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Abstract: The progress brought by the deep learning technology over the last decade has inspired
many research domains, such as radar signal processing, speech and audio recognition, etc., to
apply it to their respective problems. Most of the prominent deep learning models exploit data
representations acquired with either Lidar or camera sensors, leaving automotive radars rarely used.
This is despite the vital potential of radars in adverse weather conditions, as well as their ability
to simultaneously measure an object’s range and radial velocity seamlessly. As radar signals have
not been exploited very much so far, there is a lack of available benchmark data. However, recently,
there has been a lot of interest in applying radar data as input to various deep learning algorithms,
as more datasets are being provided. To this end, this paper presents a survey of various deep
learning approaches processing radar signals to accomplish some significant tasks in an autonomous
driving application, such as detection and classification. We have itemized the review based on
different radar signal representations, as it is one of the critical aspects while using radar data with
check for deep learning models. Furthermore, we give an extensive review of the recent deep learning-based
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multi-sensor fusion models exploiting radar signals and camera images for object detection tasks.
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We then provide a summary of the available datasets containing radar data. Finally, we discuss
the gaps and important innovations in the reviewed papers and highlight some possible future
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On the other hand, radars can efficiently measure the range, relative radial velocity,
and angle (i.e., both elevation and azimuth) of objects in the ego vehicle surroundings and
are not affected by the change of environmental conditions [15-17]. However, radars can
only detect objects in their environment within their measuring range, but they cannot
provide the category of the object detected (i.e., a vehicle or pedestrian). Additionally, radar
detections are relatively too sparse compared to Lidar point clouds [18]. Hence, it is an
arduous task to recognize/classify objects using radar data. Based on the sensor’s com-
parative working conditions, as mentioned earlier, we can deduce that they complement
one another, and they can be fused to improve the performance and robustness of object
detection/ classification [5].

Multi-sensor fusion refers to the technique of combining different pieces of infor-
mation from multiple sensors to acquire better accuracy and performance that cannot be
attained using either one of the sensors alone. Readers can refer to [19-22] for detailed
discussions about multi-sensor fusion and related problems. Based on the conventional
fusion algorithms using radar and vision data, a radar sensor is mostly used to make
an initial prediction of objects in the surroundings with bounding boxes drawn around
them for later use. Then, machine learning or deep learning algorithms are applied to
the bounding boxes over the vision data to confirm and validate the presence of earlier
radar detections [23-28]. Moreover, other fusion methods integrate both radar and vision
detections using probabilistic tracking algorithms such as the Kalman filter [29] or particle
filter [30], and then track the final fused results appropriately.

With the recent advances in deep learning technology, many research domains such
as signal processing, natural language processing, healthcare, economics, agriculture, etc.
are adopting it to solve their respective problems, achieving promising results [20]. In this
respect, a lot of studies have been published over the recent years, pursuing multi-sensor
fusion with various deep convolutional neural networks and obtaining a state-of-the-art
performance in object detection and recognition [31-35]. The majority of these systems
concentrate on multi-modal deep sensor fusion with cameras and Lidars as input to the
neural network classifiers, neglecting automotive radars, primarily due to the relative
availability of public accessible annotated datasets and benchmarks. This is despite the
robust capabilities of radar sensors, particularly in adverse or complex weather situations
where Lidars and cameras are largely affected. Ideally, one of the reasons why radar
signals are rarely processed with deep learning algorithms has to do with their peculiar
characteristics, making them difficult to be fed directly as input to many deep learning
frameworks. Besides, the lack of open-access datasets and benchmarks containing radar
signals have contributed to the fewer research outputs over the years [18]. As a result, many
researchers self-developed their own radar signal datasets to test their proposed algorithms
for object detection and classification using different radar data representations as inputs
to the neural networks [36-40]. However, as these datasets are inaccessible, comparisons
and evaluations are not possible.

Over the recent years, some radar signal datasets are being reported for public us-
age [41-44]. As a result, many researchers have begun to apply radar signals as inputs to
various deep learning networks for object detection [45-48], object segmentation [49-51],
object classification [52], and their combination with vision data for deep-learning-based
multi-modal object detection [53-58]. This paper specifically reviewed the recent articles
on deep learning-based radar data processing for object detection and classification. In
addition, we reviewed the deep learning-based multi-modal fusion of radar and camera
data for autonomous driving applications, together with available datasets being used in
that respect.

We structured the rest of the paper as follows: Section 2 contains an overview of the
conventional radar signal processing chain. An in-depth deep learning overview was
presented in Section 3. Section 4 provides a review of different detection and classification
algorithms exploiting radar signals on deep learning models. Section 5 reviewed the deep
learning-based multi-sensor fusion algorithms using radar and camera data for object
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detection. Datasets containing radar signals and other sensing data such as the camera and
Lidar are presented in Section 6. Finally, discussions, conclusions, and possible research
directions are given in Section 7.

2. Overview of the Radar Signal Processing Chain

This section describes a brief overview of radar signal detection processes. Specifically,
we discuss the range and the velocity estimation of different kinds of radar systems, such
as Frequency Modulated Continuous Wave (FMCW), Frequency Shift Keying (FSK), and
Multiple Frequency Shift Keying (MFSK) waveforms commonly employed in automo-
tive radars.

2.1. Range, Velocity, and Angle Estimation

Radio Detection and Ranging (Radar) technology was first introduced around the 19th
century, mainly targeting military and surveillance-related security applications. Interest
in radar usage has now expanded over the last couple of years, particularly towards
commercial, automotive, and industrial applications. The fundamental task of a radar
system is to detect the targets in their surroundings and, at the same time, estimate their
associated parameters, such as the range, radial velocity, azimuth angle, etc. The range
and radial velocity measurements are largely dependent upon the time delay and Doppler
frequency estimation accuracy, respectively.

This system usually emits an electromagnetic wave signal and then receives the
reflections of those waves reflected by the targets along its propagation path [59]. Radar
sensors generally transmit either continuous waveform or short sequences of pulses in the
majority of radar applications. Therefore, according to radar system waveforms, radars
are conventionally divided into two general categories: pulse and continuous wave (CW)
radars with or without modulation.

Pulse radar transmits sequences of short pulse signals to estimate both the range
and radial velocity of a moving target. The distance of the target from the radar sensor is
calculated using the time delay that elapses between the transmitted and the intercepted
pulse. In order to achieve better accuracy, shorter pulses are employed, while, to attain a
better signal-to-noise ratio, longer pulses are necessary.

On the other hand, a CW radar operates by transmitting a constant unmodulated
frequency to measure the target radial velocity but without range information. The trans-
mitted signal from the CW radar antenna with a particular frequency is intercepted after it
is reflected back from the target, with the change in its frequency known as the Doppler
frequency shift. The velocity information is estimated based on the Doppler effect exhibited
by the motion between the radar and the target. However, CW cannot measure the target
range, which is one of its drawbacks.

The linear frequency modulated continuous (LFMCW) waveform is another impor-
tant radar waveform scheme. Unlike CW, the transmitted waveform signal frequency is
modulated to simultaneously estimate the target’s range and radial velocity with high
resolution. Most of the modern-day automotive radars operate based on the FMCW modu-
lation scheme, and it has been extensively studied in the literature [60,61]. They are gaining
more popularity recently, as they are among the leading sensing components employed
in applications like adaptive cruise control (ACC), autonomous driving, industrial appli-
cations, etc. Their main benefit is the ability to measure the range and radial velocity of
moving objects simultaneously.

As depicted in Figure la, the FMCW transmits sequences of the linear frequency
modulated signal (LFM), also called chirp signal, which increases linearly with time, within
a bandwidth range of up to 4 GHz and a carrier frequency of 79 GHz [62], then receives
the reflected signals that bounce back from the targets. The received signals are mixed with
the transmitted signals (chirp) in a mixer at the receiving end to obtain another frequency
called the beat frequency signal, given by:

fy=2ds/c €))
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where d is the distance of the object from the radar, s is the slope of the chirp signal, and ¢
is the speed of light.

Using this frequency, we can infer the distance of the target to the radar sensor. A fast
Fourier transform (FFT) (range FFT) is usually performed on the beat frequency signal to
convert it to the frequency domain, thereby separating the individual peaks of the resolved
objects. The range resolution of this procedure partly depends on the bandwidth B of the

FMCW system [60], given by:
c

ares = ﬁ (2)

The phase information of the beat signal is exploited to estimate the velocity of the
target. As shown in Figure 1, the object motion Ad in relation to the radar results in a beat
frequency shift, given by:

2sAd

Afy = — ®)
over the received signal and a phase shift, given by [60]:
2Ad  4moT,

Apy = znch Y : 4)

where v is the object radial velocity, f. is the center frequency, T is the chirp duration, and
A is the wavelength.

Since the phase shift of mm-wave signals is much more sensitive to the target object
movements than the beat frequency shift, the velocity FFT is usually conducted across
the chirps to generate the phase shift and then converted to the velocity afterward. The
expression for the velocity resolution dv,,s can be represented as [61]:

A _ A
2T; ~ 2LT.

©)

QVres =

where L is the number of chirps in one frame, and Tf is the frame period.

To estimate the target’s position in space, the target’s azimuth and elevation angles are
calculated by processing the received signals using array processing techniques. The most
typical procedures include the digital beamforming [63], phase comparison monopulse [61],
and the Multiple Signal Classification (MUSIC) algorithm [64].

However, according to an FFT algorithm, the azimuth angle of a moving object is ob-
tained by conducting a fast Fourier transform (Angle FFT) on the spatial dimension across
the receiver antennas. The expression for the velocity resolution dv,.s can be represented
as [61]:

B A
~ Ngxhcosf

where Nrx is the number of the receiver antennas, 6 is the azimuth angle between the
distant object to the radar position, and 4 is the distance between the receiver antenna pairs.

The conventional linear frequency modulation (LEFMCW) waveform scheme explained
earlier delivers the desired range and velocity resolution. However, it usually encounters
ambiguities in multi-target situations during the range and velocity estimations, which is
also referred to as the ghost target problem. One of the most straightforward approaches
to address this problem is applying multiple chirp signals (i.e., multiple chirp continuous
waves, each with a different frequency of modulation, are transmitted) [65]. However, this
method will also lead to another issue, as it increases the measurement time.

In this regard, many other waveforms have been proposed by the research community
to overcome one issue to another, such as Frequency Shift Keying (FSK) [66], Chirp Se-
quence [67], and, Multiple Frequency Shift Keying (MFSK) [68], to mention a few. However,
it must be emphasized that selecting a specific radar waveform to be utilized in any form
of radar system has always been a critical parameter dictating the performance. It usually
depends on the role, purpose, or mission of the radar application.

90 (6)
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Figure 1. Range and velocity estimation schemes. (a) linear frequency modulated continuous waveform (LFMCW)
scheme [52], (b) Frequency Shift Keying (FSK) waveform scheme [67], and (c) Multiple Frequency Shift Keying (MFSK)
waveform system [68].

For instance, as an alternative to the FMCW method, the FSK waveform can provide a
significant range and velocity resolution while simultaneously withstanding ghost target
ambiguities. Its only drawback is that it does not resolve the target in a range direction.
This system transmits two discrete frequency signals (i.e., F4 and Fg) sequentially in an
intertwined passion within each T¢p; time duration, as shown in Figure 1b. The difference
between these two frequencies is called a step frequency and is defined as fstep = Fp — Fa.
The step frequency is very small and is selected irrespective of the desired target range
measured.

In this scheme, the receive echo signals are first down-converted into a baseband
signal using the transmitted carrier frequency signal via a homodyne receiver and then
sampled N times afterward. The output of the baseband signal conveys the Doppler
frequency generated by the moving objects. A Fourier transform is conducted on the
time-discrete receive signal for each coherent processing interval (CPI) within the Tcpy,
and then, moving targets are detected after CFAR with an amplitude threshold. Suppose
the frequency step (fstep) is maintained as minimal as possible regarding the intertwined
transmitted signals F4 and Fp. In that case, the Doppler frequencies obtained from the
baseband signal outputs should be roughly the same, while the phase information changes
at the spectrum’s peak. In this way, the moving object’s range is estimated using the phase
difference’s peak (Ap = @p — @ 4), as shown in Equation seven based on [66]:

cAg

R=—-——""
47T'fstep

@)

where Ap = @p — ¢4 is the phase difference measurement of the Doppler spectrum peak,
R the range of the moving target, and c is the speed of light, while fs is a step frequency.

However, this scheme’s main drawback is that it cannot differentiate two targets with
the same speed along the range dimension or when multiple targets are static. This is
because multiple targets cannot be separated with phase information.

In the MFSK waveform scheme, the LFM and FSK waveforms combination is exploited
to provide the range and radial velocity estimation of the target efficiently while, at the same
time, avoiding the individual drawbacks of LFM and FSK [68]. The transmission signal
waveform is a stepwise frequency modulated signal. In this case, the transmit waveform
uses two linearly frequency modulated signals arranged in a sequence (e.g., ABABAB)
with the same bandwidth and slope separated by a small frequency shift fs,;s;, as depicted
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in Figure 1c. Like in the case of FSK and LFM, the receive echo signals are down-converted
to the baseband and sampled over each frequency step. Both signal sequences A and B are
processed individually using the FFT and CFAR processing algorithms.

Due to the coherent measurement procedure in both sequences A and B, the phase
information defined by A¢ = @p — @4 is used to estimate the target range and radial
velocity. Analytically, the measured phase difference can be defined as given in [67] by
Equation eight. Hence, it can be seen that MFSK cannot encounter the ghost target problem
that is present in the LFM system.

T v 47_[R_fshift

AqD:N—l.Aiv' c ®)

where N defines the number of frequency shifts for each sequence A and B, fy; 1t is the
frequency shift, ¢ is the speed of light, and R is the range of the target.

Generally, selecting a radar waveform in a radar system design has always remained
a challenging concern. It largely depends on many aspects, such as the role, purpose, and
mission of the radar application. As such, a discussion about them is out of this study’s
scope; however, more information can be found in [65-69].

2.2. Radar Signal Processing and Imaging

The complete procedure is depicted in Figure 2, which consists of seven functional
processing blocks. A fast Fourier transform is usually conducted over the 3D tensor to
resolve the object range, velocity, and angle. In the beginning, the received radar signals
(ADC samples) within a single coherent processing interval (CPI) are stored in matrix
frames creating a 3D radar cube with three different dimensions, including fast time (chirp
index), slow time (chirp sampling), and the phase dimension (TX/RX antenna pairs).
Then, an unambiguous range-velocity estimation is the second processing stage, which is
achieved via a 2D-FFT processing scheme on the 3D radar cube. Usually, the range FFT
is first executed on an ADC time-domain signal to estimate the range. The second FFT
(velocity FFT) is then performed across the chirps to estimate the relative radial velocity.

ID-FFT

RAMaps
| \
ADC samples
("QdaJ—b“a Range FFT Velocty FFT J—V[ Mgl FFT J CRAR detecton Poit clouds

1

Clusterin
STFT —»STFT maps ‘ (DgISC ;\,\%

Figure 2. Radar signal processing and imaging. Adapted from [52].

After these two FFT stages, a 2D map of velocity/range points is obtained, with higher
amplitude values indicating the target candidate. Further processing is required to identify
the real target against clutter. In order to create the Range-Velocity-Azimuth map, a third
FFT scheme (Angle FFT) is executed over the maximum Doppler peaks of each range bin.
The complete procedure represents a 3-dimensional FFT (including the range FFT, velocity
FFT, and angle FFT). Similarly, a short-time Fourier transform (STFT) over the range FFT
output can create the spectrogram, illustrating the object’s velocity.

The fourth stage is the target detection scheme, mainly performed using CFAR algo-
rithms applied to the FFT outputs. A CFAR detection algorithm is applied to measure the
noise within the target vicinity and then provide a more accurate target detection. The
CFAR technique was proposed in 1968 by Fin and Johnson [70]. Instead of using a fixed
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threshold during target detection, they offered a variable threshold, which is adjusted by
considering the noise variance in each cell’s neighborhood. However, at the moment, there
are many different CFAR algorithms published with various ways of computing the thresh-
old, such as the cell averaging (CA), smallest of selection (SO), greatest of selection (GO),
and the ordered statistic (OS) CFAR [71,72]. Moreover, the 3D point clouds are generated
by conducting an angle FFT on the CFAR detection obtained over the range-velocity bins.

A DBSCAN is also used to cluster the detected targets into groups in order to differen-
tiate multiple targets [73]. Target tracking is the final stage in the radar signal processing
chain, where algorithms such as the Kalman filter track the target position and target
trajectory to obtain a smoother estimation.

3. Overview of Deep Learning

This section provides an overview of the current neural network frameworks widely
employed in computer vision and machine learning-related fields that could also be applied
for processing radar signals. This spans across different models on object detection and
classification.

Over the last decade, computer vision and machine learning have seen tremendous
progress using deep learning algorithms. This is driven by the massive availability of
publicly accessible datasets, as well as the graphical processing units (GPUs) that enable
the parallelization of neural network training [74]. Overwhelmed by its successes across
different domains, deep learning is now being employed in many other fields, including
signal processing [75], medical imaging [76], speech recognition [77,78], and much more
challenging tasks in autonomous driving applications such as image classification and
object detection [79,80].

However, before we dive into the deep learning discussion, it is important to talk
about the traditional machine learning algorithm briefly, as it is the foundation of deep
learning models. While deep learning and machine learning are specialized research
fields in artificial intelligence, they have significant differences. Machine learning utilizes
algorithms to analyze a given data, learn from it, and provide the possible decision based
on what it has learned. One of the famous problems solved by machine learning algorithms
is classification, where the algorithm provides a discrete prediction response. Usually, the
machine algorithm uses feature extraction algorithms to extract notable features from the
given input data and subsequently make a prediction using classifiers. Some examples of
machine learning algorithms include symbolic methods such as support vector machines
(SVM), Bayesian networks, decision trees, etc. and nonsymbolic methods such as genetic
algorithms and neural networks.

On the other hand, a deep learning algorithm is structured based on the multiple layers
of artificial neural networks, inspired according to the way neurons in the human brain
function. Neural networks learn from the input data high-level feature representations,
which are used to make intelligent decisions. Some common deep learning networks
include deep convolutional neural networks (DCNNs), recurrent neural networks (RNNs),
autoencoders, etc.

The most significant distinction between deep learning and machine learning is its
performance, given the large amount of data available. However, when the training data
is less, the deep learning performance is not that much. This is because they do need
a large volume of datasets to learn perfectly. On the other hand, the classical machine
learning methods perform significantly well with small data. Deep learning network
functionality depends on powerful high-end machines. This is because deep learning
models are composed of many parameters that require a longer time for training. Thus,
they perform complex matrix multiplication operations that can be easily realized and
optimized using GPUs, while, on the contrary, machine learning algorithms can work
efficiently well even on low-end machines such as CPUs.

Another important aspect of machine learning is feature engineering, which utilizes
domain knowledge to create feature extractors that minimize the complexity of the data
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and make the patterns in the data visible for the learning algorithm. However, this process
is very challenging and time-consuming. Generally, the machine learning algorithm’s
performance depends heavily on how precisely the features are identified and extracted.
On the other hand, deep learning learns high-level features from its single end-to-end
network. There is no need to put in any mechanisms to evaluate the features or understand
what best represents the input data. In other words, deep learning does not need feature
engineering, as the features are extracted automatically. Hence, deep learning eliminates
the need for developing a new feature extraction algorithm for every problem.

3.1. Machine Learning

Machine learning is one of the new emerging disciplines that are now widely applied
in the fields of science, engineering, medicine, etc. It is a subset of artificial intelligence that
relies on computational statistics to produce a model showcasing the relations between the
input and output data. Therefore, the system uses mathematical models to learn significant
high-dimensional data structure (i.e., how to perform a particular task) from a given data
and make decisions/predictions based on the learned information. The learning method
can be divided into three categories—namely, supervised, unsupervised, and reinforcement
learning. Classification and regression are the most typical tasks performed by machine
learning algorithms. To solve a classification problem, the model is required (or task) to
find which of the categories (k) an input corresponds to. Therefore, classification is required
to discriminate an object from the list of all other object categories.

The first stage in the machine learning algorithm is feature extraction. The input
data is processed and transformed into high-dimensional representations (i.e., features)
that contain the most significant information from the objects, discarding irrelevant in-
formation. Shift, HOG, haar-like features, and Gaussian mixture models are some of the
most widely traditional machine learning techniques employed for feature extraction.
After the learning procedure, a decision can be achieved using classifiers. In most cases,
Naive Bayes, K-Nearest neighbor, and support vector machines (SVM) are the commonly
exploited classifiers.

Machine learning is also used to learn important data structures from the radar data
acquired for different moving targets. Many papers have been presented in the literature
for radar target recognition using machine learning methods [81-83]. For instance, the
author of [81] presented a classification of airborne targets based on a supervised machine
learning algorithm (SVM and Naive Bayes). Airborne radar was used to provide the
measurements of the aerial, sea surface, and ground moving targets. C. Abeynayake
et al. [82] developed an automatic target recognition approach based on a machine learning
algorithm applied to ground penetration radar data. Their system helps detect complex
features that are relevant to a multitude of thread objects. In [83], a machine learning-based
method for target detection using radar processors was proposed, where they compared the
performance of the machine learning-based classifiers (random decision forest) with one
of the deep learning algorithms (RNNSs). The results of their approach demonstrated that
machine learning classifiers could discriminate targets from clutter with good precision.
The main disadvantage of the machine learning approach is that it requires the prior
feature extraction procedure before the final decision-making. With the recent revolution
brought about by deep learning technology due to the availability of huge data and bigger
processing tools (i.e., GPUs), machine learning models are now being regarded as inferior
in performance, though their computational complexity is lighter, and a high performance
can be achieved with a small amount of training data.

3.2. Deep Learning

Deep learning belongs to the subsets of machine learning algorithms that can be
viewed as an extension of artificial neural networks (ANNSs) applied to row sensory data
to capture and extract high-level features that can be mapped to the target variable. For
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example, given an image as the sensory data, the deep learning algorithm will extract the
object’s features, like edges or texture, from the raw image pixels.

In general, a deep learning algorithm consists of ANNs with at least one or more
intermediate layers. The network is considered “deep” after stacking several intermediate
layers of ANNs. The ANNSs are responsible for transforming the low-level data to a higher
abstracted level of representation. In this network, the first layer’s output is passed as input
to the intermediate layers before producing the final output. Through this process, the
intermediate layers enable the network to learn a nonlinear relationship between the inputs
and outputs by extracting more complex features, as depicted in Figure 3. Deep learning
models consist of many different components stacked together to form the main network
model (e.g., convolution layers, pooling layers, fully connected layers, gates, memory cells,
encoders, decoders, etc.), depending on the type of the network architecture employed
(e.g., CNNs, RNNSs, or autoencoders).

Prediction
Yi

Output Layer

m-1

Yi
Input Layer
Hidden Layers

Figure 3. A simple structure of neural networks—input layer in green, output in red, and the hidden
layers in blue.

3.3. Training Deep Learning Models

Deep learning employs the Backpropagation algorithm to update the weights in each
of the layers during the course of the learning process. The weights of the network are
usually initialized randomly using small values. Given a training sample, the predictions
are obtained based on the current weight’s values, and the outputs are compared with the
target variable. An objective function is utilized to make the comparisons and estimate the
error. The error obtained is fed back into the network for updating the network weights
accordingly. More information on Backpropagation can be found in [84].

3.4. Deep Neural Network Models

Here, we provide an overview of some of the popular deep neural networks utilized by
the research communities, which include the deep convolutional neural networks (DCNNSs),
recurrent neural networks (RNNs), long short-term memory (LSTM), encoder-decoder, and
the generative adversarial networks (GANSs).

3.4.1. Deep Convolutional Neural Networks

Deep convolutional neural networks (DCNNs) are one of the most prominent deep
learning models utilized by research communities, especially in the computer vision and
related fields. DCNNs were first introduced by K. Fukushima [85], using the concept of a
hierarchical representation of receptive fields from the visual cortex, as presented by Hubel
and Wiesel. Afterward, Weibel et al. [86] proposed convolutional neural networks (CNNs)
that share weights with temporal receptive fields and Backpropagation training methods.
Later, Y. LeCun [87] presented the first CNN architecture for document recognition. The
DCNN models typically accept 2D images or sequential data as the input.

A DCNN consists of several convolutional layers, pooling layers, nonlinear layers,
and multiple fully connected layers that are periodically stacked together to form the
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complete network, as shown in Figure 4. Within the convolutional layers, CNN uses a
set of filters (kernels) to convolve the input data (usually, a 2D image) and extract various
feature maps. The nonlinear layers are mainly applied as activation functions to the feature
maps. In contrast, the pooling operation is used for down-sampling the extracted features
and learning invariant to small input translations. Max-pooling is the most commonly
employed pooling method. Lastly, the fully connected layers are used to transform the
feature maps into a feature vector. Stacking these layers together will form a deep multi-
level layer network, with the higher layers being the composite of the lower layers. The
network’s name was derived from the convolution operation that spread across all the
layers in the whole network. A standard convolution operation in a simple CNN model
involves the multiplication of 2D image I with a kernel filter K, as given in [87] and

shown below:
c(i,j) = (IxK)(i,j) = Y ) 1(m,n)K(i —m,j—n) )

Pooling ~ Convolution +Relu

[nput I .
Pt mege Convolution +Relu

Figure 4. A simple deep convolutional neural network (DCNN) architecture. Adapted from [87].

For a better understanding, the process involved in the whole DCNN can be better
represented mathematically if we express X as the input data of size m x n x d, withm x n
representing the spatial level of X, and d as the number of channels. Similarly, if we assume
a j filter with its associated weights w;j and bias b;. Then, we can obtain the ! output
associated with the convolutional layer, as given in [87]:

d
i=1

where the activation function (.) is employed to improve the network nonlinearity; at the
moment, ReLu [79] is the most commonly used activation function in the literature.

DCNNs have been the most employed deep learning-based algorithms over the last
decade in many applications. This is due to their strong capability to explore the local
connectivity from the input data based on its multiple combinations of convolution and
pooling layers that automatically extract the features. Among the most popular DCNN
architectures are Alex-Net [79], VGG-Net [88], Res-Net [89], Google-Net [90], Mobile-
Net [91], and Dense-Net [92], to mention a few. Their promising performances achieved
in image classification have led to their application in learning and recognizing radar
signals. Furthermore, weight sharing and invariance to translation, scaling, rotation, and
other transformations of the input data are essential in recognizing radar signals. Over the
past few years, DCNNs have been employed to process various types of millimeter-wave
radar data for object detection, recognition, human activity classification, and many more
tasks [37-39,45,47], with excellent performance accuracy and efficiency. This is due to their
ability to extract high-level abstracted features by exploiting the radar signal’s structural
locality. Similarly, using DCNNs with the radar signal will allow us to extract features
according to their frequency and pace. However, DCNNs cannot model sequential data
from the human motion with temporal information, because every type of human activity
consists of a specific spectral kind of posture.
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3.4.2. Recurrent Neural Networks (RNNs) and Long Short-term Memory (LSTM)

Recurrent neural networks (RNNs) are the type of network models designed specifi-
cally for processing sequential data. The output of RNNs constitutes the present inputs
and the earlier outputs embedded in their hidden state /1 [93]. This is because they have a
memory to store the earlier outputs that the multilayer perceptron neural networks lack.
Equation (11) shows the update in the memory state according to [88]:

hy = f[WXt + Uhtfl] (11)

where f is a nonlinear transformation function such as tanh or ReLu, x; is the input to the
network at a time ¢, /iy represents the hidden state at a time t and can act as the memory
of the network, and h;_; represents the previous hidden state. Similarly, U is a weight
matrix that represents the RNN input-to-hidden connections, while W is the weight matrix
representing the hidden-to-hidden recurrent connections.

RNN:Ss are also trained using the Backpropagation algorithm and can be applied in
many areas, such as natural language processing, speech recognition, and time series
prediction. However, RNNs suffered a deficiency called gradient instability, which means
that, as the input sequence grows, the gradient vanishes or explodes. A long short-term
memory (LSTM) network model was later proposed in [94] to overcome this problem and
was then upgraded in [95]. LSTM adds a memory cell to the RNN networks to store each
neuron’s state, thus preventing the gradient from exploding. LSTM architecture is shown
in Figure 5, consisting of three different gates that control the memory cell’s data flow.

GTQ ® ()

~

;
A [ hemst]]| A
© ® ©

Figure 5. Long short-term memory (LSTM) architecture. Image source [96].

Unlike DCNNSs, which only process input data of predetermined sizes, RNNs and
the LSTM predictions increase with more available data. Their output prediction changes
with time. Accordingly, they are sensitive to the change in the input data. For radar
signal processing, especially human activity recognition, RNNs can exploit the radar
signal temporal and spatial correlation characteristics, which is vital in human activity
recognition [38].

As shown in Figure 5, LSTM has a chain-like structure, with repeated neural network
blocks (yellow rectangles) having different structures. The neural network blocks are also
called memory blocks or cells. Each cell A accepts input x; at a time ¢ and output #;, called
the hidden state. Then two states are transferred to the next cell—namely, the cell state and
the hidden state. These cells are responsible for remembering what is performed inside
them while their manipulations are performed using gates (i.e., input gate, forget gate, and
output gate) [95]. The input gate adds the information to the cell state. A forget gate is
used to remove information from the cell state, while the output gate is responsible for
creating a vector by applying a function (tanh) to the cell state and uses filters to regulate
them before sending the output.

3.4.3. Encoder-Decoder

The encoder-decoder network is the kind of model that uses a two-stage network to
transform the input data into the output data. The encoder is represented by a function
z = g(x) that encodes the input information and transforms them into higher-level repre-
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sentations. Simultaneously, the decoder given by y = f(z) tries to reconstruct the output
from the encoded data [97].

The high-level representations used here literally refer to the feature maps that cap-
ture the essential discriminant information from the input data needed to predict the
output. This model is particularly prevalent in image-to-image translation and natural
language processing. Besides, this model’s training minimizes the error between the
real and the reconstructed data. Figure 6 illustrates a simplified block diagram of the
encoder-decoder model.

Encoder Latent state
9() —»  features |— Defc(o)der | Output.
() 2 y

Input
x

Figure 6. A simple encoder-decoder architecture.

Some of the encoder-decoder model variants are stacked autoencoder (SAE), the
convolutional autoencoder (CAE), etc. Many such models have been applied in many
application domains, including radar signal processing [98]. For instance, because of the
benefit of localized feature extraction, as well as the unsupervised pretraining technique,
CAE has superior performance over DCNN for moving object classification. However,
most of these models are based on fully connected networks, and they could not necessarily
extract the structured features embedded in the radar data, especially those contained in
the range cells of a high range resolution profile wideband radar (HRRP). This is because
HRRP returned target scatterer distributions based on the range dimension.

3.4.4. Generative Adversarial Networks (GANS)

Generative Adversarial Networks (GANSs) are among the most prominent deep neural
networks in the generative models family [99]. They are made of two network blocks,
a generator, and a discriminator, as shown in Figure 7. The generator usually receives a
random noise as its input and processes it to produce the output samples that look similar
to the data distribution (e.g., fake images). In contrast, the discriminator tries to compare
the difference between the real data samples and those produced by the generator.

Random noise Generator Fake data
Input Network W Prediction
X 90 Discriminator | (Real or Fake Data)
Network ~ |—»

Realzdata N f 0

Figure 7. Generative adversarial network.

One of the major bottlenecks in applying deep learning models using radar signals is
the lack of accessible radar datasets with annotations. Although labeling is one of the most
challenging tasks in computer vision and its related applications, with the unsupervised
generative models such as GANSs, one could generate a huge amount of radar signal data
and train it in an unsupervised manner, neglecting the need for laborious labeling tasks.
In this regard, GANs have been used over the years for many applications, but very few
studies have been performed using GANs and radar signal data [100]. However, GANs
have a crucial issue regarding their training aspect, which sometimes leads to its collapse
(instability). However, many of its variants have been proposed over the years to tackle
this specific problem.
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3.4.5. Restricted Boltzmann Machine (RBM) and Deep Belief Networks (DBNs)

Restricted Boltzmann Machine (RBM) has received increasing consideration over the
recent years, as they have been adopted as the essential building components of deep belief
networks (DBN) [101]. They are a specialized Boltzmann Machine (BM) with an added
restriction of discarding all the connections within each visible or hidden layer, as shown
in Figure 8a. Thus, the model is described as a bipartite graph. Therefore, an RBM can be
described as a probabilistic model consisting of a visible layer (units) and a hidden layer
(units) that extract a given data’s joint probability [102]. The two layers are connected using
symmetrically undirected weights, while there are no intra-connections within either of
the layers. The visible layer describes the input data (observable data) whose probability
distribution is expected to be determined, while, on the other hand, the hidden layers are
trained and expected to learn higher-order representations from the visible units.

. Hidden Layer 3
Hidden Layer Q

Hidden Layer 2 < __

Hidden Layer 1

Visible Layer

Visible Layer 1

()

Figure 8. (a) Schematic of the Restricted Boltzmann Machine (RBM) architecture. (b) Schematic
architecture of deep belief networks with one visible and three hidden layers [101].

The joint energy function of an RBM network according to the hidden and visible
layers E(v, h) is determined using its weight and bias, as expressed in [102]:

M=
M=

E(v,h;0) = —

i=1j=1

-~
I

|4 H
vihiwij — Z bivi — Z Lljhi (12)
i=1 j=1

where w represents the symmetric weight, and b and a denotes the bias of the visible unit
v; and the hidden unit /;, respectively. Therefore, ¢ = {W,b,a} and v;, h; € {0,1}.

The model allocates a joint probability distribution to each vector combination in the
layers based on the energy function defined in [102] and given by:

p(o,h) = %ﬁ’E(”"” (13)

where z is the normalization factor determined by adding up all the possible combinations
of visible and hidden vectors, defined as:

z=Y ¢ FeN (14)
v,h

Deep belief networks (DBN) are generative graphical deep learning models developed
by R. Salakhutdinov and G.Hinton [103], in which they demonstrated that multiple RBMs
could be stacked and trained in a specialized way (called the greedy approach). Figure 8b
illustrates an example of three-layer deep belief networks. Unlike in the RBM model, a
DBN only uses bidirectional connections (i.e., the same as in RBM) on its first top layer. In
contrast, the subsequent layers use only top-down connections (bottom layers). The main
reason behind this model’s recent interest is related to its new training principle called the
layer-wise pretraining (i.e., the greedy method). Thus, DBN networks have recently been
applied in many research domains, such as speech recognition, image classification, and
audio classification.
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The simple, most familiar application of the DBN model is feature extraction. The
complexity of the DBN’s learning procedure is higher, as it learns the joint probability
distribution of the output data. There is also a serious overfitting concern about DBN to the
vanishing gradient, which changes the training from lower to higher network depth levels.

3.5. Object Detection Models

Object detection can be viewed as an act of identifying and localizing one or multiple
objects from the given scene. This usually involves estimating the classification probability
(labels) in conjunction with calculating the object’s location or bounding boxes. DCNN-
based object detectors are grouped into two: the two-stage object detectors and the one-
stage object detectors.

3.5.1. One-Stage Object Detectors

This method uses only one single-stage network model to extract the feature maps
used to obtain the classification scores and bounding boxes. Many unified one-stage
models have been proposed in the literature. For instance, the earlier models include
Single-Shot Multi-Box Detector (SSD) [7], which uses small CNN filters to predict multi-
scale bounding boxes. This model is aimed at handling an object with different sizes. Yolo
Object Detector [8] is the fastest among the single-stage family. It regresses the bounding
boxes in conjunction with the classification score directly via a single CNN model.

3.5.2. Two-Stage Object Detectors

Firstly, the object candidate region, also called Region of Interest (ROI) or Region
Proposal (RP), is predicted from a given scene. The ROIs are then processed to acquire
the classification score and the bounding boxes of the target objects. Examples of these
types of object detectors are R-CNN [104], Fast-RCNN [105], Faster-RCNN [6], and Mask-
R-CNN [9]. The region proposal generation ideally helped these types of models to provide
better accuracy than one-stage detectors.

However, this comes with the disadvantage of huge, sophisticated training and high-
inference time accrue, making them relatively slower than the one-stage counterpart. In
contrast, one-stage object detectors are easier to train and faster for real-time applications.

4. Detection and Classification of Radar Signals Using Deep Learning Algorithms

This section provides an in-depth review of the recent deep learning algorithms that
employ various radar signal representations for object detection and classification in both
ADAS and autonomous driving systems. One of the most challenging tasks in using radar
signals with deep learning models is representing the radar signals to fit in as inputs to the
various deep learning algorithms.

In this respect, many radar data representations have been proposed over the years.
These include radar occupancy grid maps, Range-Doppler-Azimuth tensor, radar point
clouds, micro-Doppler signature, etc. Each one of these radar data representations has its
pros and cons. With the recent availability of accessible radar data, many studies have
begun to explore radar data to understand them extensively. Thus, we based our review
article on this direction. Figure 9 illustrates an example of the various types of radar signal
representations.

4.1. Radar Occupancy Grid Maps

For a host vehicle equipped with radar sensors and drives along a given road, radar
sensors can collect data about its motion in that environment. At every point in time, radars
can resolve the object’s radial distance, the azimuth angle, and the radial velocity that falls
within its field of view. Distance and angle (both elevation and azimuth) entail more about
the target’s relative position (orientation) concerning the ego vehicle coordinate system.
Simultaneously, the target’s radial velocity obtained from the Doppler frequency shift will
aid in detecting the moving targets.
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Hence, based on the vehicle pose, radar return signals can be accumulated in the form
of occupancy grid maps from which algorithms in machine learning and deep learning can
be utilized to detect the objects surrounding the ego vehicle. In this way, both static and
dynamic obstacles in front of the radar can be segmented, identified, and classified. The
authors of [106] discussed different radar occupancy grid map representations. The grid
map algorithm’s sole purpose is to determine the probability of whether each of the cells in
the grids is empty or occupied.

Elfes reported the first occupancy grid map-based algorithm for robot perception and
navigation [107]. In the beginning, most of the algorithms, especially in robotics, used
laser sensor data. However, with the recent success of radar sensors, many occupancy
grids employ radar data for different applications. In this case, assuming we have an
occupancy grid map, M; = {my, my ..., my}, consisting of N grid cells of m; that represent
an environment with a 2D grid of equally spaced cells. Each of these cells is a random
variable with a probability value of either [0, 1] expressing their occupancy states over time.
For instance, if M; is a grid map representation for a time instance ¢, the cells are assumed
to be mutually independent of one another. Then, the occupancy map can be estimated
based on the posterior probability [107]:

P(M | Zy, X)) = [ [POmi | Z1g, Xiit) (15)
i

where P(m; | Z1.t, X1.¢) is the inverse sensor model, and it represents the occupancy proba-
bility of the it" cell, Z1.; denotes the sensor measurement, and X, is the dynamic object
pose from the ego vehicle.

A Bayes filter is typically used to calculate the occupancy value for each cell. Mainly, a
posterior log formulation is used to integrate each of the new measurements for convenience.

Even though CNNs function extraordinarily well on images, they can also be tried
and applied to other sensors that can yield image-like data [108]. The two-dimensional
radar grid representations accumulated according to different occupancy grid map algo-
rithms have already been exploited in deep learning domains for various autonomous
system tasks, such as static object classification [109-114] and dynamic object classifica-
tion [115-117]. In this case, the objects denote any road user within an autonomous system
environment, like the pedestrian, vehicles, motorcyclists, etc.

For example, [109] is one of the earliest articles that employed machine learning
techniques with a radar grid map. They proposed a real-time algorithm for detecting
parallel and cross-parked vehicles using radar grid maps generated based on the occupancy
grid reported by Elfes [107]. The candidate’s region was extracted, and two random forest
classifiers were trained to confirm the parked vehicle’s presence. Subsequently, Lambacher
et al. [110,111] presented a classification technique for static object recognition based on
radar signals and DCNNs. The occupancy grid algorithm was used to accumulate the
radar data into grid representations. All the occupancy grid cells were represented by
a probability denoting whether it was occupied or not. Bounding boxes were labeled
around each of the detected objects and applied to the classifiers as inputs. Bufler and
Narayanan [112] also classified indoor targets with the aid of SVM. They generated their
feature vectors using radar cross-entropy and observation angles from the simulated and
measured objects.

The authors of [113] illustrate how to perform static object classification based on
radar grid representation. Their work proves that semantic knowledge can be learned from
the generated radar occupancy grids and accomplish cell-wise classification using CNN. L.
Sless et al. [114] proposed an occupancy grid mapping using clustered radar data (point
cloud). Ideally, the authors formulated their approach as a computer vision task in order
to learn three semantic segmentation problems—namely, occupied, free, and unobserved
spaces in front of or around vehicles. The main fundamental idea behind their proposed
approach is the adoption of a deep learning model (i.e., encoder-decoder) to learn the
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occupancy grid mapping from the clustered radar data. They showed that their approach
outperformed the classical filtering methods commonly used in the literature.

Radar signal representations

' * l

Radar signals projected  Micro Doppler signature Range-DopE)(I:t;r-Ammuth Point clouds Occupancy grid map

onto image plane (b) (d) (®
@

RODNet Results

Figure 9. Example of different radar signal format representations. (a) Radar point clouds projected onto an image camera
plane [58], with different colors depicting the depth information, (b) Spectrograms of a person walking away from the
FMCW radar. (c) Samples of the Range-Doppler-Azimuth (RAMAPs) representations from the CRUW dataset [98], with the
first row showing the images from the scene and the second row depicting their equivalent RAMAP tensors (d) Sample
of Radar point clouds (red) with 3D annotations (green) and Lidar point clouds (grey) from the Nuscenes dataset. Image
from [118]. And, (e) Example of a radar occupancy grid from a scene with multiple parked automobiles [119]. The white
line represents the test vehicle driving path, and the rectangles represent the manually segmented objects along the grid.
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Usually, in the ideal case, the occupancy grid algorithm detects moving objects by
removing moving objects based on their Doppler velocity. However, for complex systems,
such as autonomous vehicle systems, both static and dynamic moving objects need to
be detected simultaneously for the whole system’s efficacy. Hence, a radar grid map
representation may not be suitable for dynamic objects, as other features have to be
exploited in order to recognize dynamically moving objects like pedestrians. For dynamic
road users such as vehicles, pedestrians, cyclists, etc., a grid map algorithm would require
a longer time to be realized. This will not be good for applications like an autonomous
system where latency is necessary.

Some authors, like [115,116], applied feature-based methods for classification. Schu-
mann et al. [117] utilized a random forest classifier and long short-term memory (LSTM)
based on radar data to classify dynamically moving objects. Feature vectors are generated
from clustered radar reflections and fed to the classifiers. They found LSTM useful in their
approach, as they were dealing with dynamic moving objects, since it is challenging to
transform their radar signal into the image-like data needed by the CNN algorithms, while,
for LSTM, successive feature vectors are grouped into a sequence.

The main problem with the radar grid map representations with regards to the deep
learning and autonomous driving systems are:

e  After the radar grid map generation, some significant information from the raw radar
data may be lost, and thus, they cannot contribute to the classification task.

e  The technique may result in a huge map, with many pixels in the grid map being
empty, therefore adding more burden to the system complexity.

4.2. Radar Range-Velocity-Azimuth Maps

Having talked about radar grid representations in the previous section, as well as
their drawbacks, especially in detecting moving targets. It will be essential to explore
other ways to represent the radar data so that more information can be added to achieve a
better performance. A radar image created via multidimensional FFT can preserve more
informative data in the radar signal, as well as conforms to the required 2D grid data
representation applicable to the deep learning algorithms like CNNSs.

Many kinds of radar image tensors can be generated from the raw radar signals (ADC
samples). This includes the range map, the Range-Doppler map, and the Range-Doppler-
Azimuth map. A range map is a two-dimensional map that reveals the range profile of the
target signal over time. Therefore, it demonstrates how the target range changes over time
and can be generated by performing one-dimensional FFT on the raw radar ADC samples.

In contrast, the Range-Doppler map is generated by conducting 2D FFT on the radar
frames. The first FFT (also called range FFT) is performed across samples in the time
domain signal, while the second FFT (the velocity FFT) is performed across the chirps. In
this way, a 2D image of radar targets is created that resolves targets in both range and
velocity dimensions.

The Range-Doppler-Azimuth map is interpreted as a 3D data cube. The first two
dimensions denote range—velocity, and the third dimension contains information about
the target position (i.e., azimuth angle). The tensor is created by conducting 3-dimensional
FFT (3D FFT), also known as the range FFT, the velocity FFT, and the angle FFT, on the
radar return samples sequentially to create the complete map. Range FFT is performed
on the time domain signal to estimate the range to the radar. Subsequently, velocity
FFT is executed across the chirp’s frames to generate the Range-Doppler spectrum and
then passed on to the CFAR detection algorithm to create a 2D sparse point cloud that
can distinguish between real targets and the clutter. Finally, angle FFT is performed on
the maximum Doppler peak of each range bin (i.e., detector Doppler), resulting in a 3D
Range-Velocity-Azimuth map.

Most of the earlier studies using the Range-Doppler spectrums extracted from the
automotive radar sensors performed either road user detection or classification using ma-
chine learning algorithms [36,120,121]. Reference [120] achieved pedestrian classification
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using a 24-GHz automotive radar sensor for city traffic application. Their system employed
support vector machines, one of the most prominent machine learning algorithms, to
discriminate pedestrians, vehicles, and other moving objects. Similarly, [121] presented an
approach to detect and classify pedestrians and vehicles using a 24-GHz radar sensor with
an intertwined Multi-Frequency Shift Keying (MFSK) waveform. Their system considered
target features like the range profile and Doppler spectrum for the target recognition task.

S. Heuel and H. Rohling [36] presented a two-stage pedestrian classification system
based on a 24-GHz radar sensor. In the first stage, they extracted both the Doppler spectrum
and the range profile from the radar echo signal and fed it to the classifier. In the second
stage, additional features were obtained from the tracking system and sent back to the
recognition system to further improve the final system performance.

However, the techniques mentioned above based on machine learning require long
time accumulations and feature selection to achieve a better performance from the hand-
crafted features learned on Range-Doppler maps. Due to the success achieved by deep
learning algorithms in different tasks, such as image detection and classification, many
researchers have now begun to apply it in their domains to benefit from its better perfor-
mance. With enough training samples and GPU processors, deep learning provides a much
better understanding than its machine learning counterparts.

The Range-Doppler-Azimuth spectrums extracted from automotive radar sensors have
been used frequently as 2D image inputs to various deep learning algorithms for different
tasks, ranging from obstacle detection to segmentation, classification, and identification
in autonomous driving systems [122-126]. The authors of [122] presented a method to
recognize objects in Cartesian coordinates using a high-resolution 300-GHz scanning radar
based on deep neural networks. They applied a fast Fourier transform (FFT) on each
of the received signals to obtain the radar image. Later, the radar image was converted
from a polar radar coordinate to a Cartesian coordinate and used as an input into the
deep convolutional neural network. Patel et al. [123] proposed an object classification
based on a deep learning approach directly applied to automotive radar spectra for scene
understanding. Firstly, they used a multidimensional FFT on the radar spectra to obtain the
3D Range-Velocity-Azimuth maps. Secondly, a Region of Interest (ROI) is extracted from the
Range-Azimuth maps and used as an input to the DCNNSs. Their approach could be seen
as a potential substitute for conventional radar signal processing and has achieved better
accuracy than the machine learning methods. This approach is particularly interesting, as
most of the literature uses the full radar spectrum after the multidimensional FFT.

Similarly, Benco et al. [124] used radar signals to illustrate a deep learning-based
vehicle detection system for autonomous driving applications. They represent the radar
information as a 3D tensor using the first two spatial coordinates (i.e., Range-Azimuth)
and then add the third dimension that contains the velocity information, therefore making
it a complete Range-Azimuth-Doppler 3D radar tensor and forwarding it as the input to
the LSTM. This is in contrast with the earlier approaches in the literature, where they first
process the tensor using the CFAR algorithm to acquire 2D point clouds that distinguish
the real targets from the surrounding clutter. However, this procedure may remove some
important information from the original radar signal.

The authors of [125] presented a uniquely designed CNN, which they named RT-Cnet.
This network takes as the input both the target-level (i.e., range, azimuth, RCS, and Doppler
velocity) and low-level (Range-Azimuth-Doppler data cube) radar data for the multi-class
road user’s detection system. The system uses a single radar frame and outputs both the
classified radar targets, as well as their object proposal created based on the DBSACAN
clustering algorithm [68]. In a nutshell, RT-Cnet performs object classification based on
low-level data and the target-level radar data. The inclusion of the low-level data (i.e.,
speed distribution) improved the road user’s classification against the clustering methods.
The object detection task is achieved through a combination of the RT-Cnet and a clustering
algorithm that generates the bounding box proposal. A radar target detection scheme
based on a four-dimensional space of Range-Doppler-Azimuth and elevation attributes
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acquired from radar sensors was studied in [126]. Their approach’s main aim was to replace
the entire conventional module of detection and beamforming from the classical radar
signal processing system.

Furthermore, radar Range-Velocity-Azimuth spectrums generated after 3D-FFT have
been applied successfully in many other tasks, like human fall detection [127], human-robot
classification [128], and pose estimation [129,130].

4.3. Radar Micro-Doppler Signatures

The dynamic moving objects within a radar field of view (FOV) generate a Doppler
frequency shift in the returned radar signal, referred to as the Doppler effect. The Doppler
effect is proportional to the target velocity. Moving objects consist of moving parts or
components that vibrate, rotate, or even oscillate around them, with a different motion
to the bulk target motion trajectory. The rotation or vibration of these components may
induce an additional frequency on the radar returned signals and create a sideband Doppler
velocity known as the micro-Doppler signature. This signature provides an image-like
representation that can be utilized potentially for target classification or identification using
either machine learning or deep learning algorithms.

Therefore, this motion-induced Doppler modulation may be captured to determine
the dynamic nature of objects. Typical examples of micro-Doppler signatures for human
walking are the frequency modulation motion induced by swinging components such
as the arms and the legs and, also, the motion generated from the rotating propellers of
helicopters or unmanned aerial vehicles (UAVs), etc.

The authors of [131] introduced the idea of a micro-Doppler signature and moved
on to provide a detailed analysis and the mathematical formulation of different micro-
Doppler modulation schemes [132,133]. Ideally, there are various methods for micro-
Doppler signature extractions in the literature [134]. The most well-known technique
among them is the time—frequency analysis called short-time Fourier transform (STFT).
The STFT of a given signal x(f) is estimated mathematically, as expressed in [132] by:

STET(x(1)) = X(t, f) = / x(Bw(t — 7)1 at (16)

where w(t) is the weighting function, and x(t) is the returned radar signal.

Compared to the standard Range-Velocity FFT, STFTs are calculated by dividing a
long-time radar signal into shorter frames of equal lengths and After that, computing the
FFT on the segmented frames. This procedure can be exploited to estimate the object’s
velocity, representing the various Doppler signatures of the object’s moving parts. There
are many methods for extracting radar micro-Doppler signatures with better resolutions
than the STFT method; however, discussing them is not within the scope of this work.

Over the last decade, radar-based target classification using micro-Doppler features
has gained significant research interest, especially with the recent prevalence of high-
resolution radars (like the 77-GHz radar), resulting in much more distinct feature repre-
sentations. In [135], different deep learning methods were applied to the micro-Doppler
signatures obtained from Doppler radar for car, pedestrian, and cyclist classifications. The
authors of [136,137] extracted and analyzed the micro-Doppler signature for pedestrian and
vehicle classifications. In [138], the micro-Doppler spectrograms of different human gait
motions were extracted for human activity classifications. Similarly, the authors of [139]
performed both human detection and activity classification, exploiting radar micro-Doppler
spectrograms generated from Doppler radar using DCNNs. However, without the range
and angle dimensions, their system cannot spatially detect humans but only predict a
human presence or absence from the radar signal.

Angelov et al. [38] demonstrated the capability of different DCNNs to recognize
cars, people, and bicycles using micro-Doppler signatures extracted from an automotive
radar sensor. The authors of [140] presented an approach based on hierarchical micro-
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Doppler information to classify vehicles into two groups (i.e., wheeled and tracked vehicles).
Moreover, P. Molchanov et al. [141] presented an approach to recognized small UAVs and
birds using their signatures measured with 9.5-Ghz radar. The features extracted from the
signatures were evaluated with SVM classifiers.

4.4. Radar Point Clouds

The idea of radar point clouds is derived from computer vision domains concerning
3D point clouds obtained from Lidar sensors. Point clouds are unordered /scattered 3D data
representations of information acquired by 3D scanners or Lidar sensors that can preserve
the geometric information present in a 3D space and do not require any discretization [142].
This kind of 3D data representation provides high-resolution data that is very rich spatially
and contains the depth information, compared to 2D grid image representations. Hence,
they are the most commonly used representations for different scene understanding tasks,
such as object segmentation, classification, detection, and many more.

Even though radar provides 2D data in polar coordinates, the radar signal can also
be represented in the form of point clouds but differently. In conventional radar signal
processing, a multi-dimensional 2D-FFT is usually conducted on the reflected radar signals
to resolve the range and the velocity of the targets in front of the radar sensor. Later,
a CFAR detection is applied to separate the targets from the surrounding clutter and
noise. With this approach, the detected peak of the targets after CFAR can be viewed (or
represented) as a point cloud with its associated attributes, such as the range, azimuth,
RCS, and compensated Doppler velocity. Therefore, a radar point cloud p can be defined
as a sequence of n = X independent points p; € R, i = 1,...,n, in which the order of
each point in the point cloud is insignificant. For each radar detection, the radial distance,
azimuth angle (¢), radar cross-section (RCS), and the ego-motion compensated Doppler
velocity can be generated. Therefore a d = 4 dimensional radar point cloud is acquired.

Some studies have recently started implementing deep learning models using radar
point clouds for different applications [45,49-51,143,144]. The authors of [51] presented the
first article that employed radar point clouds for semantic segmentation. They used radar
point clouds as the input to the classification algorithm, instead of feature vectors acquired
from the clustered radar reflections. In essence, they assigned a class label to each of the
measured radar reflections. In reference [45], Andreas Danzer et al. employed the PointNet
++ [145] model using radar point clouds for 2D object classifications and bounding box
estimations. They used the popularly known PointNets family model, which was ideally
designed to consume 3D Lidar point clouds, and adjusted it to fit radar point clouds with
different attributes and characteristics.

O. Schumann et al. [50] proposed a new pipeline to segment both static and moving
objects using automotive radar sensors for semantic (instance) segmentation applications.
They used two separate modules to accomplish their task. In the first module, they
employed 2D CNN to segment the static objects using radar grid maps. To achieve that,
they introduced a new grid map representation by integrating the radar cross-section
(RCS) histogram into the occupancy grid algorithm proposed in [146] as a third additional
dimension, which they named the RHG-Layer. In the second module, they introduced
another novel recurrent network architecture that accepted radar point clouds as inputs for
instance-segmentation of the moving objects. The final results from the two modules were
merged at the final stage of the pipeline to create one complete semantic point cloud from
the radar reflections. Zhaofei Feng et al. [49] presented object segmentation using radar
point clouds and the PointNet ++. Their method explicitly detected and classified the lane
marking, guardrail, and moving cars on a highway.

S. Lee [144] presented a radar-only 3D object detection system trained on a public
radar dataset based on deep learning. Their work aimed to overcome the lack of enough
radar-labeled data that usually led to overfitting in deep learning training. They introduced
a novel augmentation method by transforming the Lidar point clouds into radar-like point
clouds and adopted Complex-YOLO [147] for one-stage 3D object detection.
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4.5. Radar Signal Projection

In this method, radar detection or point clouds are usually transformed into a 2D
image plane. The relationship between the radar coordinate, the camera coordinate, and
the coordinate where the object is situated plays a vital role in this case. Therefore, the
camera calibration matrices (i.e., intrinsic and extrinsic parameters) are used to transform
the radar points (i.e., detections) from the world coordinate into a camera plane.

In this way, the generated radar image contains the radar detections and its character-
istics superimposed on the 2D image grid and, as such, can be applied to deep learning
classifiers. Many studies have used these radar signal representations as the input for
various deep learning algorithms [28,30,54,58].

Table 1 summarizes the reviewed deep learning-based models employing various
radar signal representations for ADAS and autonomous driving applications over the past
few years.

4.6. Summary

A comprehensive review about radar data processing based on deep learning models
is provided, covering different applications such as object classification, detection, and
recognition. The study was itemized based on different radar signal representations used as
the input to various deep learning algorithms. This is chosen mainly because radar signals
are unique, with their own characteristics that are different from other data sources, such as
2D images and Lidar point clouds, which are frequently exploited in deep learning research.

5. Deep Learning-Based Multi-Sensor Fusion of Radar and Camera Data

To our best knowledge, no review paper has explicitly focused on the deep learning-
based fusion of radar signals and camera information for different challenging tasks
involving autonomous driving applications. This makes it somewhat challenging for
beginners to venture into this research domain. In this respect, we provide a summary
and discussions of the recently published papers according to the new fusion algorithms,
fusion architectures, and fusion operations, as well as the datasets published between
(2015-current) for the deep multi-sensor fusion of vision and radar information. We also
discuss the challenges and possible research directions and potential open questions.

The improved performance achieved by neural networks in processing image-based
data has now made some researchers tempted to incorporate additional sensing modalities
in the form of multimodal sensor fusion to improve their performance further.

Therefore, by combining more than one sensor, the research community wants to
achieve a more accurate, robust, real-time, and reliable performance in any task involved
in environmental perceptions for autonomous driving systems. To this end, deep learning
models are now being extended to perform deep multi-sensor fusion in order to benefit
from the complementarity data from multiple sensing models, particularly in complex
environmental situations like an autonomous driving case.

However, most of the recently published articles about DCNN fusion-based algorithms
focused on combining camera and Lidar sensor data [31,33-35,148].

For instance, reference [31] performed a Multiview 3D (MV3D) object detection by
a fusion of the feature representations extracted from three different frames of Lidar and
camera—namely, the Lidar bird’s eye view, Lidar front view, and the camera front view.
Other studies directly fused point cloud features and image features. Among these studies
is Point-fusion [148], which utilizes ResNet [89] and PointNet [149] to generate image
features and Lidar point cloud features, respectively, and then uses a global/dense fusion
network to fuse them.
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Table 1. Summary of the deep-learning algorithms using different radar signal representations.

Reference

Radar Signal
Representation

Network Model

Task

Object Type

Dataset

Remarks/Limitation

A. Angelov et al., [38]

Micro-Doppler
signatures

CNN and LSTM

Target classification

Car, people, and bicycle

Self-developed

Their dataset is small.
Hence, a larger radar dataset
is required to train the
neural network.

A. Danzer et al., [45]

Radar pointclouds

PointNet [149] and
Frustum PointNets [35]

Car detection

Cars

Self-developed

Their dataset is relatively
small, with only one radar
object per measurement
cycle. Besides, it contains a
few object classes.

O. Schumann et al., [50]

Radar pointclouds

CNN, RNN

Segmentation and
classification of static
objects

Car, building, curbstone,
pole, vegetation, and
other

Self-developed

Their approach needs to be
evaluated using a large-scale
radar dataset.

O. Schumann et al., [51]

Radar pointclouds.

PointNet++ [145]

Segmentation

Car, truck, pedestrian,
pedestrian group, bike,
and static object

Self-developed

They used the whole radar
point clouds as input, and
obtained probabilities for
each radar reflection point,
thus avoiding the clustering
algorithm. No semantic
instance segmentation was
performed.

S. Chadwick et al., [54]

Radar image

CNN

Distant vehicle detection

Vehicles

Self-developed

They used a very trivial
radar image generation that
does not consider the
sparsity of radar data.

Random forest classifier

Car, pedestrian, bike,

Only classes with many

O. Schumann et al., [117] Radar target clusters Classification truck, pedestrian group, Self-developed samples returned the
and LSTM .
and garbage highest accuracy.
. . Their system captured only
. . Bike, trolley, mannequin, . - .
M. Sheeny et al., [122] Range profile CNN Object dete(;t'l onand cone, traffic sign, stuffed Self-developed indoor objects, and they did
recognition not make use of the Doppler

dog

information.
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Table 1. Cont.

Reference Radar Slgn.al Network Model Task Object Type Dataset Remarks/Limitation
Representation
Their system works on the
Construction barrier, ROIs instead of the complete
motorbike, baby rang-azimuth maps. And
K. Patel et al., [123] Range-Azimuth CNN, SVM, and KNN Object classification carriage, bicycle, garbage Self-developed also the first to the allowed
container, car, and stop classification of multiple
sign objects with radar data in
real scenes.
They showed how to
Ranee-azimuth-Doppler leveraged the radar signal
B. Major et al., [124] & tensor: PP CNN Object detection Vehicles Self-developed velocity dimension to
' improve the detection
results
They are the first to utilized
: . . both low-level and
A Palffy et al., [125] Range—Az.lmuth and CNN Road users detection Pedestrians, cyclists, and Self-developed target-level radar data to
radar Point clouds cars .
addressed moving road user
detection.
. Range-Doppler- . 2-Classes object, and Self-built (in the Real-world data was not
D Brodeski etal, [126] Azimuth-Elevation CNN Target detection non-object anechoic chamber) included.
Their system could only
. . . detect humans presence or
Y. Kim and T. Mlc.ro—Doppler CNN Hur.nz.an detec.t1.0n ?md Human, dog, horse, and Self-developed absence in the radar signal
Moon [139] signatures activity classification car . .
since there is no range and
angle dimensions.
Radar Doppler information
S. Lee [144] Bird-eye- view 3D object detection Cars Cars Astyx HiRes [39] was not incorporated into

the network.




Sensors 2021, 21, 1951

24 of 45

Some studies recently considered a neural networks-based fusion of radar signals
with camera information to achieve different tasks in autonomous driving applications.
The distinctiveness of radar signals and the lack of accessible datasets have contributed
to insufficient studies, in that respect. Additionally, this could also be due to the high-
sparsity characteristic of radar point clouds acquired with most automotive radars (typi-
cally, <64 points).

Generally, the challenging task concerning using radar signals with deep learning
models is how to model the radar information to suit the required 2D image representation
needed by the majority of deep learning algorithms. Many authors have proposed different
radar signal representations in this respect, including Range-Doppler-Azimuth maps, radar-
grid maps, micro-Doppler signature, radar signal projections, raw radar point clouds, etc.
To this end, we itemized our review according to these four fundamental aspects—namely,
radar signal representations, fusion levels, deep learning-based fusion architectures, and
the fusion operations.

5.1. Radar Signal Representations

Radar signals are unique in their peculiar way, as they represent the reflection points
obtained from target objects within the proximity of the radar sensor field of view. These
reflections are accompanied by their respective characteristics, such as the radial distance,
radial velocity, RCS, angle, and the amplitude. Ideally, these signals are 1D signals that can-
not be applied directly to DCNN models, which usually require grid map representations
as the input for image recognition. Therefore, radar signals are required to be transformed
into 2D image-like tensors so that they can be practically deployed together with camera
images into deep learning-based fusion networks.

5.1.1. Radar Signal Projection

The radar signal projections technique is when the radar signals (usually, radar point
clouds or detections) are transformed into either a 2D image coordinate or into a 3D
bird-eye view. Usually, the camera calibration matrices (both intrinsic and extrinsic) are
employed to perform the transformation. In this way, a new pseudo-image is obtained that
can be consumed by the DCNN algorithms efficiently. A more in-depth discussion about
millimeter-wave radar and camera sensor coordinate transformations can be found in [150].
To this end, many deep learning-based fusion algorithms using vision and radar data that
are projected onto various domains are reported in the literature [47,48,55-57,100,151-156].

To alleviate the complex burden involved by the two-stage object detectors with
regards to region proposal generations, R. Nabati and H. Qi [47] proposed a radar-based re-
gion proposal algorithm for object detection for autonomous vehicles. They generate object
proposals and anchor boxes through the mapping of radar detections onto an image plane.
By relying on radar detections to obtain region proposals, they avoid the computational
steps from the vision-based region proposal method while achieving improved detection
results. In order to accurately detect distant objects, reference [54] fused radar and vision
sensors. First, the radar image representation was acquired via projecting the radar targets
into the image plane and also generating two additional image channels based on the
range and radial velocity. After that, they used an SSD model [7] to extract the feature
representations from both radar and vision sensors. Lastly, they used a concatenation
method to fuse the two features.

The authors of [55], projected sparse radar data onto the camera image’s vertical plane
and proposed a fusion method based on a new neural network architecture for object
detection. Their framework automatically learned the best level for which the sensor’s data
could improve the detection performance. They also introduced a new training strategy;,
referred to as Black-in, that selected the particular sensor to give preference at a time to
achieve better results. Similarly, the authors of [100] performed free space segmentation
using an unsupervised deep learning model (GANSs) incorporating the radar and camera
data in 2D bird-eye view representations. M. Meyer and G. Kuschk [56] conducted a 3D
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object detection using radar point clouds and camera images based on the deep learning
fusion method. They demonstrated how DCNNs could be employed for the low-level
fusion of radar and camera data. The DCNNs were trained with the camera images and the
BEV images generated from the radar point clouds to detect 3D space cars. Their approach
outperformed the Lidar camera-based settings even in a small dataset.

An on-road object detection system for forwarding collision warning was reported
in [151] based on vision and radar sensor fusion. Their sensor fusion’s primary purpose
is to compensate for a single sensor’s failure encountered in the series fusion architecture
by proposing a parallel architecture that relies on each sensor’s confidence index. This
approach improves the robustness and detection accuracy of the system. The fusion system
consists of three stages: the radar-based object detection, the vision-based object recognition,
and the fusion stage based on the radial basis function neural network (RBFNN) that runs
in parallel. In [152], the authors performed segmentation using radar point clouds and the
Gaussian Mixture Model (GMM) for traffic monitoring applications. The GMM is used as
a decision algorithm in the radar point clouds feature vector representation for point-wise
classification. Xinyu Zhang et al. [153] presented a radar and vision fusion system for
real-time object detection and identification. The radar sensor is first applied to detect the
effective target position and velocity information, which is later projected into an image
coordinate system of the road image collected simultaneously. An Rol is then generated
around the effective target and fed to a deep learning algorithm to locate and identify the
target vehicles effectively.

Furthermore, in the work of Vijay John and Seiichi Mita [57], the independent features
extracted from radar and monocular camera sensors were fused based on the Yolo object
detector in order to detect obstacles under challenging weather conditions. Their sensor
fusion framework consists of two input branches to extract the radar and camera-related
feature vectors and, also, two output branches to detect and classify obstacles into smaller
and bigger categories. In the beginning, radar point clouds are projected onto the image
coordinate system, generating a sparse radar image. To reduce the computational burden
for real-time applications, the same authors of [57] extended their work and proposed
a multitask learning pipeline based on radar and camera deep fusion for joint semantic
segmentation and obstacle detection. The network, which they named SO-Net, combined
vehicle and free-space segmentations within a single network. SO-Net consists of two input
branches that extract the radar and camera features independently, and the two output
branches represent the object detection and semantic segmentation, respectively [48].

Similarly, reference [154] adopted the Yolo detector and presented an object detection
method based on the deep fusion of mm-wave radar and camera information. They first
used the radar information to create a single-channel pseudo-image and then integrate it
with an RGB image acquired by the camera sensor to form a four-channel image given to
the Yolo object detector as the input.

A novel feature fusion algorithm called SAF (spatial attention fusion) was demon-
strated in [58] for obstacle detection based on the mm-wave radar and vision sensor. The
authors leveraged the radar point cloud’s sparse nature and generated an attention matrix
that efficiently enables data flow into the vision sensor. The SAF feature fusion block con-
tained three convolutional layers in parallel to extract the spatial attention matrix effectively.
They first proposed a novel way to create an image-like feature using radar point clouds.
They built their object detection fusion pipeline with camera images adapting the fully con-
volutional one-stage object detection framework (FCOS) [155]. The authors claimed a better
average precision performance than the concatenation and element-wise addition fusion
approaches, which they suggested were trivial and not suitable for heterogeneous sensors.

Mario Bijelic et al. [156] developed a multimodal adverse weather dataset incorporat-
ing a camera, Lidar, radar, gated near-infrared (NIR), and far-infrared (FIR) sensory data to
detect adverse weather objects for autonomous driving applications. Moreover, they pro-
posed a novel real-time multimodal deep fusion pipeline that exploited the measurement
entropy that adaptively fused the multiple sensory data, thus avoiding the proposal-based
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level fusion methods. The fusion network adaptively learns to generalize across different
scenarios. Similarly, the radar streams and all the other sensory data were all projected into
the camera coordinate system.

One of the problems with radar signal transformations exploited by all of the methods
mentioned above is that some essential radar information could be lost while conducting
the projections. Besides, some of the spatial information from the original radar signals
could not be utilized.

5.1.2. Radar Point Clouds

As already discussed in Section 4, millimeter-wave radar signals can be represented
as 2D /3D point clouds, just like Lidar sensors, but with different characteristics. They can
be applied directly into the Point-Net model [149] for object detection and segmentation.
Conventionally, the Point-Net model was designed to consume 3D point clouds obtained
with the Lidar sensor for 3D object detection and segmentation. However, the authors
of [45] extended the idea with automotive radar data.

To our knowledge, there is no available study in the literature that processed raw
radar point clouds with various Point-Net models and proceeded to fuse them with
corresponding camera image streams similar to the PointFusion reported in [148]. More
studies are needed in this respect.

The main drawback of applying radar point clouds directly to the Point-Net model
is losing some basic information by the main radar signal processing chain, as the radar
point clouds are obtained through CFAR processing of the raw radar data.

5.1.3. Range-Doppler-Azimuth Tensor

Another way to represent the radar signal is by generating the Range-Doppler-
Azimuth tensor using low-level automotive radar information (i.e., the in-phase and
quadrature signals (I-Q) of the radar data frames). In this way, a 2D tensor or 3D radar
cube can be acquired that can be applied to DCNN classifiers. Accordingly, this is achieved
through conducting 2D-FFT on each of the radar data frames to create the Range-Doppler
image, with the first FFT performed across each of the columns (range-FFT), generating the
range—time matrix. The second FFT is conducted on each of the range bins (Doppler FFT)
over the range—time tensor to create the Range-Doppler map, while the third FFT (Angle
FFT) is performed on the received antenna dimensions to resolve the direction of arrival.

Recently, some authors performed radar and vision deep neural networks-based
fusion by processing low-level radar information to generate Range-Doppler-Azimuth
maps [53,153,154]. For instance, reference [53] proposed a new vehicle detection architec-
ture based on the early fusion of radar and camera sensors for ADAS. They processed the
radar signals and camera images individually and fused their spatial feature maps at differ-
ent scales. A spatial transformation branch is applied during the early stage of the network
to align the feature maps from each sensor. Regarding the radar signals, the feature maps
are generated via processing the 2D Range-Azimuth images acquired from the 3-DFFT on
the low-level radar signals instead of the radar point clouds approach that may result in the
loss of some contextual information. The feature maps are feed to SSD [7] heads for object
detection. The authors showed that their approach can efficiently combine radar signals
and camera images and produce a better performance than individual sensors alone.

In reference [98], an object detection pipeline based on radar and vision cross-supervision
was presented for autonomous driving under adverse weather conditions. The vision data
is first exploited to detect and localize 3D objects. Then, the vision outputs are projected
onto Range-Azimuth maps acquired with radar signals for domain supervision of the
network. In this way, their model is able to detect objects even with radar signals alone,
especially under complex weather conditions in autonomous driving applications, where
the vision sensor is bound to fail. A multimodal fusion of radar and video data for human
activity classification was demonstrated in [157]. The authors investigated how possible
it is to achieve a better performance when the two feature representations from multiple
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modalities are fused in the early, feature, or decision stage based on a neural network
classifier. A single-shot detector is applied to the video data to get the feature vector rep-
resentations. Simultaneously, micro-Doppler signatures are extracted from the raw radar
data in a custom CNN model. However, if radar Range-Doppler-Azimuth images are used
with CNNis for classification, the neural networks cannot localize objects or differentiate
multiple objects in one image.

5.2. Level of Data Fusion

In this section, we review and discuss various studies that employ deep learning
networks as means of fusion using radar and vision data according to the level where the
two pieces of information are fused.

Conventionally, three primary fusion schemes were designed according to the level
where the multi-sensor data merged, including the data level, feature level, and decision
level. Subsequently, these schemes are exploited by deep learning-based fusion algorithms
in various applications. However, as reported by the authors of [158], neither of the schemes
mentioned above can be considered superior in terms of performance.

5.2.1. Data Level Fusion

In data-level fusion (also called low-level), the raw data from radar and vision sensors
are fused with deep learning models [47,153,157-161]. It consists of two steps: first, the
target objects are predicted with the radar sensor. Then, the predicted object’s region,
representing the possible presence of obstacles, is processed with a deep learning frame-
work. Among all the various fusion methods, the low-level fusion scheme is the most
computationally expensive approach, as it works directly on the raw sensor data. The
authors of [43] proposed an object detection system based on the data-level fusion of radar
and vision information. In the first instance, radar detections are relied upon to generate a
possible objects region proposal, which is less computationally expensive than the region
proposal network generation in two-stage object detection algorithms. Afterward, the
ROlIs are processed with a Fast R-CNN [105] object detector to obtain the object’s bounding
boxes and the classification scores. The authors of [159] proposed object detection and
identification based on radar and vision data-level fusion for autonomous ground vehicle
navigation. The fusion system was built based on YOLOV3 architecture [10] after mapping
the radar detections onto image coordinates. In particular, the radar and vision information
were used to validate the presence of a potential target.

X. Zhang et al. [153] proposed an obstacle detection and identification system based
on mm-wave radar and vision data-level fusion. MM-wave radar was first used to identify
the presence of obstacles and then subsequently create ROIs around them. The ROIs are
processed with a R-CNN [104] to realize the real-time obstacle detection and bounding box
regression. Similarly, reference [157] employed data-level, feature-level, and decision-level
fusion schemes to integrate radar and video data in DCNN networks for human activity
classification. Vehicle localization based on the vehicle part-based fusion of camera and
radar sensors was also presented in [161]. Deep learning was adopted to detect the target
vehicle’s left and right corners.

5.2.2. Feature Level Fusion

In feature level fusion, the extracted features from both radar and vison are combined
at the desired stages in deep learning-based fusion networks [53-58,162]. In the work
of Simon et al. [54], a CNN detection algorithm built based on an SSD detector [7] was
applied for the feature-level fusion of radar and vision data. John et al. [57] proposed a
deep learning feature fusion scheme by adapting the Yolo object detector [8]. They also
demonstrated how their feature-level fusion of radar and vision outperformed the other
fusion methods. However, their feature fusion scheme appeared trivial, as the radar point
cloud’s sparse characteristics were not considered while creating the sparse radar image.
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Besides, the two output branches also created additional weights for the network training,
which may have eventually led to overfitting.

In [55], a deep learning-based fusion architecture based on camera and radar data was
presented for vehicle detection. They fused both radar and camera features extracted with
a VGG [88] at a deeper stage of the network. One of the critical innovations about their
framework was that they designed it in such a way that it could learn by itself the best
depth level where the fusion of the features would result in a better accuracy. A low-level
feature fusion was demonstrated based on deep CNNs utilizing radar point clouds and
camera images for 3D object detection [56]. They discussed how they obtained a better
average precision even with a small dataset compared to the Lidar and vision fusion
approach under the same environmental settings. However, they did not use the radar
Doppler features as the input of the fusion network. Moreover, in [53], the independent
features extracted across radar and camera sensor branches were fused at various scales
of the designed network. Then, they applied the SSD heads to the fused feature maps to
detect vehicles for ADAS application. They also incorporated a spatial transformation
block at the early layers of the network to effectively align the feature maps generated from
each sensing branch spatially.

5.2.3. Decision-Level Fusion

For decision-level fusion, the independent detections acquired from the radar and
vision modules are fused in the later stage of the deep neural network [157,163]. In [163], a
target tracking scheme was proposed using mm-wave radar and a camera DNN-LSTM-
based fusion technique. Their proposed fusion technique’s key task was to provide reliable
tracking results in situations where either one of the sensors failed. They first located target
objects on the image frame and then generated a bounding box around them according to
the camera data. Then, they used a deep neural network to acquire the object’s positions
according to the bounding box dimensions. The fusion module validated the object po-
sitions with those obtained by the radar sensor. Finally, an LSTM was applied to create
a continuous target trajectory based on the fused positions. To assist visually impaired
people efficiently navigating in a complex environment, Long et al. [164] presented a new
fusion scheme using mm-wave radar and an RGB depth sensor, where they employed a
mean shift algorithm to process RGB-D images for detecting objects. Their algorithm fused
the output obtained from the individual sensors in a particle filter.

5.3. Fusion Operations

This section reviewed the deep learning-based fusion frameworks of radar and vision
data according to the fusion operation employed.

According to the different fusion schemes discussed, there should be a particular tech-
nique to combine the radar and vision data, specifically for feature-level fusion schemes.
The most commonly employed fusion operations are element-wise addition, concatena-
tions, and the spatial attention fusion proposed recently by [58], shown in Figure 10c.

Radar signal
features H
Radar signal N
C)—» features '
Image features

Image features

(b) (c)

Figure 10. Fusion operation. (a) Element-wise addition. (b) Concatenation. (c) Spatial attention method [58].
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If we denote M; and N; to represents the radar and vison sensor models, while f M;

and fNi represent their feature maps at the I layer of the convolutional neural network,
then, for the element-wise addition, the extracted features from the radar and vision are
combined to calculate their average mean, as illustrated in [158] and depicted below:

fi=H (fl]\le +flzij1) (17)

where H;_; denotes the mathematical function describing the feature transform performed
at the I'" layer of the network.

For the concatenation operation, the radar and vision feature maps are stacked along
the depth dimension. However, at the end of the fully connected layers, the extracted
feature maps are typically flattened into vectors before concatenating along their row
dimensions. This is illustrated by Equation (18):

fr=Ha (A5 A RY) (18)

According to most of the papers reviewed, feature concatenation and element-wise
addition fusion operations are the most widely employed techniques for radar and vision
deep learning-based fusion networks, particularly at the network’s early and middle stages.
For example, the authors in [53-55,57] both applied feature concatenation operations into
their respective systems, while [157] used an element-wise addition scheme.

However, most of the schemes (both element-wise addition and concatenation op-
erations) mentioned earlier do not consider the radar point cloud’s sparse nature while
extracting their feature maps. Besides, both of them could be viewed as trivial techniques
while tackling heterogeneous sensor features. To overcome that, Shuo Chang et al. [58]
proposed a spatial attention fusion (SAF) algorithm utilizing radar and vision information
integrated at the feature level. Specifically, the SAF fusion block is a CNN subnetwork
consisting of convolutional layers, each with independent receptive fields. They are fed
with the radar pseudo-images acquired using radar point clouds to generate the spatial
attention information that will be fused with vision feature maps. In this way, the authors
obtained promising results for object detection problems.

Moreover, M. Bijelic [156] proposed an adaptive deep fusion scheme utilizing Lidar,
RGB camera, gated camera, and radar sensory data. All the multi-sensor data were
projected onto a common camera plane. The fusion scheme depends on sensor entropy
to extract the features at each exchange block before analyzing them with SSD heads for
object detection.

5.4. Fusion Network Architectures

This section reviews radar and camera deep learning-based fusion schemes according
to the network architectures designed by the various published studies.

Different architectures have been designed purposely in the deep learning domains to
suit a particular application or task targeted. For instance, in object detection and related
problems, DCNNSs are already grouped into either two-stage or one-stage object detectors.
Each has its pros and cons toward achieving a better accuracy. In this regard, the neural
network-based fusion of radar and vision models for object detection also follows the same
network set-up as mentioned above in most of the published articles.

For example, several studies performed radar and vision deep learning-based fusion
when building their architectures on top of one-stage object detector [53,54,57,58,154,159]
or two-stage object detector models [47,153,156]. However, some studies extended the
network structure to capture the peculiarities and more semantic information in radar
signals [55]. In order to accommodate the additional pseudo-image channel generated
from the radar signals, the authors of [159] built their network structures based on Reti-
naNet [165] with a VGG backbone [88]. One interesting point about their network architec-
ture is that the network decides the best level to fuse radar and vision data to obtain a better
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performance. Besides, feature fusion is performed in the deeper layers of the network for
optimal results.

Moreover, the authors of [98] built their fusion framework based on 3D autoencoders
that consumed the RAmaps snippets as inputs after performing cross-modal supervision
with vision detection on them.

Figure 11 gives some examples of the recent deep learning-based fusion architectures
consuming both radar and vision for object detection and bounding regression. Addition-
ally, we provided a summary of all the reviewed papers in Table 2.
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Figure 11. Example of some of the recent deep learning-based fusion architectures exploiting radar and camera data for
object detection. (a) Fusion-net [53], (b) CRF-net [55], (c) Spatial fusion-net [58], and (d) ROD-net [98].
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Table 2. A summary of deep learning-based fusion methods using radar and vision data.

Sensors Signal

Network

Reference Sensors Representation Architecture Level of Fusion Fusion Operation  Problem Object Type Dataset
. . RGB image and
R', Nabati and H. Radar and visual radar signal Fast-R-CNN Mid-level fusion Region proposal Object detection 2D vehicle Nuscenes [41]
Qi [47] camera .. (Two-stage)
projections
RGB image and Yolo ob]ect. Vehicle Detection .
. detector (Tiny Feature Vehicles and free
V.John et al., [48] Radar and camera  radar signal Feature level . and Free space Nuscenes [41]
e Yolov3), and, concatenation : space
projections Encoder-decoder Segmentation
RGB image and Modified SSD
L.Teck-Yian Radar With two branches . Feature Detection and .
etal, [53] Radar and camera Range-Azimuth each for one Barly level fusion concatenation classification 3D vehicles Self-recorded
image sensor
RGB image and Feature
S. Chadwick Radar and visual Radar . One-stage detector Middle concatenation and  Object detection 2D vehicle Self-recorded
etal., [54] camera range-velocity "
addition
maps
. . RGB image and . .
F. Nobis et al. Radar and visual . RetinaNetwith a Feature . . .
(CRF-Net), [55] camera rad.ar S}gnal VGG backbone Deeper layers concatenated Object detection 2D road vehicles NuScenes [41]
projections
Meyer and Radar and visual RGB image and Faster RCNN . . . . Astyx hiRes
Kuschk [56] camera radar point clouds  (Two-stage) Early and Middle  Average Mean Object Detection 3D vehicle 2019 [43]
vehicles,
Vijay John and RGB 1mage and Yolo ob]ect. Feature 2D image-based pedestrians,
A, Radar and camera  radar signal detector (Tiny Feature level(late) . . two-wheelers, and  Nuscenes [41]
Seiichi Mita [57] . concatenation obstacle detection .
projections Yolov3) objects (movable
objects and debris)
Fully
S. Chan RGB image and girc;jlsifautelog‘:)élec : spatial attention Bicycle, car,
: & Radar and camera  radar signal . & ) Feature level feature fusion Obstacle detection =~ motorcycle, bus, Nuscenes [41]
etal., [58] . detection .
projections framework (SAF) train, truck
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Table 2. Cont.

Reference Sensors Sensors Slgr}al NetV\{ork Level of Fusion Fusion Operation  Problem Object Type Dataset
Representation Architecture
3D autoencoder,
. 3D stacked
2D image and .
W Yizhou Radar and Stereo Radar hourglass, Cross-modal Pedestrians,
) . . and 3D stacked Mid level learning and Object detection cyclists, CRUW [98]
etal.(RODnet), [98] videos Range-Azimuth h . o,
maps ourglass with supervision and cars.
P temporal
inception layers
V. Lekic and Z. Radar and visual RGB image and GANs (CMGGAN . Feature fusion and .
) : Mid-level . . Segmentation Free space Self-recorded
Babic [100] camera Radar grid maps model) semantic fusion
. Gated image, RGB  Modified Early feature A noyel
R, Camera, lidar, . . . . multimodal
Mario Bijelic image, Lidar VGG [88] fusion (Adaptive Feature . . . .
radar, and gated o . . Object detection Vehicles dataset in adverse
etal., [156] projection, and backbone, and fusion steered by concatenation
NIR sensor radar projection SSD blocks entropy) weather
Pro) Py dataset [156]
Richard J. de Eacdz;mage wnd Data, middle and Feature Human Activit
; Radar and camera . CNN feature level . an Acivity Walking person Self-recorded
Jong [157] micro-Doppler concatenation Classification

spectrograms
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6. Datasets

This section provides a review of the radar signal datasets available in the literature,
as well as the datasets containing radar data synchronized with other sensors, such as a
camera and Lidar, applied in different deep-multimodal fusion systems for autonomous
driving applications. Ideally, a massive amount of annotated datasets is necessary in order
to achieve the much-needed performance using deep learning models for any tasks in
autonomous driving applications.

A high-quality, large-scale dataset is of great importance to the continuous develop-
ment and improvements of the object recognition, detection, and classification algorithms,
particularly in the deep learning domain. Similarly, to train a deep neural network for
complex tasks such as those in autonomous driving applications requires a huge amount
of training data. Hence, a large-scale, high-quality, annotated real-world dataset containing
diverse driving conditions, object sizes, and various degrees/levels of difficulties for bench-
marking is required to ensure the network robustness and accuracy against complex driving
conditions. However, it is quite challenging to develop a large-scale real-world dataset.

Apart from the data diversity and the size of the training data, the training data quality
has a tremendous impact on the deep learning network’s performance. Therefore, to gener-
ate high-quality training data for a model, highly skilled annotators are required to label
the information (e.g., images) meticulously. Similarly, consistency in providing the model
with the necessary high-quality data is paramount in achieving the required accuracy.

Most of the high-performing systems currently use deep learning networks that
are usually trained with large-scale annotated datasets to perform tasks such as object
detection, object classification, and segmentation using camera images or Lidar point
clouds. In essence, several large-scale datasets have been published over the past years
(e.g., [162,166-169]).

However, the vast majority of these datasets provide synchronized Lidar and camera
recordings without radar streams. This is despite the strong and robust capabilities of
automotive radar sensors, especially in situations where other sensors (e.g., camera and
Lidar) are ineffective, such as rainy, foggy, snowy, and strong/weak lighting conditions.
Similarly, radars can also estimate the Doppler velocity (relative radial velocity) of obstacles
seamlessly. Yet, they are underemployed. Some of the reasons why radar signals are rarely
processed with deep learning algorithms could be the lack of publicly accessible datasets,
their unique characteristics (which make them difficult to interpret and process), and the
lack of ground truth annotations.

In this regard, most earlier studies by many researchers usually self-built their datasets
to test their proposed systems. However, creating a new dataset with a radar sensor is time-
conscious, and as such, it may take some time to develop a large-scale dataset. Moreover,
these datasets and benchmarks are not usually released for public usage. Hence, they do
not encourage more research or algorithm developments and comparisons, leaving radar
signal-based processing with neural networks miles behind in comparison to camera and
Lidar data processing in the computer vision and deep learning domains.

From the beginning of 2019-current, more datasets with radar information are be-
ing published [41-44,52,98,170,171], therefore enabling more research to be realized using
high-resolution radars and enhancing the development of multimodal fusion networks for
autonomous driving using deep neural network architectures. For example, the authors
of [170] developed the Oxford radar dataset for autonomous vehicle and mobile robot
applications, benefitting from the FMCW radar sensor’s capabilities in adverse weather
conditions. The large-scale dataset is an upgrade to their earlier release [42], incorporating
one mm-wave radar and two additional Velodyne 3D Lidars and recorded for over 280 km
of urban driving at Central Oxford under different weather, traffic, and lighting condi-
tions. The radar data provided contained range—angle representations without ground
truth annotations for scene understanding. Even though they could not release the raw
radar observation, the Range-Azimuth data gave some clue into the real radar recordings
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compared to the 2D point clouds given in reference [41]. However, one of the drawbacks
of this dataset was the absence of the ground truth-bounding box annotations.

To facilitate research with high-resolution radar data, M. Meyer and G. Kuschk [43]
developed a small automotive dataset with radar, Lidar, and camera sensors for 3D object
detection. The dataset provided around 500 synchronized frames with about 3000 correctly
labeled 3D objects of ground truth annotations. They provided the 3D bounding box
annotations of each sensing model based on Lidar sensor calibrations. However, the size of
this dataset was minimal (a few hundred frames), especially for a deep learning model,
where a massive amount of data is a prerequisite to performing and avoiding overfitting
issues. Similarly, the dataset has limitations concerning different environmental conditions
and scenes captured.

Recently, the authors of [44] presented a CARRADA dataset comprising a synchro-
nized camera and low-level radar recordings (Range-Angle and Range-Doppler radar
representations) to motivate deep learning communities to utilize radar signals for multi-
sensor fusion algorithm developments in autonomous driving applications. The dataset
provided three different annotations formats, including sparse points, bounding boxes,
and dense masks, to facilitate or explore various supervised learning problems.

The authors of [171], presented a new automotive radar dataset named SCORP that
can be applied to deep learning models for open space segmentation. It is the first publicly
available radar dataset that includes ADC data (i.e., raw radar I-Q samples) to encourage
more research with radar information in deep learning systems. The dataset is available
with three different radar representations—namely, Sample-Chirp-Angle tensor (SCA),
Range-Azimuth-Doppler tensor (RDA), and DoA tensor (a point cloud representation
obtained after polarizing to the Cartesian transformation of the Range-Azimuth (RA) map).
Similarly, they used three deep learning-based segmentation architectures to evaluate their
proposed dataset using the radar representations mentioned earlier in order to find their
effects on the model architecture.

Similarly, the authors of [52] developed a large-scale radar dataset for various objects
under multiple situations, including parking lots, campus roads, and freeways. Most
importantly, the dataset was collected to complement some challenging scenarios where
cameras are usually influenced, such as poor weather and varying lighting conditions.
The dataset was evaluated for object classification using their proposed CFAR detector
and micro-Doppler classifier (CDMC) algorithm, consisting of two stages: detection and
classification. They performed raw radar data processing to generate the object location
and Range-Angle radar data cube in the detection part, while, in the classification part,
STFFT processing was conducted on the radar data cube, concatenated afterward, and
then, it was put forward as the input to the deep learning classifier. They compared the
performance of their framework with a small decision tree algorithm using handcrafted
features. Even though the dataset was not publicly available at the time of writing this
paper, the authors promised to release some portion of it for public usage.

Reference [41] was the first publicly published multimodal dataset captured based on
a full 360° sensor suite coverage of radar, Lidar, and cameras with an autonomous vehicle
explicitly developed for public road usage. It was also the first dataset that provided radar
information, 3D object annotations, and data from nighttime and rainy conditions, as well
as object attribute annotations. It had the highest 3D object annotation compared to most
of the previously published datasets, like the KITTI dataset [167]. However, this dataset
provided only preprocessed nonannotated sparse 2D radar point clouds with few points per
frame, ignoring the object’s velocity and textural information in the low-level radar streams.
To address that, Y. Wang et al. [98] developed another dataset called CRUW that contained
a synchronized stereo vision and radar data frames (Range-Azimuth maps) for different
autonomous driving conditions. In particular, the dataset was collected to evaluate their
proposed framework for object detection via vision-radar cross-modal supervision under
adverse weather. They acknowledged that, by relying purely on radar Range-Azimuth
maps, multi-object detection could be enhanced compared to using radar point clouds
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that ignore the object speed and textural information. The CRUW dataset contains about
400,000 frames of radar and vision information under several autonomous vehicle driving
conditions recorded on campuses, in cities, on streets, on highways, and in parking lots.

In order to perform multimodal fusion in complex weather conditions for autonomous
vehicles, the authors of [156] developed the first large-scale adverse weather dataset
captured with a camera, Lidar, radar, gated NIR, and FIR sensors containing up to 100,000
labels (both 2D and 3D). The dataset contains uncommon complex weather conditions,
including heavy fog, heavy snow, and severe rain, collected for about 10,000 km of driving.
Similarly, they assessed their novel dataset’s performance by proposing a deep multimodal
fusion system that fuses the multimodal data according to the measurement entropy. This
contrasts with the proposal-level fusion approach, achieving 8% mAp on hard scenarios,
irrespective of the weather conditions. Table 3 summarizes some of the publicly available
datasets containing radar data and other sensing modalities.

Table 3. A summary of the available datasets containing radar data and/without other sensors data.
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Sensing . . . . Sopts
2 . Frame  Signal Type of Recording Recording Published Availability/
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Visual (Cameras 2D/3D Nightime/ (https:/ /www.
Cameras and 3 2D radar . . Boston, nuscenes.org/
Nuscenes (6), 3D Radars) 1K bounding 1HZ/ oint 23 object rain and Singa- 2019 download
[41] Lic,lar, and and 390 K Floé)l(ﬁ) 10HZ Islouds classes lighth " por%. (accesse‘d on
Radars (5)  frames of ’ weathe 20 January
Lidar 2021))
Radar Car, bus, Public,
Astyx visual 500 3D 3D Radar irlleotorcy— 9}%&LW astyx
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- Lidar trailer, 30 December
and truck 2020))
Sparse Range-
Radar 12,726 point, angle and cars,
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masks. data
To be released
Parking via (https:
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freeway December
2020)
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Northern
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SCORP and 3913 Drivin Bounding na RDA, and na na na 2020 SCORP
[171] Visual frames ng boxes. e DoA e - e (accessed on
camera sequences tensors 27 November

2020))

7. Conclusions, Discussion, and Future Research Prospects

Object detection and classification using Lidar and camera data is an established
research domain in the computer vision community, particularly with the deep learning
progress over the years. Recently, radar signals are being exploited to achieve the tasks
above with deep learning models for ADAS and autonomous vehicle applications. They
are also applied with the corresponding images collected with camera sensors for deep
learning-based multi-sensor fusion. This is primarily due to their strong advantages in
adverse weather conditions and their ability to simultaneously measure the range, velocity,
and angle of moving objects seamlessly, which cannot be achieved or realized easily with
cameras. This review provided an extensive overview of the recent deep learning networks
employing radar signals for object detection and recognition. In addition, we also provided
a summary of the recent studies exploiting different radar signal representations and
camera images for deep learning-based multimodal fusion.

Concerning the reviewed studies about radar data processing on deep learning mod-
els, as summarized in Table 1, there is no doubt that a high recognition performance and
accuracy have been achieved by the vast majority of the presented algorithms. Notwith-
standing, there are some limitations associated with some of them, especially with regards
to the different radar signal representations. We provide some remarks about this aspect,
as itemized in the follow-up.

The first issue is the radar signal representation. One of the fundamental steps about
using radar signals as inputs to deep learning networks is how they can be modeled (i.e.,
represented) to fit in as the required input of basic deep learning networks. Our review
paper was structured according to different radar signal representations, including radar
grid maps, Range-Doppler-Azimuth maps, radar signal projections, radar point clouds,
and the radar micro-Doppler signature, as depicted in Table 1.

Intuitively, each and every one of these methods has its associated merits and demerits,
as it is applied as an input to deep learning algorithms for different applications. For
instance, a radar grid map provides a dense map accumulated over a period of time. The
occupancy grid algorithm is one of the conventional techniques used to generate radar
grid maps, which is a probability depicting the occupancy state of objects. DCNNs can
quickly evaluate these maps to determine the classes of objects detected by the radar
(e.g., pedestrians, vehicles, or motorcyclists) in an autonomous driving setting. The main
drawbacks of this approach are the removal of dynamic moving objects based on their
Doppler information. The dense map generated with sparse radar data from the grid map
algorithm will contain many empty pixels in the map, creating an additional computational
burden in the DCNN feature extractions. Moreover, some raw radar signals may be lost in
the course of grid map formation that may likely contribute to the recognition task.
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For the Range-Doppler-Azimuth representation, most of the reviewed papers used
this approach, as it generally returns 2D image-like tensors illustrating different object
energies and amplitudes embedded in their specific positions. One of the fundamental
problems of this procedure is the classification of multiple objects in a single scene or image.
Similarly, the task of processing the low-level radar data (i.e., raw) might lead to the loss
of some essential data that can be vital to the classification problem. The accumulation
of more object information based on clustering and multiple radar frames is one way
to mitigate this drawback but will add more computational complexity to the system.
Recently, reference [125] presented a new architecture that consumes both low-level radar
data (Range-Azimuth-Doppler tensor) and target levels (i.e., range, azimuth, RCS, and
Doppler information) for multi-class road user detection. Their system takes only a single
radar frame and outputs both the target labels and their bounding boxes.

Micro-Doppler signatures are another radar data representation that is also being
deployed in various deep learning models to accomplish tasks like target recognition,
detection, activity classification, and many more. The signatures depict the energy about
the micromotion of the target’s moving components. However, using this signature as the
input to deep learning algorithms can only identify an object’s presence or absence in the
radar signal. Objects cannot be spatially detected, since the range and angle information
are not exploited.

Radar point clouds provide similar information to the popular 3D point clouds ob-
tained with laser sensors. They have since been applied to the existing deep learning
architectures designed mainly for Lidar data by many researchers recently. Even though
radar data is much noisier, sparser, and with a lot of false alarms, it has demonstrated an
encouraging performance that cannot be overlooked entirely, especially in autonomous
vehicle applications. However, the overlaying radar signal processing required to acquire
radar point clouds might result in the loss of significant information from the raw radar
signal. The authors of [125] decided to incorporate both low-level radar and radar point
clouds into their proposed network architecture to investigate this issue. The authors
of [124] used the 3D Range-Velocity-Azimuth tensor generated with radar spectra as the
input to LSTM for vehicle detection, avoiding the CFAR processing approach of obtaining
2D point clouds.

Radar point clouds are also projected onto the image plane or birds-eye view using the
coordinate relationships between radar and camera sensors creating pseudo-radar images.
As a result, the generated images are used as the input for the deep learning networks.
However, to the best of our knowledge, and at the time of writing this paper, we did not
come across a study that uses this type of radar signal representation as the input for any
deep learning model, whether for detection or classification. Many of the existing papers
with this type of radar signal projections were about a multi-sensor fusion of radar and
camera. More research should be encouraged in this direction. The main problem with
radar signal projections is the loss of some vital information due to the transformation, and
the created image usually contained a lot of empty pixels due to the sparsity of the radar
point clouds. Camera and radar sensor calibrations are a very challenging and erroneous
task that needs to be considered.

Secondly, the lack of large-scale and annotated public radar datasets is a vital issue
that has hindered the progress of radar data processing in deep learning models over
the years. The majority of the reviewed articles self-recorded their datasets to test their
proposed methods, making it difficult for new researchers to compare and evaluate their
algorithms, as the datasets are inaccessible. Developing radar datasets is a difficult and
time-consuming task. Over the last two years, new datasets have been developed with
various kinds of radar signal representations and under different autonomous driving
settings and weather conditions.

In general, no literature is available to our knowledge that compared the different radar
signal representation performances in a single neural network model to effectively evaluate
which one is better and during which particular condition or application. Similarly, none
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of the available literature considered the fusion of the different radar signal representations
into neural networks. We presumed none of those radar signal representations could be
viewed as superior, as there were many things involved, including the type of radar sensor
used, model designed, the datasets, etc. These problems need to be explored further in the
future. Most of the radar data processing in deep learning models is mainly performed
using existing network architectures specifically designed to handle other sensory data,
particularly camera images or Lidar data. Moreover, most of the models trained with radar
data were not trained from scratch; instead, they were trained on top of existing models
that were ideally designed for camera or Lidar data (based on transfer learning). New
research should be tailored towards designing network architectures that can specifically
handle radar signal features and their peculiarities.

Table 2 summarizes the reviewed studies for the deep learning-based multimodal
fusion of radar and camera sensors for object detection and classification. Based on the
reviewed papers, we can conclude that significant accuracies and performances were
attained. However, many aspects need to be improved, including the fusion operations,
deep fusion architectures, and the datasets utilized. In the follow-up, we analyzed the
reviewed papers and provided some future research directions.

In terms of fusion operations, the most popular approaches like element-wise addition
and feature concatenation were regarded by many studies as elementary operations. Even
though the authors of [58] presented their approach tackling that by creating a spatial
attention network using combinations of filters as one of the fusion operation components,
their approach needs to be investigated further using different model architectures to
ascertain its robustness. New fusion operations should be designed to accommodate the
uniqueness of radar features.

For the fusion architectures, most radar and vision deep learning-based fusion net-
works are models meant to process Lidar and vision information. They are mostly struc-
tured to attained high-accuracy performances, neglecting other important issues like
redundancy or if the system can function as desired if one sensor is defective or provides
noisy input, besides what the impact or performance of the system is with low /high-sensor
inputs. In that respect, new networks should be designed to handle the fusion of radar and
camera data specifically and also consider the particular characteristics of radar signals.
Similarly, the networks should function efficiently even if one sensor fails or returns noisy
information. Other deep learning models such as GANs and autoencoders, as well as RNNS,
should be explored for fusion radar and camera data. Another future research prospect
could exploit GANs as semi-supervised learning to generate labels from radar and vision
data, thus avoiding laborious and erroneous tasks by humans or machines. The complexity
of these network architectures also needs to be duly considered for real-time applications.

About the level of fusion, the authors of [158] already demonstrated that none of the
available types of fusion-level schemes can be regarded as superior in terms of performance.
However, this needs to be investigated further using many network architectures and large-
scale datasets.

Developing a large-scale multimodal dataset containing both low-level (I-Q radar
data) and target-level data (point clouds) with annotations (both 2D and 3D) under different
autonomous driving settings and environmental conditions is a future research problem
that ought to be considered. This will enable the research community to evaluate their
proposed algorithms with those available in the literature, as most of the earlier studies
self-recorded their own and cannot be accessed.
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