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Abstract: Wind action is one of the environmental actions that has significant static and dynamic
effects on long-span bridges. The lateral wind speed is the main factor affecting the lateral dis-
placement of the main girder of the bridge. The main objective of the paper is to use the improved
multi-rate fusion method to correct the monitoring data so that accurate correlation modeling of
wind speed-displacement can be achieved. Two Kalman gain coefficients are introduced to improve
the traditional multi-rate fusion method. The fusion method is verified by the results of simulated
data analysis in time domain and frequency domain. Then, the improved multi-rate fusion method is
used to fuse the monitoring lateral displacement and acceleration data of a bridge under strong wind
action. The corrected lateral wind speed and displacement data is further applied to establish the cor-
relation model through the linear regression. The improved multi-rate fusion method can overcome
the inaccuracy of the high frequency stage of a Global Positioning System (GPS) sensor and the low
frequency stage of acceleration sensor. The correlation coefficient of wind speed-displacement after
fusion increases and the confidence interval width of regression model decreases, which indicates
that the accuracy of the correlation model between wind speed and displacement is improved.

Keywords: multi-rate Kalman fusion; wind speed-displacement modeling; structural health moni-
toring; cable-stayed bridge; performance warning

1. Introduction

Recently, more and more large civil buildings and long-span bridges are being con-
structed [1]. These structures and bridges will inevitably be damaged in the long-term
service period, and their performance will deteriorate due to material fatigue, environmen-
tal corrosion, and environmental load [2,3]. Bridge monitoring data includes structural
monitoring data, environmental monitoring data, etc. Direct correlation analysis of these
monitoring data can realize damage identification performance for early-warning of bridge
structures, which helps to monitor the performance of bridges and prevent catastrophic
accidents through security warnings [4,5]. Structural health monitoring systems using
sensors can monitor the deformation of bridges [6–8]. Damage identification of bridges can
be carried out through big data analytics of a bridge monitoring system [9]. A structural
health monitoring system can establish big data to extend the service life of bridges [10,11].

This paper aims to improve the modeling accuracy of lateral wind speed and displace-
ment in bridge mid-span. Monitoring data of the bridge have the advantages of being
continuous and long-term, which can realize early warning of the structural damage [12,13].
A multivariate statistical analysis method was used to eliminate the nonlinear aeroelastic
correlation between dynamic characteristics and wind speed and to monitor the main cable
of a suspension bridge [14]. Fenerci et al. studied the relationship between wind load and
responses of a suspension bridge based on monitoring data, and the wind parameters that
were analyzed [15]. Early warning of the structural damage can be realized by modeling
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the correlation between structural monitoring data and environmental monitoring data.
Previous studies have shown that there is a direct correlation between temperature and
displacement, and the correlation modeling can be used to realize the bridge performance
warning [16,17]. The influence of wind on bridge structure can be obtained by statistics
of average wind speed, wind direction, wind turbulence intensity, integral scale, etc. [18].
The influence of strong wind on bridge displacement can be known by studying the moni-
toring data [19,20]. Ye presents the construction of the bivariate model of wind speed and
direction of an arch bridge by use of the long-term structural health monitoring (SHM)
data [21,22].

The multi-rate fusion method can modify the monitoring data so as to achieve the
correlation model of wind speed and displacement data. The fusion method is widely used
in the field of building structure and long-span bridge structure, which can be divided into
three types. Firstly, the fusion method is used for damage identification of civil buildings,
bridge structures, etc. Damage identification of large span bridges is carried out by means
of identifying influence lines and fusion of multiple influence lines [23–25]. Secondly, the
fusion method is utilized to reconstruct unknown data through existing data. The data of
some monitoring points are difficult to measure or arrange sensors can be reconstructed
by means of fusion with the data of known monitoring points [26–28]. Thirdly, the fusion
method is used for fusing displacement and acceleration data fusion, which utilize the
accuracy of the displacement data in the low frequency stage and the acceleration in the
high frequency stage to modify both data simultaneously [29,30]. Chang et al. used the
fusion method to fuse the displacement and acceleration measured in accordance with the
camera, and the results also demonstrated the effectiveness of the method [31]. In order
to apply the fusion method to bridge monitoring data, the existing fusion method needs
to be improved. Errors after correlation modeling can be used for bridge performance
warning. Huang used the monitoring data to detect potential performance degradation of
bridges [32,33].

Accurate data is important for a correlation model of wind speed and displacement
data, but the monitoring data is affected by noise and so on. In addition, the existing
fusion method cannot modify the displacement and acceleration monitoring data simul-
taneously. In this paper, the authors proposed an improved multi-rate fusion method,
and the correlation modeling of wind speed and displacement of large span cable-stayed
bridge under strong wind action is studied. The paper is organized as follows: first, the
multi-rate Kalman fusion method is introduced. The multi-rate fusion method is improved
by setting two Kalman gain coefficients, which is used to fuse the simulated data. Second,
the monitoring data of a bridge were studied and data under strong wind action is selected
as cases 1 to 4. Then, the improved multi-rate fusion method is used to fuse the monitoring
data, and the changes of the time domain and frequency domain are considered. Third, the
correlation analysis and the regression model were built by using fused wind speed and
displacement monitoring data, which is compared with the model before fusion. Fourth,
the effectiveness of the fusion method is verified by the Shewhart control chart in the bridge
performance warning research. Finally, some detailed conclusions are presented.

2. Improved Kalman Multi-Rate Fusion Method

In this paper, the multi-rate fusion method is used to modify the displacement and
acceleration data with different sampling rates. This paper improves the traditional multi-
rate fusion method by setting two Kalman gain coefficients so that the improved multi-rate
fusion method can better modify the bridge monitoring data. The displacement and
acceleration monitoring data can be corrected simultaneously by using the improved
multi-rate fusion method.
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2.1. Traditional Multi-Rate Fusion Method

Consider the case that acceleration and displacement can be measured. Then, the
measurement process is modeled in equation form as:[ .
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and acceleration. It is assumed that zd and w are white noise Gaussian processes.

2.2. Improved Multi-Rate Fusion Method

In order to better combine with the measured data of the bridge, the traditional multi-
rate fusion is improved in this paper. The measurement equation of acceleration and
displacement can be expressed as: .
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where x,
.
x and

..
x are the fused acceleration, velocity and displacement. zd, za and zc are

the associated measurement noise of displacement and acceleration, and xd and
..
xa are the

measured displacement and acceleration. It is assumed that zd, za and zc are white noise
Gaussian processes with covariance r and q, respectively.

Equations (3) and (4) can be compactly written in matrix form as:

X = FX + Gw (5)

Z = HX + v (6)

where F, G, and H are the measured system matrix, system noises matrix, and measurement
matrix, respectively. v and w are the associated measurement noise of displacement
and acceleration.

For the convenience of presentation, the measurement equation of displacement and
acceleration is given separately:

zd = HdX + Zd (7)

za = HaX + Za (8)

where zd and za are the displacement and acceleration measured value. Hd and Ha are the
measurement matrix of displacement and acceleration.

Assuming the sampling period of the acceleration is Ta, the system equation and the
observation equation are discrete as:

X(k + 1) = FdX(k) + Gdw(k) (9)

where Fd and Gd are derived by noting that Fd is nilpotent (i.e., A2 = 0)

Fd = eATa =

 1 Ta T2
a /2

0 1 Ta
0 0 1

 (10)
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Gd =
∫ Ta

0
eF f Gd f =

 T2
a /2
Ta
1

 (11)

Qd =
∫ Ta

0
eF f QeFT f d f =

 T5
a /20 T4

a /8 T3
a /6

T4
a /8 T3

a /3 T2
a /2

T3
a /6 T2

a /2 Ta

e2
w (12)

Rd = RZd /Ta (13)

Ra = RZa /Ta (14)

The optimal state estimation of the state vector is obtained through multi-sensor
Kalman filter.

Time update:
x̂(k + 1|k) = Fd x̂( k|k) (15)

P(k + 1|k) = FdP( k|k)FT
d + Qd (16)

where x̂( k|k) and P( k|k) are a posterior estimate of the state vector and the system variance.
Measurement update:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kd(k + 1)[zd(k + 1)− Hd x̂(k + 1|k)] (17)

P−1(k + 1|k + 1) = P−1(k + 1|k) + HT
d R−1

d Hd + HT
a R−1

a Ha (18)

The Kalman gain matrix of displacement and acceleration are given by:

Kd(k) = P( k|k)HT
d R−1

d (k) (19)

Ka(k) = P( k|k)HT
a R−1

a (k) (20)

In general, the displacement sensor and acceleration sensor have different sampling
rates. In this paper, a fusion method based on multi-rate Kalman fusion is presented.

Suppose the sampling period of displacement is Td, and it satisfies Td/Ta = M and M
is a positive integer. Since there is no displacement measurement value in the kTd sampling
interval, it can be approximated that the variance of the displacement is infinite when the
Kalman filter data is fused, the Rd approaches infinity, Kd tends to zero, and only needed to
time update and measurement update. The measurement update of the multi-rate fusion
method is:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Ka(k + 1)[za(k + 1)− Ha x̂(k + 1|k)] (21)

P−1(k + 1|k + 1) = P−1(k + 1|k) + HT
a R−1

a Ha (22)

It should be pointed out that, at the non-kTd moment, since there are no displace-
ment measurements, only the acceleration time update and measurement update are
performed. At the kTd moment, the acceleration and displacement measurements need to
be updated simultaneously.

In order to improve the accuracy of the state estimation, the fusion results of multi-rate
Kalman filtering need to be smoothed. Kalman filter smoothing is a linear combination
of forward Kalman filtering and post-Kalman filtering state based on all observed values.
According to the smooth way, there are three types, fixed-interval smoothing, fixed-point
smoothing, and fixed-lag smoothing.

In this paper, the fixed-interval is firstly determined by combining the fixed-interval
smoothing with fixed-interval smoothing. The state vector of the interval smoothing can
be expressed as:

x̂( k|M) = x̂( k|k) + A(k)[x̂(k + 1|M)− x̂(k + 1|k)] (23)
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A(k) = P(k + 1|k)FT P−1(k + 1|k)....k = M− 1, M− 2, · · · 0 (24)

where X( k|M) is the estimator for the smooth estimate of Kalman at k + 1 step. A(k) is the
smoothing gain matrix.

2.3. Correction of the Simulated Data through the Improved Multi-Rate Fusion Method

The selected signal is a swept-sine signal with an additional linear trend. The swept-
sine signal is chosen because the exact analytical time-histories of displacement and velocity
are known, so the errors can be calculated by subtracting the simulated signal from the
fused signal. The performance of the improved fusion method can be evaluated by com-
paring the Root mean square error (RMSE) of Kalman fusion.

The time-history for the displacement can be expressed:

x(t) = sin[(at + b)t] + ct (25)

Through the first differentiation and the second differentiation, the velocity time-
history and acceleration time-history can be respectively obtained:

.
x(t) = (2at + b) cos[(at + b)t] + c (26)

..
x(t) = 2a cos[(at + b)t]− (2at + b)2 sin[(at + b)t] (27)

where a = 2π( f2 − f1)/T and f1 and f2 are the start and end frequencies, respectively. T is
the sampling time. c is the linear term coefficient.

It can be seen from Equations (26) and (27), that the linear drift term is undetectable in
the acceleration term. Therefore, no matter how accurate the acceleration sensor is, the drift
cannot be detected. The performance of the fusion can be analyzed and evaluated due to
the real time expression of displacement and acceleration are known. Suppose the sampling
frequency of acceleration is 1000 Hz and the sampling frequency of displacement is 100 Hz,
so the ratio M is 10. Noise is added into the true values of displacement and acceleration.
The remaining example uses the same method to load noise, which is Gaussian white noise
with 10% Root mean square (RMS) noise-to-signal ratio. These noise levels are reasonable
for civil engineering applications.

The results of multi-rate data fusion and Kalman smoothing are shown in Figures 1 and 2.
The figures on the left are the fusion result and the figures on the right are the fusion
error. It can be seen from Figure 1 that the traditional fusion method can only output
displacement and velocity data and the error is relatively large. It can be seen Figure 2
that this scheme provides a good estimation of displacement, velocity, and acceleration,
including tracking of drift terms. Figure 2 shows that the fusion result error is smaller
than traditional fusion, and data can be corrected more accurately by smoothing after the
improved multi-rate fusion. Better results are obtained by a simple comparison of the
results with the traditional multi-rate fusion.
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Figure 1. Traditional multi-rate fusion and estimation error of displacement and velocity. (a) Displacement traditional
multi-rate fusion. (b) Displacement error. (c) Velocity traditional multi-rate fusion. (d) Velocity error.

Two conclusions can be drawn by comparing the data in Table 1. First, the improved
multi-rate fusion method is more accurate than the traditional multi-rate fusion method.
Second, the traditional multi-rate fusion can only get the displacement and velocity fusion
result. However, actual displacement and acceleration monitoring data of bridge mid-span
need to be revised simultaneously. Improved multi-rate fusion proposed in this paper
can obtain the results of displacement, velocity, and acceleration fusion simultaneously by
setting two Kalman gain coefficients.

Table 1. Root mean square error (RMSE) of improved multi-rate Kalman fusion and smoothing results.

Methods Measured Value Multi-Rate Fusion Smoothed

Traditional multi-rate fusion
Displacement 0.193 0.142

Velocity 0.517 0.418

Improved multi-rate fusion
Displacement 0.112 0.062

Velocity 0.354 0.257
Acceleration 8.766 7.397
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3. Fusion of Bridge Monitoring Data
3.1. Bridge and Monitoring System

In this paper, the monitoring data were analyzed and obtained from the Anqing
Yangtze River Bridge, which is a long-span cable-stayed bridge located in Anhui province.
The span configuration of the bridge is 50.0 + 215.0 + 510.0 + 215.0 + 50.0 m and the height of
the two towers is 184.8 m. The bridge being studied was built and opened to traffic in 2004.
An structural health monitoring system containing different types of sensors was installed
on the bridge to continuously acquire various monitoring data, such as temperature, wind
speed, displacement, acceleration, and strain. In this paper, the monitoring data of wind
speed, lateral displacement, and acceleration of the bridge are investigated. The Anqing
Yangtze River Bridge was chosen because displacement and acceleration sensors were
installed in the mid-span of the bridge to verify the effectiveness of the improved multi-rate
fusion method.

This paper analyzes the wind speed and direction monitoring data throughout 2014.
Since the wind speed and direction monitoring data change rapidly, this paper calculates
the average wind speed (AWS) to analyze the static characteristics of the wind. The
displacement and acceleration data of the bridge span are fused by the improved multi-rate
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fusion method. Firstly, Global Positioning System (GPS) sampling rate of monitoring
data of the Anqing Yangtze River Bridge is 1 Hz and that of the accelerometer is 20 Hz.
According to the measured acceleration and displacement monitoring data, the multi-rate
fusion step length ratio M = 20 is set. Then, the displacement and acceleration monitoring
data are fused by the improved multi-rate fusion method.

The sensor and elevation of the Anqing Yangtze River Bridge involved in this paper
are shown in Figure 3 and Table 2. As shown in Figure 3, the ultrasonic anemometer
is installed at the middle of the mid-span girder. GPS and acceleration sensors are also
installed at the middle of the mid-span girder. The detailed positions of the ultrasonic
anemometer, accelerometer (ACC) and GPS sensors are presented in Figure 3. Moreover,
the serial number and sampling frequency of the sensor are listed in Table 2.
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Figure 3. Elevation of the Anqing Yangtze River Bridge and sensor placement (unit: m).

Table 2. Sensor displacement and specification.

Monitoring Subject Position Serial Number Sampling Frequency (Hz) Unit

Wind speed Mid-span FS01 1 m/s
Wind direction Mid-span FD01 1 Degree
Displacement Mid-span GPS03 1 mm
Acceleration Mid-span ACC03-02 20 m/s2

3.2. Correction of the Measured Data through the Improved Multi-Rate Fusion Method

The 10-min average wind speed (10-min AWS) data are also calculated, which is
usually used for correlation modeling with structural monitoring data. Figure 4 shows the
AWS, 10-min AWS and maximum instantaneous wind speed (IWS) in each month of 2014.
As shown in Figure 4, the variation range of the AWS is stable in the range of 2–4 m/s.
As shown in Table 3 and Figure 4, the 10-min AWS has a large variation range, with the
maximum value reaching 14.53 m/s. The 10-min AWS value was the highest in July and
the lowest in May. The trend of the IWS is similar to that of the 10-min AWS. It can be seen
from Figure 4 that the monthly IWS is always larger than the 10-min AWS, which can be
attributed to the effects of fluctuating wind actions.

Considering the regular and relatively high AWS that occurred in July, the monitoring
wind data on 6 and 24 July are analyzed to investigate the effects of the wind actions.
Figure 5 shows the wind speed recorded by the structural health monitoring system for
the whole month of July and 24 July. It can be seen from Figure 5a that the IWS in July
reached 23.07 m/s, which was also the largest IWS in 2014. As shown in Figure 5a, the
wind speed recorded by the monitoring system on 5, 8, 23, 24, and 31 July was relatively
high. Figure 5b shows that the IWS on 24 July reached 18.4 m/s, which was much higher
than the AWS of 8.8 m/s.
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Figure 4. Variation tendency of the wind speed.

Table 3. Characteristics of the monthly wind speed in 2014.

Month Average Wind
Speed (m/s)

Maximum Instantaneous
Wind Speed (m/s)

10-Min Average
Wind Speed (m/s)

1 3.16 15.66 9.42
2 4.19 16.01 10.26
3 3.52 17.39 9.11
4 3.37 17.34 11.16
5 2.48 12.34 7.50
6 2.97 12.88 8.08
7 2.60 23.07 15.35
8 3.05 15.75 11.97
9 3.45 15.94 8.55

10 3.19 16.09 9.72
11 3.20 15.44 8.23
12 3.17 17.15 9.95
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Figure 5. Wind speed–time curves for regular wind. (a) 1–31 July. (b) 24 July.

4. Accurate Modeling of Correlation between Lateral Wind Speed and Bridge
Girder Displacement

Under strong wind action, the lateral wind speed in the mid-span of a bridge is the
main influencing factor of displacement, which is positively correlated. Therefore, increasing
the precision of lateral displacement in bridge span can effectively improve the precision of
correlation modeling of wind speed and displacement. However, the sampling rate of speed and
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displacement is different in the actual monitoring data of a real bridge (Anqing Yangtze River
Bridge). In this part, an improved multi-rate fusion method is used to fuse the displacement and
acceleration data of the bridge mid-span, and then precise modeling and correlation analysis of
the wind speed and fused displacement monitoring data are conducted.

The correlation between lateral displacement and wind speed in the bridge span is
more significant under strong wind action. In this paper, the monitoring data of four
periods of strong wind are selected for research. The monitoring data selected are as
follows: the first monitoring data are from 01:00 to 10:00 on 5 July 2014 with the average
lateral wind speed of 4.67 m/s. Monitoring data in the second section are from 12:00 to
20:00 on 8 July 2014 with the average lateral wind speed of 4.56 m/s. Monitoring data
in the third section are from 12:00 to 18:00 on 23 July 2014 with the average lateral wind
speed of 4.14 m/s. Monitoring data in the fourth section are from 09:00 to 16:00 on 24 July
2014 with the average lateral wind speed of 4.25 m/s. In this paper, the selected four cases
under strong wind action are respectively defined as Case 1, Case 2, Case 3, and Case 4.

The improved multi-rate fusion method was utilized to fuse the displacement and
acceleration monitoring data in the selected four cases under strong wind action. Figure 6
shows the results of displacement fusion in four cases before and after fusion. The solid
line represents the displacement line before fusion, and the dashed line represents the
displacement line after fusion. It can be seen that the displacement monitoring data are
modified by the acceleration monitoring data to obtain more accurate displacement data in
time domain. The enlarged images in the lower right corner of Figure 6a–d more clearly
shows that the fusion method can eliminate noise from the displacement data.
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Compared to the traditional multi-rate fusion method, the improved multi-rate fu-
sion method proposed in this paper can simultaneously output the correction result of
acceleration when the displacement data are modified. Figure 7 shows the acceleration
fusion results of corresponding displacement monitoring data. In the figure, the solid line
represents the acceleration monitoring data before fusion, and the dashed line represents
the acceleration monitoring data after fusion. It can be observed that the fusion method
has corrected the acceleration in the time domain. In the field of bridge monitoring, the
acceleration data obtained after fusion can be used to obtain more accurate results in system
identification, damage identification, etc.
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Figure 7. Acceleration measured data and improved multi-rate fusion acceleration results from Cases 1–4. (a) Case 1.
(b) Case 2. (c) Case 3. (d) Case 4.

Figure 8 is the frequency domain analysis results of the fusion of lateral displacement
and acceleration in the mid-span of a bridge. The narrow solid line in the figure represents
the Power Spectral Density (PSD) of the GPS and GPS sensor which has the disadvantage
in high frequency stage. The bold solid line represents the PSD of the acceleration and
acceleration sensor has disadvantage in low frequency stage. The dashed line is the PSD
of the displacement date after fusion. It can be seen that the displacement after fusion is
not only consistent with GPS information in the low frequency stage but also consistent
with accelerometer information in the high frequency stage. Therefore, more accurate
displacement data in the frequency domain is obtained by using the improved multi-rate
fusion method.
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Figure 8. Power spectral density of GPS, ACC, and fused displacement from Cases 1–4. (a) Case 1. (b) Case 2. (c) Case 3.
(d) Case 4.

4.1. Correlation Analysis of Lateral Wind Speed and Bridge Girder Displacement at Mid-Span

Generally, the influence of the wind load on the overall structure of the bridge is
determined by wind tunnel test. The average lateral displacement of the main span of
the bridge is positively correlated with the average lateral wind speed. In this paper,
monitoring data are firstly fused and then the correlation modeling is carried out.

Figure 9 shows the modeling results of lateral wind speed and displacement after
fusion. The wind and displacement monitoring data of the selected cases under strong
wind action were averaged in ten minutes. In the figure, the solid line represents the
displacement monitoring data and the dashed line represents the wind speed monitoring
data. It can be seen that the lateral displacement and wind speed in the span of the bridge
are positively correlated and the correlation was strengthened in the analysis of correlation
after fusion.

The correlation coefficient represents the correlation between the lateral wind speed
and displacement in the mid-span of the bridge. In Case 1, 2, 3, and 4, the correlation
coefficients of lateral displacement and wind speed before fusion were 0.686, 0.717, 0.641,
and 0.715, respectively. After fusion, the correlation coefficients of lateral displacement and
wind speed are 0.733, 0.759, 0.695, and 0.768, respectively. The correlation coefficient ranges
from −1 to 1. The correlation coefficient after fusion of Case 4 in Table 4 is 0.768, indicating
that the lateral displacement of the bridge is affected by the lateral wind speed under
strong wind action. In addition, the correlation change can be explained more directly
by the difference between the correlation coefficient of the fourth column and the change
percentage of the fifth column. Table 4 shows that the more accurate modeling of the
correlation between lateral wind speed and displacement is realized.



Sensors 2021, 21, 1967 13 of 19

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19 
 

 

Figure 9 shows the modeling results of lateral wind speed and displacement after 
fusion. The wind and displacement monitoring data of the selected cases under strong 
wind action were averaged in ten minutes. In the figure, the solid line represents the 
displacement monitoring data and the dashed line represents the wind speed monitoring 
data. It can be seen that the lateral displacement and wind speed in the span of the bridge 
are positively correlated and the correlation was strengthened in the analysis of correla-
tion after fusion. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Relation diagram of lateral wind speed and displacement in the mid-span of the bridge after fusion from Cases 
1–4. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 

The correlation coefficient represents the correlation between the lateral wind speed 
and displacement in the mid-span of the bridge. In Case 1, 2, 3, and 4, the correlation co-
efficients of lateral displacement and wind speed before fusion were 0.686, 0.717, 0.641, 
and 0.715, respectively. After fusion, the correlation coefficients of lateral displacement 
and wind speed are 0.733, 0.759, 0.695, and 0.768, respectively. The correlation coefficient 
ranges from −1 to 1. The correlation coefficient after fusion of Case 4 in Table 4 is 0.768, 
indicating that the lateral displacement of the bridge is affected by the lateral wind 
speed under strong wind action. In addition, the correlation change can be explained 
more directly by the difference between the correlation coefficient of the fourth column 
and the change percentage of the fifth column. Table 4 shows that the more accurate 
modeling of the correlation between lateral wind speed and displacement is realized. 

  

1 7 13 19 25 31 37 43 49 55
-12

-8

-4

0

4

8

12

Sample number

La
te

ra
l w

in
d 

sp
ee

d 
(m

/s)

 

 

1 7 13 19 25 31 37 43 49 55
-24

-16

-8

0

8

16

24

La
te

ra
l d

isp
la

ce
m

en
t (

m
m

)

Wind speed
Displacement

1 7 13 19 25 31 37 43 49
-12

-8

-4

0

4

8

12

Sample number

La
te

ra
l w

in
d 

sp
ee

d 
(m

/s)

 

 

1 7 13 19 25 31 37 43 49
-24

-16

-8

0

8

16

24

La
te

ra
l d

isp
la

ce
m

en
t (

m
m

)

Wind speed
Displacement

1 7 13 19 25 31 37
-12

-8

-4

0

4

8

12

Sample number

La
te

ra
l w

in
d 

sp
ee

d 
(m

/s)

 

 

1 7 13 19 25 31 37
-24

-16

-8

0

8

16

24
La

te
ra

l d
isp

la
ce

m
en

t (
m

m
)

Wind speed
Displacement

1 7 13 19 25 31 37 43
-12

-8

-4

0

4

8

12

Sample number

La
te

ra
l w

in
d 

sp
ee

d 
(m

/s)

 

 

1 7 13 19 25 31 37 43
-24

-16

-8

0

8

16

24

La
te

ra
l d

isp
la

ce
m

en
t (

m
m

)

Wind speed
Displacement

Figure 9. Relation diagram of lateral wind speed and displacement in the mid-span of the bridge after fusion from Cases
1–4. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Table 4. Correlation coefficient of lateral displacement and wind speed in the bridge mid-span before
and after fusion.

Case Number
Correlation Coefficient Difference

Value
Percentage

IncreaseBefore Fusion After Fusion

Case 1 0.686 0.733 0.047 6.81%
Case 2 0.717 0.759 0.042 5.87%
Case 3 0.641 0.695 0.054 8.40%
Case 4 0.715 0.768 0.053 7.37%

4.2. Regression Model of Lateral Wind Speed and Bridge Girder Displacement at Mid-Span

The relationship between the lateral wind speed and the displacement in the mid-span
of the bridge is studied by linear regression. The abscissa is the mean lateral wind speed
of the bridge mid-span and the ordinate is the mean lateral displacement of the bridge
mid-span. Linear regression is performed on the four cases selected in this paper, and
the models before and after fusion are compared. Figure 10 shows the results of lateral
wind speed and displacement regression model of the mid-span bridge after fusion. The
regression model also reflects the increased correlation between lateral wind speed and
displacement monitoring data modeling in the bridge mid-span.



Sensors 2021, 21, 1967 14 of 19

Sensors 2021, 21, x FOR PEER REVIEW 14 of 19 
 

 

Table 4. Correlation coefficient of lateral displacement and wind speed in the bridge mid-span 
before and after fusion. 

Case Number 
Correlation Coefficient 

Difference Value Percentage Increase 
Before Fusion After Fusion 

Case 1 0.686 0.733 0.047 6.81% 
Case 2 0.717 0.759 0.042 5.87% 
Case 3 0.641 0.695 0.054 8.40% 
Case 4 0.715 0.768 0.053 7.37% 

4.2. Regression Model of Lateral Wind Speed and Bridge Girder Displacement at Mid-Span 
The relationship between the lateral wind speed and the displacement in the 

mid-span of the bridge is studied by linear regression. The abscissa is the mean lateral 
wind speed of the bridge mid-span and the ordinate is the mean lateral displacement of 
the bridge mid-span. Linear regression is performed on the four cases selected in this 
paper, and the models before and after fusion are compared. Figure 10 shows the results 
of lateral wind speed and displacement regression model of the mid-span bridge after 
fusion. The regression model also reflects the increased correlation between lateral wind 
speed and displacement monitoring data modeling in the bridge mid-span. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Linear regression model of lateral wind speed and displacement in the mid-span of the bridge after fusion 
from Cases 1–4. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 

Table 5 is the fitting equation of the regression model of lateral wind speed and 
displacement before and after fusion. Table 6 shows the change of confidence interval 
width before and after fusion under strong wind action from Case 1–4. The change in the 
width of the confidence interval is reflected more directly in the fourth and fifth columns. 

Figure 10. Linear regression model of lateral wind speed and displacement in the mid-span of the bridge after fusion from
Cases 1–4. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Table 5 is the fitting equation of the regression model of lateral wind speed and
displacement before and after fusion. Table 6 shows the change of confidence interval
width before and after fusion under strong wind action from Case 1–4. The change in the
width of the confidence interval is reflected more directly in the fourth and fifth columns. By
comparing the second and third columns, it can be seen that the confidence interval width
of the fitting equation decreases before and after fusion. Therefore, accurate modeling of
lateral wind speed and displacement in bridge span are realized.

Table 5. Fitting equation of lateral displacement and wind speed in the mid-span of the bridge before
and after the fusion.

Case Number
Fitting Equations

Before Fusion After Fusion

Case 1 D = 1.029 V + 2.282 D = 1.128 V + 2.042
Case 2 D = 1.233 V + 1.660 D = 1.313 V + 1.621
Case 3 D = 1.078 V + 0.509 D = 1.116 V + 0.599
Case 4 D = 1.225 V + 1.595 D = 1.282 V + 1.349
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Table 6. Confidence interval width of the fitting equation of lateral displacement and wind speed in
the mid-span of the bridge before and after the fusion.

Case Number
Width of Confidence Interval Difference

Value
Percentage
DecreaseBefore Fusion After Fusion

Case 1
0.601 0.568 0.033 9.01%
2.629 2.396 0.233 9.73%

Case 2
0.683 0.635 0.048 8.52%
2.802 2.621 0.181 7.16%

Case 3
0.885 0.843 0.042 7.70%
3.331 3.078 0.253 8.22%

Case 4
0.733 0.690 0.043 8.88%
2.978 2.784 0.197 7.09%

5. Warning Validity for the Performance Degradation of the Bridge Main Girder

When the bridge has performance degradation, the corresponding displacement
response of the mid-span will increase. Therefore, this paper simulates the damage of
the structure by increasing the displacement in the testing phase. The displacement
corresponding to the structural damage is expressed by:

Sde = S− ∆ (28)

where S is the actual displacement of the bridge; ∆ is the degradation of the displacement;
and Sde is the simulated value of the displacement after damage.

In this paper, seven performance degradation cases are set to verify the warning
ability of the warning method. Equation (28) is used to simulate the seven performance
degradation at the mid-span, north tower, and south tower. Table 7 shows seven detailed
degradation degrees of the structure. In Table 7, Case 1 is the normal state of the structure,
and the degradation degree of the structure increases successively from Case 2 to 7.

Table 7. Performance warning cases of bridge at the girder.

Case Number Before Fusion (mm) After Fusion (mm)

Case 1 ε = 0 ε = 0
Case 2 ε = 5 ε = 5
Case 3 ε = 10 ε = 10
Case 4 ε = 15 ε = 15
Case 5 ε = 20 ε = 20
Case 6 ε = 25 ε = 25
Case 7 ε = 30 ε = 30

Three significance levels of 0.05, 0.01, and 0.003 were set to study the effects of the
significance levels on the bridge performance warning. Before fusion and after fusion
were applied to the actual monitoring data. The warning rate was the percentage of the
warning sample number and the testing sample number. Finally, the performance warning
of monitoring data was studied. Before fusion and after fusion are compared by using the
warning rate as an index to evaluate the warning capability.

The warning rates of different damage cases for the mid-span are given in Table 8,
respectively. It can be concluded from these tables that: (1) the larger the significance
level is, the more likely the performance warning is to occur; (2) the warning rate of the
fused data is higher than that of the data before fusion; (3) the warning rate of after fusion
reaches 100% in case 7 at the mid-span, indicating that more than 30 mm of the damage
can be detected.
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Table 8. Warning rates for the performance degradation that occurred in the mid-span.

Case
Number

Before Fusion (%) After Fusion (%)

α = 0.05 α = 0.01 α = 0.003 α = 0.05 α = 0.01 α = 0.003

Case 1 2.94 0 0 2.94 2.94 2.94
Case 2 2.94 2.94 2.94 5.88 5.88 5.88
Case 3 5.88 5.88 5.88 29.41 23.53 14.71
Case 4 23.53 23.53 17.65 76.47 61.76 52.94
Case 5 70.59 50 50 94.12 91.18 88.24
Case 6 91.18 88.24 82.35 100 100 97.06
Case 7 100 97.06 97.06 100 100 100

Figure 11 show the performance warning results of the statistics of warning rates
after fusion in the mid-span of the bridge, where the significance level is 0.01. Figure 11a
shows that Case 1 is the normal state of the structure. It can be seen from Figure 11b–e
that compared with the training phase, the displacement errors of Case 2 to 5 in the testing
phase have been more and more deviated from the center line of the control chart, and the
warning number exceeding the threshold is also increasing gradually. It can be seen from
Figure 11f that all test data in Case 6 exceed the threshold and the warning rate reached
100%. It is shown that the fusion method improves the modeling accuracy and can detect
25 mm damage in Case 6.
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Figure 11. Warning results of the Shewhart control chart. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

6. Conclusions

In this paper, the monitoring data of a cable-stayed bridge under strong wind action
were investigated to reveal the relationship between the lateral wind speed and displace-
ment. The traditional multi-rate fusion method is improved and then the displacement
and acceleration monitoring data are modified by the improved method. More accurate
displacement and acceleration monitoring data in time domain and frequency domain are
obtained by using the improved multi-rate fusion method. Then the correlation between
the lateral wind speed and bridge girder displacement at mid-span is modeled accurately.
The conclusions of this study are drawn as follows:

1. Two Kalman gain coefficients are introduced to improve the traditional multi-rate
fusion method. Compared with the traditional multi-rate fusion method, the im-
proved multi-rate fusion method improves the accuracy of simulation and monitoring
data in the time domain. It can be seen from the power spectrum that the fused
displacement is consistent with the GPS information in the low frequency stage and
the accelerometer information in the high frequency stage, indicating that the fusion
method can correct the data in the frequency domain.

2. The traditional multi-rate fusion method can only correct the displacement data.
The improved multi-rate fusion method proposed in this paper can modify the
displacement and acceleration data simultaneously, which can be better applied to
the monitoring data of the bridge than the traditional method. The accuracy of the
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fused displacement and acceleration data in time domain and frequency domain
is improved.

3. Correlation modeling with the fused displacement data can significantly improve the
modeling effect, increase the correlation coefficient, reduce the confidence interval
width of the linear regression model, and, thus, achieve accurate correlation modeling
between wind speed and displacement.

4. The performance warning of a cable-stayed bridge under strong wind is studied, and
the capability of fusion method is verified. The warning rate of the fused data is
higher than that of the data before fusion, and displacement damage with a severity
of 30 mm occurring at the bridge main girder can be successfully detected.
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