of typical movements and characteristic features
of individuals with ASD [28]. The observation, both for diagnosis and for therapeutic
intentions, of specific behaviors of children with ASD is increasingly inclined to exploit
the contributions of non-invasive IoT solutions, to monitoring and collecting even more
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accurate data in this regard [28–31]. In this perspective, Goodwin et al. [28] investigated
with their work the potential of the automatic detection and classification of stereotypical
movements in six children with ASD using three wireless accelerometers (in both the
wrists and on the chest). They trained their system with the purpose of detecting repetitive
behaviors, achieving good results. To this purpose they produced a dataset of accelerometer
data obtained in experimental sessions, conducted in different environments, specifically
aimed at stimulating stereotypical behaviors.

In other studies, the recognition of stereotypical movement approaches has exploited
Kinect-based research [30,31]. In particular, in Kang et al. [30], the recording of Kinect
camera (used to film 12 actors performing three separate stereotypical motor movements
each) is exploited to recognize these movements using two different approaches using the
Visual Gesture Builder (VGB) and Matlab. VGB is an interactive tool for building models
of body gestures using a machine learning classifier. VGB leads to the best results and the
true positive detections were above 90% for the three gestures taken into account (flapping,
spinning and body rocking). Looking to the wider field of the human activity recognition,
there are a large number of papers, not focused on the ASD diagnosis or monitoring, that
base their research results about motions’ detection and classification on the combination
of the triad of sensors exploited in our paper (accelerometer, gyroscope, magnetometer)
and different deep learning approaches [32–39].

Among them, for example, the work of Najafi et al. [32] presents a new method
of physical activity monitoring based on a 2D accelerometer and a gyroscope fused in
a sensor system to wear on the chest. The device used is able to detect body postures
(sitting, standing, and lying) and periods of walking in elderly persons using only one
kinematic sensor also to be kept on the chest. We highlight a wide number of human
activity recognition research based on a single accelerometer system, exploited to pursue
extremely different aims. With accelerometer-based systems, for example, the researchers
as that of Sekine et al. [35] attempt to distinguish walking on level ground from walking on
a stairway, or to give the input to algorithm for analyzing and classifying human activity
(as standing, sitting down with lowering subjects head, sitting down and leaning against,
lying down straight, lying upside down, walking, going up/down stairs, running) using a
body-fixed triaxial accelerometer on the back, as in the case of Lee et al. [37] or on the wrist
as in Panwar et al. [39].

Although the methodology adopted in our work has some elements in common with
the works presented so far, the objective of our work differs significantly as we do not aim to
classify postures or specific movements (e.g., a movement of a wrist), but, rather, to classify
complex movements applied to a toy by a child (e.g., making the toy fly). This classification
is useful as it provides automatic information about the type/quality of activities in the
free play of a child that, in turn, can be used by the specialist in the diagnosis of ASD.

3. The MoVEAS System for Motion Capture
3.1. Reference Scenario

Observing children while they play is a common test adopted by specialists to identify
ASD at an early stage. However, in practice the observation is carried out at the clinic with
standard sets of toys. This setting for observation is not ideal because the environment and
the toys used are totally new for the child. The main idea of MoVEAS is to develop and use
a “smart” toy that embeds sensors in the standard evaluation session in clinic, in order to
collect data that may contribute to improve and to make more objective observations of the
child’s play by the specialist. In the future, we expect that MoVEAS may enable monitoring
of the play also in other contexts, like at school or even at home, to monitor how play
changes when toys become more familiar for the child. MoVEAS smart toys are designed
to enable easy and simple use in the conventional sessions of therapy conducted in clinics.
Their purpose is to allow specialists to develop new, non-invasive diagnostic protocols for
ASD, that take into account the continuous data produced by the MoVEAS smart toy about
the playing movements of the child under observation. Note that the toy is not meant
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to be used alone, but rather in combination with the traditional observation of the child
conducted by the therapist during the clinical process of diagnosis. Another possibility,
however, is to use the toy remotely, but still under the therapist’s control, which would
give to the child the possibility of behaving more freely and without other people around.

Keeping in mind these use cases, the system is designed to manage all set up phases
of the system (association of toy/child, management of the users, etc.), interaction between
the child and the toy, the centralized sensor data collection in the MoVEAS server and
its analysis, and the final representation of the results of the analysis by means of the
dashboard for the clinician. Concerning normal use sessions, the clinician can control and
initiate the following steps: (1) the clinician uses a standard browser to access the MoVEAS
dashboard using his/her credentials; (2) starts a new play session about a patient and the
connected smart toy, along with the data collection procedure; (3) the smart toy in use in
the session automatically provides all the sensors readings (that are thus related to the
specific patient activities during the play session) to the server, which stores them in its
database; (4) the MoVEAS component of activity recognition automatically analyses the
sensor data to provide the sequence of recognized movements applied to the toy; (5) the
result of the analysis is stored and also displayed on the clinician dashboard. Through
the application User Interface, the clinician can also add new patients and toys to the
database, manage a capture session, visualize the recording of a given session and analyze
the detected movements.

3.2. Smart Toy Prototype Overview

MoVEAS consists of the following components: the smart toy, the activity recognition
component, the backend and data storage and the user interface [25–27].

3.2.1. Smart Toys

The smart toy is aimed at sensing the force and the movement direction applied to it
by a child, and at measuring other data about the play, such as how long the toy is used
by the child and when. It achieves these objectives by inertial sensors that are embedded
within the toy itself, so as to avoid being invasive. In our case, we embedded a three-axes
accelerometer, a gyroscope and magnetometer transducers in the toy. Note, however, that
the raw data obtained by these sensors alone is not sufficient to obtain directly the force
and direction of movement. This is because the accelerometer transducer produces noisy
data that is also affected by the Earth’s gravity, and the gyroscope is affected by drifts.
We solved these issues by a two-step activity recognition algorithm that implements a
first step of data fusion and a second step of data classification-based machine learning.
We implemented the current sensor prototype over Particle Photon, an Arduino platform,
and the server over a Raspberry PI device. Figure 1 shows the sensor installation in a truck
toy and Figure 2 shows the naked device with the acceleration sensor.
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At the current state of our project, we implemented two smart toy prototypes using
two toys for children which are part of the Autism Diagnostic Observation Schedule
(ADOS), which is the gold standard tool for the evaluation of ASD: an airplane and a truck.
For the study protocol, we also used other toys such as dolls, toy tools for the kitchen and
stuffed animals. In the literature, it is reported that girls and boys with ASD are largely
equivalent in their play complexity. However, despite similar play, girls and boys with
ASD differ in a number of ways in their toy engagement, replicating traditional gender
differences [40].

These two smart toys have been configured with the MoVEAS system (which, however,
can support a large number of smart toys). For the purpose of interaction between the
smart toy(s) and the MoVEAS server, we adopted MQTT, a well-known IoT protocol.
During the project, we experimented with two power supply methods for the smart toys.
The first method used a powerbank of 2600 mAh, which was rechargeable using an USB
port. However, even though the powerbank was relatively small sized (31 × 22.5 × 73 mm),
it was still significantly larger than the other electronic components and was relatively
heavy, which was a problem especially for the Super Wings. Moreover, to switch the toy
on and off would require plugging and unplugging the powerbank from the USB port.
Thus, we experimented an alternative supply using a small 500 mAh rechargeable lithium
polymer battery connected to the device through its GND and VIN pins, small switch,
a micro-USB extender and a custom circuit (Figure 3).
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Figure 3. The circuit for battery charging.

The sensor was placed within the toy to align the axes of the accelerometer with those
of the toy. For example, in the case of trucks, the X-axis of the accelerometer is parallel
to the sliding direction of the wheels and the Y-axis is transversal. Figure 4 shows the
orientation in the case of the airplane.
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3.2.2. Activity Recognition Component

The activity recognition component operates in two steps. The first step is a data
fusion algorithm (Figure 5) that processes the time series consisting of the tuples of raw
accelerometer, gyroscope and magnetometer data. The output of the data fusion algorithm
is the time series containing tuples of movement direction and intensity of the toy and its
orientation, where each output tuple is produced for each new tuple in input. The output
time series and the raw data time series are inputs to the second step (classification) based
on neural networks that classify them as recognized movement of the toy.
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For what concerns the data fusion algorithm, note that a correct estimation of the
orientation and movement is a rather complex task. Each single input data, either from the
accelerometer, the gyroscope or the magnetometer, was insufficient to obtain orientation or
movement direction data. This is because of the noise in the transducer readings, but also
because of the Earth’s gravity and drifts. To deal with drifts of the gyroscope, we also
used a magnetometer (whose measurements are not affected by drifts as they refer to the
Earth’s magnetic field). We implemented the Madgwick algorithm [39], which provides a
quaternion representation of the orientation of the toy. For the movement direction and
intensity, we first evaluated the contribution of the Earth’s gravity along the three axes on
the base of the toy orientation that resulted from the Madgwick algorithm, and we then
subtracted this contribution from the raw accelerometer data. This algorithm was made
stable by means of a Kalman filter. The acceleration was given in a global reference system,
so it was rotated by the angles given by the orientation to align it to a local reference system
(the toy itself). Each input and output tuple of the data fusion algorithm was stored in a
single JSON record, that also includes the filtered acceleration data, and the toy orientation
in different forms: in quaternion representation, in Euclidean angles (roll, pitch and yaw),
and in spherical coordinates.

The second step consisted of the classification of the movements of the toy by analyzing
the time series patterns of raw and pre-processed data. This step classified the movements
applied to the toy into six classes: forward (the toy is pushed forward), backward (the toy
is pushed backward), walking (the child walks while keeping the toy in his hands), throw,
flight (the child moves the toy to make it “fly”), plus, of course, the case in which the toy is
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unused and hence still. Since not all patterns had the same recording time (for example,
the duration of the movement of the toy pushed forward is much smaller than the one
where the toy is thrown against a pillow–where the toy is thrown by the hand first, then
flies in the air and finally hits the pillow), the goal of this second step of classification was to
classify the movements of the toy under different variable length sequences. We considered
two different neural network models for the implementation of the classifier: the time
delay neural network (TDNN), chosen for its simplicity among the shift-invariant models,
and the recurrent neural network (RNN), chosen also for its ability to recognize sequences
of data of variable length. The two models have been configured, trained, and validated by
means of a dataset collected in laboratory. The details of these steps are in Section 4.

3.2.3. Backend and Data Storage

Each single output of the data fusion algorithm was sent to the MoVEAS server
in a JSON record within an MQTT message (by means of the Mosca broker) over a Wi-
Fi connection. In turn, the server stores the JSON record in its database. In further
developments, we plan to add an external storage module to allow offline data recording,
and also to embed the neural network model on the device itself, to store the already
labeled data instead of the sensors’ data, saving storage space.

3.2.4. MoVEAS User Interface

The interaction of the clinical staff with the system was supported by a web application
(Figures 6 and 7). The user interface is currently in Italian and can be used on a mobile
device or PC. Figure 6 (left) shows how a new session can be started by selecting the patient
(“PAZIENTE”) from a drop-down menu, including all the patients already registered in
the system. In the same way, a device/toy (“DISPOSITIVO”) can be selected from the
right drop-down menu. The clinician can add information using the “INFORMAZIONI
AGGIUNTIVE” field below. The session can be started or clicking on the “AVVIA” button or
undone clicking on the “ANNULLA” one. The menu at the top of the screen allows the user
to quickly jump to the pages related to the patient register (“REGISTRO PAZIENTI”), to the
log of the previous sessions (“REGISTRO SESSIONI”) and to the training (“TRAINING”).
We can also add a new patient (button marked with a “+”) or search for a session (button
marked with a magnifying glass). Figure 6 (right) shows the raw data collected during
a session. Through this interface the clinician can access all the data collected in the
session (“RISULTATI”) and the video recorded (“VIDEO”). During a session, a clinician
can monitor the movements of a toy and the data collected in real time. Figure 7 shows
a monitoring interface (“REGISTRAZIONE IN CORSO” means “recording in progress”).
In this case, the toy movements on the left-hand side are synchronized with the data
collected on the right-hand side. Clicking on the buttons on the lower part of the interface
in the session can be undone (“ANNULLA”), ended (“TERMINA”) or executed without
monitoring (“ESEGUI IN BACKGROUND”).
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4. Technical Validation
4.1. Dataset Collection

To train and validate the activity recognition models, we collected a dataset in labora-
tory. This dataset was produced by a researcher using the toy and the user interface in a
specific modality for data acquisition, which also supports labelling of recorded patterns.
The dataset consists of 1240 patterns:

• 120 patterns with the toy moving forward;
• 120 patterns of the toy moving backward;
• 250 patterns of simulated flight;
• 250 patterns with the toy still;
• 250 patterns of the toy carried while walking;
• 250 patterns of the toy thrown (against a pillow).

Each pattern is a tuple that contains all the output of the data fusion algorithm plus the
raw data from the accelerometer, gyroscope and magnetometer, produced at a frequency of
22 Hz. The optimal pattern length for these six movements was found to be 14 samples,
hence each pattern is 636 milliseconds long.

The dataset was divided into the training and testing portions (respectively 83% and
17% for the forward and backward patterns, 80% and 20% for the others), the training portion
was then divided into the training and validation ones, with a split of 60% and 40%,
respectively, and the whole training/validation portion was shuffled before every training.

4.2. Neural Network Models Training and Validation

As discussed in the previous section, we considered two neural network models,
namely TDNN and RNN, to implement the classification of the movements of the toy.
Here we discuss the training and validation process for both models. For what concerns
the overfitting detection, this was based on the accuracy on the validation set; when the
increment of accuracy on training did not match an increment on validation, the model was
discarded. For both the TDNN and RNN, the model with the highest validation accuracy
was chosen. More precisely, the model selection for the TDNN was performed with a
grid search on the number of filters and size of the kernel, while for the RNN the main
hyperparameter was the number of units of the single recurrent layer.

In TDNN, model selection started from the simplest topology: an input layer with data
normalization, a convolutional hidden layer with a ReLU activation function (that performs
better than tanh), a max-pooling layer (that performs better than the average-pooling one),



Sensors 2021, 21, 1971 9 of 15

and an output layer for the pattern classification with a softmax function, to obtain values
between 0 and 1 that represent the probability of the classified pattern to belong to each
possible class.

We considered six features for the training: the gravity-free acceleration values in
the three axes and the gyroscope raw data; the gyroscope data was used to discriminate
some cases that are not well distinguished only by the acceleration. Some tests quickly
showed that adding more features, like orientation, velocity data, or raw sensors data,
made the network generally harder to train, and most often gave no advantage at all in the
overall accuracy.

The search for the two most important hyperparameters, the kernel size and the
number of filters, was performed through a grid search, as shown in Table 1. For each
table’s entry, the network was tested 10 times, with shuffled data between testing and
validation set for each run. Outliers were omitted from the average.

Table 1. Average training accuracy for the time delay neural network (TDNN).

Kernel Size
3 5 7 9

Filters

3 90.00% 92.57% 95.00% 98.25%
5 94.50% 95.50% 98.50% 99.00%
7 98.80% 99.00% 99.87% 99.90%
9 97.93% 99.00% 99.65% 99.87%

11 98.06% 98.52% 99.59% 99.83%
13 96.94% 99.53% 99.91% 99.84%
15 99.20% 99.88% 99.90% 99.90%

The values 9 and 7 were optimal for the number of filters and the kernel size, respec-
tively, as they gave the best result in the validation set, and in particular:

• the number of filters up to 7 and a kernel size up to 5 made the network able to classify
correctly only after a long and unstable training;

• from 7 filters upwards, the training curve was stable, and the overfitting occurs only
from 15;

• kernel sizes from 9 upwards tended to overfit the network; the patterns were initially
made of 22 samples, and the sliding window results were too big;

• with filters bigger than 20, the overfitting was mitigable only with very low kernel
sizes, but in that case the network was hard to train, and very easy to underfit.

More complex topologies were tested but adding hidden layers only led the neural
network to overfitting. The best training curve was obtained using a 16-patterns long
mini-batch.

The next step was to achieve the maximum accuracy with the least possible amount of
data. For this purpose, the network is trained several times with different pattern lengths
(Figure 8) and the best choice for a stable and accurate training resulted in 14 samples
per pattern, with the 22 Hertz sampling meaning 636 milliseconds long patterns. Up to
11–13 samples, the network was not able to achieve good performance in training, being
hard to train and from underfitting, while from 17 samples and more, the network fit the
noise, and was overfitted. The convolutional layer’s weights were initialized randomly
in the uniform range [−0.000001, 0.000001]. To keep the network complexity under con-
trol, a weight decay approach was used, with tested values in the range of [0.001, 0.05].
The optimization algorithm chosen for the learning was Adam because of its efficiency [41].
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Figure 8. Training accuracy of TDNN with patterns of different lengths (from 5 to 22).

Concerning the RNN, the topology was similar to that used for the TDNN: the input
passed through a normalization layer before going to the recurrent layer, and the acti-
vation function was ReLU for all layers, except for the last one, that used the softmax
function, particularly suitable for classification. By using fixed-length patterns, however,
we were not exploiting the full potential of the RNN that’s capable of recognizing variable-
length sequences. This feature can be exploited in future work with a custom dataset for
this model.

The chosen topology, which ensured good fitting without instabilities during the
training, consisted of one recurrent layer and two densely connected layers, with two
dropout layers before them. In particular, the number of nodes in the recurrent layer was
crucial for the model selection:

• up to 5 units, the network was not able learn the training samples nor to generalize;
• up to 10 units, the validation accuracy reached 90%, but when the training continued,

it overfit;
• up to 12 units, the network was hard to train, and with 14 units the network was

trained smoothly and the validation accuracy grew up to 93.5%;
• from 16 upwards, stricter regularization was needed, but the dropout layers make the

training stable and avoid overfitting. In the end, the best number of units resulted to
be 20.

The explored range of dropout for both layers was [0, 0.5], and the network was finally
trained with a mini-batch size of 16 patterns.

Adding features besides the gravity-free acceleration and the gyroscope data gave
most often no advantage at all, and sometimes made the training harder and unstable, also
with more layers and more recurrent units. In RNN, reducing the number of samples did
not improve the validation accuracy as for the TDNN, but the performance significantly
decreased only for less than 14 samples per pattern, accordingly to the results achieved
with the TDNN.

4.3. Results of Classification

The results in terms of accuracy and F1 score for both TDNN and RNN are shown
in Figure 9. It is seen that TDNN provided a better validation accuracy and a smaller loss
value. Moreover, in almost every test, TDNN showed smoother training and validation
curves, and was easier to train effectively. Note however that the high accuracy obtained
in validation and testing might not reflect the real network’s performances in analyzing
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real play sessions, in fact, in validation and testing the patterns have a well-defined start
and end, while in a play session there is a continuous stream of data. For the classification,
the network was given a fixed length subsection of the stream for every twenty-second of a
second, then the subsection’s bounds slid forward, like a sliding window, through the whole
stream. When the subsection contained only a single pattern, the networks behaved exactly
like in the validation/testing scenario, but when there was an overlap between two patterns
(e.g., the toy stops flying and stays still), the classification was harder as it’s not a case that
the network was trained to deal with. For this reason, we performed a further experiment
with data from a 46-second-long session of simulated play. The network was able to
accurately recognize the still, forward, and backward patterns while in flight and especially
while walking, the overall classification was correct, with some very short misclassifications.
We plan to investigate this issue in detail with real play session recordings.
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5. Study Protocol
5.1. Participants

We enrolled 50 preschoolers, 25 with idiopathic ASD and 25 with Typical Development
(TD) who were recruited from Autismo Pisa (APS) and local kindergartens sited in Pisa in
order to conduct an exploratory study. All children recruited were assessed from experts
in ASD.

The inclusion criteria for ASD were (a) age 3–5 years, (b) diagnosis of ASD ac-
cording to Diagnostic and Statistical Manual-5th edition (DSM-5) [1], meeting criteria
for ASD on the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2) [42],
and (b) nonverbal developmental level > 70 on the Griffiths Mental Developmental Scales
(GMDS-III). The exclusion criteria were (1) severe sensory impairments (i.e., hearing or
visual); and (2) an identified genetic disorder that would impact on ability to participate or
affect validity of data.

Regarding the TD sample, they required a scoring of <20 on the CARS-2 [43]; a T score
< 60 at Withdrawn and Pervasive Developmental Problems (PDP) for the Child Behavior
Check List 1,5–5 [44]; and no siblings or family history of ASD or other neurodevelopmen-
tal disorders.

5.2. Measures

Standardized protocols were used in order to assess ASD and TD samples.
The ADOS-2 [42] is a semi-structured, standardized assessment of communication,

social interaction, play and restricted and repetitive behaviors. It provides a highly accurate
picture of current symptoms, unaffected by language. It can be used to evaluate almost
anyone suspected of having ASD from 1-year-olds with no speech, to adults who are
verbally fluent.

The Peabody Developmental Motor Scales Second Edition (PDMS-2) [45] combines
in-depth assessment with training or remediation of gross and fine motor skills of children
from birth through 5 years.
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The Childhood Autism Rating Scale, Second Edition (CARS-2) [43] helps to identify
children with ASD and determine symptom severity through quantifiable ratings based
on direct observation. Widely used and empirically validated, CARS-2 has proven to be
especially effective in (a) identifying children with ASD and those with severe cognitive
deficits, and (b) distinguishing mild-to-moderate from severe autism. CARS 2 addresses
the following functional areas, among others: (1) relating to people; (2) body use; (3) visual
response; (4) listening response; (5) taste, smell, and touch response and use; (6) verbal
communication; (7) nonverbal communication; and (8) level and consistency of intellec-
tual response.

The GMDS-III [46] is a standardized developmental test for children from birth to
96 months of age. It comprises six scales, but because of our aims only two subscales was
administered: eye and hand coordination, and performance. Raw scores were computed for
each subscale and converted to general quotient scores, using tables of the analysis manual.

Repetitive Behavior Scales-Revised (RBS-R) [47] is a 26-point parent questionnaire for
assessing repetitive behaviors in children with ASD.

Sensory Processing Measure-Preschool (SPM-P) [48] requires just 15 to 20 min, the Home
and Main Classroom Forms yield eight parallel standard scores: social participation, vision,
hearing, touch, body awareness (proprioception), balance and motion (vestibular function),
planning and ideas (praxis), and total sensory systems. Scores for each scale fall into one of
three interpretive ranges: typical, some problems or definite dysfunction.

The Vineland Adaptive Behavior Scales, Second Edition (VABS-II) [49,50], was admin-
istered as a parent interview and was used to assess the ability of children to perform the
daily activities required for personal and social sufficiency. The VABS-II uses four specific
domains: communication, daily living skills, socialization, and motor skills. For our aims
only motor skills will be evaluated.

5.3. Procedures

Research and clinical staff confirmed eligibility and obtained informant consent. Each
case was assigned a participant identification (ID) number. All MoVEAS sessions were
videotaped and performed on a different day than those used for testing children. The be-
havioral evaluations (see Measures section) were performed by experienced clinicians and
by parents during the research project.

Regarding MoVEAS, therapists were asked to carry out imitation tasks with children
using sensorized toys.

The imitation tasks were video recorded in order to do a qualitative and quantitative
analysis. The aim of this video was two-fold: (a) to examine the functional and symbolic
use of objects and the presence of restricted and repetitive motor behaviors during the
use of toys; and (b) to correlate the qualitative data with the objective data as captured by
MoVEAS (accelerometer, magnetometer and the gyroscope data).

5.4. Data and Statistical Analysis

All data was collected in order to:

(a) compare ASD vs. TD groups regarding a part of the clinical standardized protocols
(SPM-P; RBS-R; CBCL; CARS);

(b) compare ASD vs. TD groups regarding object manipulation as captured by MoVEAS;
(c) correlate, in ASD and TD groups, MoVEAS data with qualitative data;
(d) correlate, in the ASD group, the scores of clinical standardized protocols with the data

of the object manipulation captured through MoVEAS.

6. Conclusions

The MoVEAS project was carried out over the past two years with the final goal of
exploiting the potential of recent technological developments; specifically, to integrate
sensors into commonly used toys to get new insights in motor abilities of ASD children
when observed in a natural environment.
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In particular, we integrated a Particle Photon in a “Super Wings” airplane and in a toy
truck, building up a system able to record data from play sessions and analyze them using
neural networks, to recognize the movement while the child was playing. We considered
two neural network models, TDNN and RNN, to implement the classification of the
movements of the toy and analyzed their performance through a training session. TDNN
provided a better validation accuracy and a smaller loss value in all trials. Moreover,
in almost every test, the network was able to accurately recognize the still, forward,
and backward patterns, while in flight and especially walking, the overall classification
was correct, with some very short misclassifications.

Despite the good results achieved in this experimental phase, only working with
children with ASD can reveal the actual project’s usefulness. For this reason, we planned
a pilot study to be conducted with children with ASD and TD, whose result will be the
final refinement and validation of the machine learning model with data obtained from
real uses of the toy by the children, and the validation of the usability and acceptability of
the interfaces and of the protocol in general. In this perspective, we discussed the study
protocol of our forthcoming test including a sample of already diagnosed ASD children
and a control group of neurotypical children. This study also has the objective of devising
and assessing a suitable diagnostic protocol that may make use of MoVEAS. A potential
future direction is to sensorize several toys, to be included in the ADOS-2, which is the
gold standard tool for evaluating children with ASD. In the long term, we expect to frame
MoVEAS into an experimental medical protocol to be used first in hospitals in the region
Tuscany, and then, possibly, to other hospitals nationwide.

The study also gives the opportunity to improve the system performance and to
investigate its behavior. In the future, we would investigate how to “flatten” the small
spikes that affect the continuity of a classification, in order to obtain compact chunks to
highlight with different colors in the session’s progress bar. Another path to be explored is
to train the recurrent neural network with a variable-length patterns training set, and to
find the best way to choose the length of the session’s subsequence dynamically, in order
to exploit the full network’s capabilities.
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