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Abstract: In laser systems, beam pointing usually drifts as a consequence of various disturbances, e.g.,
inherent drift, airflow, transmission medium variation, mechanical vibration, and elastic deformation.
In this paper, we develop a laser beam pointing control system with Fast Steering Mirrors (FSMs)
and Position Sensitive Devices (PSDs), which is capable of stabilizing both the position and angle
of a laser beam. Specifically, using the ABCD matrix, we analyze the kinematic model governing
the relationship between the rotation angles of two FSMs and the four degree-of-freedom (DOF)
beam vector. Then, we design a Jacobian matrix feedback controller, which can be conveniently
calibrated. Since disturbances vary significantly in terms of inconsistent physical characteristics and
temporal patterns, great challenges are imposed to control strategies. In order to improve beam
pointing control performance under a variety of disturbances, we propose a data-driven disturbance
classification method by using a Recurrent Neural Network (RNN). The trained RNN model can
classify the disturbance type in real time, and the corresponding type can be subsequently used to
select suitable control parameters. This approach can realize the universality of the beam stabilization
pointing system under various disturbances. Experiments on beam pointing control under several
typical external disturbances are carried out to verify the effectiveness of the proposed control system.

Keywords: recurrent neural network; disturbance classification; beam pointing stabilization; Jacobian
matrix; position sensitive devices

1. Introduction

Lasers have been used in many important fields such as laser processing, laser ranging,
and laser communication. The stability of beam pointing is a key feature that impacts
manufacturing precision, location accuracy, and communication efficiency. In practice, the
drift of a laser beam away from a setting direction could be caused by many disturbance
sources, including: (1) inherent drift, which is related to the temperature distribution and
micro motion in the laser cavity; (2) air disturbance, such as airflow; (3) transmission
medium variation; (4) mechanical vibration, arising from the motion of electric motors and
coolers; (5) elastic deformation, which is caused by forces on mechanical components.

Thus, these factors should be mitigated in a beam pointing stabilization control
system with steering mirrors and position sensing detectors. A beam can be defined by
a four-dimensional vector: positions and angles along two orthogonal directions. Two
Fast Steering Mirrors (FSMs) are adopted to stabilize the beam, and two Position Sensitive
Devices (PSDs) are used to detect the positions and angles. In [1], the beam stabilization
system adopts the matrix decoupling technology, which needs an accurate beam delivery
mathematic model. The parameters of the beam delivery mathematic model are achieved
by the detailed parameters of the lens and optical path. Wang et al. proposed a beam
correction principle by calibrating the beam pointing path and beam position path [2].
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Then, the relationship between the rotation angle and the signal of the PSDs can be used
to correct the beam drift. In [3], the tracking control of beam pointing was built on the
Jacobian matrix, which can be efficiently self-calibrated by active motion. However, we
find that its control performance relies on the parameter setting, and the optimal parameter
is highly related to the disturbance’s feature. As mentioned above, there are many types
of disturbances, and thus, a controller with constant parameters can hardly perform well
when encountering various external disturbances. Therefore, it is desired to select proper
control parameters according to the current disturbance type.

In a beam pointing control system, it is necessary to analyze the characteristics of
disturbances and classify disturbance types in order to select suitable control parameters.
In recent years, deep learning technologies [4] have been applied to many fields, such as
objection recognition [5], speech recognition [6], and natural language processing [7], due to
their powerful discriminative ability and data-driven manner. Specifically, in this paper, we
consider disturbance classification of the beam pointing stabilization control system using
a Recurrent Neural Network (RNN) [8], which shows effective performance in time series
tasks [9]. However, the basic RNN suffers from vanishing and exploding gradient problems
for long-term dependency tasks [10]. To avoid these limitations, Long Short-Term Memory
(LSTM) [11] and the Grated Recurrent Unit (GRU) [12] have been proposed based on
grating mechanisms. Beam pointing drift can be regarded as a multi-dimensional temporal
signal. However, to the best of our knowledge, the existing works seldom leverage deep
neural networks on the disturbance classification task for laser systems.

In this paper, a disturbance classification method based on LSTM and the GRU is
proposed to select suitable control parameters for the beam pointing stabilization con-
trol system. The key advantages are as follows: the classification model is learned in a
data-driven manner without relying on artificial analysis and tuning; the deep learning
approach provides good generalization ability; the disturbance classification can realize the
universality of the system under various disturbances. In our experiment, we first analyze
the kinematic model of the beam pointing stabilization control system based on the beam
delivery matrix. In addition, we design a feedback controller based on the Jacobian ma-
trix [3]. The Jacobian matrix is adaptive to the changes on the beam path by self-calibrating
and can be calibrated efficiently with active motion and linear least squares optimization.
Then, we capture the beam pointing drift data under several types of disturbances and clas-
sify disturbances using LSTM/the GRU. Finally, according to the result of the disturbance
classification, suitable parameters of the control system can be selected.

2. Control System Description

A diode laser, with a 650 nm center wavelength and a 5 mW output power, was used
as the light source. The diameter of the laser beam is 2 mm. As shown in Figure 1, M1 and
M2 are the two highly reflective FSMs. The size of the FSM is 60 × 60 mm. Each mirror was
mounted with two micro-stepping motors to turn the reflective angles in both horizontal
and vertical directions independently. M3 is a partial reflective mirror. A small part of
the laser was transmitted into the PSD1 and PSD2 for positioning. PSD1 and PSD2 are
position sensitive detectors (GmbH. TEM Messtechnik) with a sub-micro-rad and a 350 nm
to 1100 nm spectral range. The chip sizes of PSD1 and PSD2 are 9× 9 mm and 4× 4 mm,
respectively. M4 is a beam splitter mirror. The optical distance from M3 to PSD1 is shorter
than that from M3 to PSD2. Each PSD measures the x-y position of the laser spot on it.
The output beam pointing can be uniquely determined by the two laser spots’ positions
on the PSDs. The driving and control unit acquires data from the PSDs and generates
control signals for the micro-stepper to regulate the beam pointing. Some key parameters
are defined as follows: L1 is the optical distance between the input plane and M1; L2 is the
optical distance between M1 and M2; L3 is the optical distance from M2 to PSD1’. PSD1’
is the image of PSD1 to M4, and L4 is the optical distance from PSD1’ to PSD2, shown as
Figure 1. α1 and α2 are the steering angles of M1 and M2, respectively.
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Figure 1. Schematic of the beam pointing control system. M1, Mirror 1; PSD, Position Sensitive Device.

3. Modeling Methods
3.1. Optical Model

Each beam has two orthogonal directions. In this section, the horizontal direction
is analyzed, which can be easily extended to the vertical direction. In general, a laser
beam can be defined by two coordinates: the position r and the angle θ from the optical
axis, namely 2 degrees-of-freedom (DOFs). rin and θin are the position and angle upon
entering the optical path. rout and θout are the position and angle after propagating by a
non-negative distance z [13]. Because the displacements and angles are assumed small, we
have the approximate relations, (

rout
θout

)
=

(
1 z
0 1

)(
rin
θin

)
(1)

Meanwhile, let r0 and θ0 be the input beam parameters of the beam pointing control
system. According to (1), r1 and θ1 on PSD1’ can be calculated by the two laser spots’
positions on the PSDs,(

r1
θ1

)
=

(
1 L1 + L2 + L3
0 1

)(
r0
θ0

)
+ 2
(

L2 + L3 L3
1 1

)(
α1
α2

)
(2)

Since θ1 cannot be achieved by PSD1 directly, it can be calculated by,

θ1 = (r1 − r2)/L4 (3)

Because L4 is constant, we substitute (3) into (2),(
r1

r2 − r1

)
=

(
1 L1 + L2 + L3
0 L4

)(
r0
θ0

)
+ 2
(

L2 + L3 L3
L4 L4

)(
α1
α2

)
(4)

When α1 = α2 = 0, a beam offset vector is defined by:(
r10

r20 − r10

)
=

(
1 L1 + L2 + L3
0 L4

)(
r0
θ0

)
(5)

The kinematic model can be deduced by substituting (5) into (4):(
r1

r2 − r1

)
=

(
r10

r20 − r10

)
+ 2
(

L2 + L3 L3
L4 L4

)(
α1
α2

)
(6)

Due to the beam delivery matrix, we have a linear kinematic model. Once the input
beam pointing drifts, the beam pointing control system should regulate both the position
r1 and angle (r2 − r1) of the laser beam by setting steering angles α1 and α2.
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3.2. Kinematic Model

According to (6), the kinematic model with a 4-DOF pose of the beam can be given by
the local linear approximation:

r1
r3

r2 − r1
r4 − r3

 =


r10
r30

r20 − r10
r40 − r30

+


J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44


︸ ︷︷ ︸

J


α1
α2
α3
α4

 (7)

where r1 and r3 are the 2D positions on PSD1, which represent the beam’s horizontal and
vertical position. r2 and r4 are the 2D positions on PSD2. Meanwhile, (r2− r1) and (r4− r3)
represent the beam’s horizontal and vertical angle. α1 and α3 are the steering angles of
M1. α2 and α4 are the steering angles of M2. J is the Jacobian matrix. Thus, the four actual
steering angles coordinately change the laser spots’ positions on the two PSDs by the
Jacobian matrix.

3.3. Active Motion Based Calibration

To build the control system, we re-formulate the kinematic model in (7) using the
feedback vector x ∈ R4×1 and the step-motor order u ∈ R4×1,

x1
x2
x3
x4


︸ ︷︷ ︸

x

=


x10
x20
x30
x40


︸ ︷︷ ︸

x0

+


J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44


︸ ︷︷ ︸

J


u1
u2
u3
u4


︸ ︷︷ ︸

u

(8)

where x1 = r1, x2 = r3, x3 = r2 − r1, x4 = r4 − r3. ui is the discrete order of the ith axis of
the two FSMs, instead of the actual steering angle.

In order to calibrate the kinematic model in a short time, a time series of predefined
orders is sent to the step-motors to generate active motion; meanwhile, a series of the
laser spot positions on the two PSDs is sampled. The length of the time series is n. Thus,
we have:


x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n

x31 x32 x33 · · · x3n

x41 x42 x43 · · · x4n


︸ ︷︷ ︸

P

=


J11 J12 J13 J14 x10

J21 J22 J23 J24 x20

J31 J32 J33 J34 x30

J41 J42 J43 J44 x40


︸ ︷︷ ︸

A


u11 u12 u13 · · · u1n
u21 u22 u23 · · · u2n

u31 u32 u33 · · · u3n

u41 u42 u43 · · · u4n
1 1 1 · · · 1


︸ ︷︷ ︸

U

(9)

Using linear least squares optimization, the explicit solution to (9) is:

A = PUT(UUT)−1 (10)

Then, the Jacobian matrix J can be extracted from A. Thus, given an unknown or
changed optical path, the kinematic model can be self-calibrated in a few seconds, making
the control system adaptive to different optical paths and free of manual parameter tuning.
As the Jacobian matrix can be conveniently calibrated, the static drift error of the optical
model can be corrected.

3.4. Control Method

The control system is designed to reduce drifts caused by the mentioned disturbances,
as shown in Figure 2. The Proportional Integral Differential (PID) feedback controller
is adopted as the control law. The raw signals sensed by the PSDs are processed by a
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low-pass filter. The controller compares the 4D reference beam vector xr ∈ R4×1 and
the feedback beam vector x ∈ R4×1. Then, the PID controller is used to calculate the
incremental movement of two PSD positions,

Figure 2. Block diagram of the beam pointing control system.

dx(t) = kPex(t) + kI

t

∑
i=0

ex(i) + kD(ex(t)− ex(t− 1)) (11)

where kP, kI , and kD are the proportional, integral, and differential gains, respectively. Fi-
nally, the incremental movement of two PSD positions dx is transformed to the incremental
order du of the two FSMs, using the inverse of the Jacobian matrix, namely,

du = J−1dx (12)

The increment order is sent to the FSM controller, so that the actual steering angles of
the two FSMs are adjusted to reduce the error ex.

4. Disturbance Source Classification Method

In this paper, we assume the five typical disturbances for a pulsed laser system,
including the inherent drift, air steam, transmission medium variation, mechanical motion,
and elastic deformation. The deep learning methods are used for classification according
to the temporal patterns of these disturbances. The pipeline of the proposed method is
depicted in Figure 3.

Figure 3. Pipeline of deep learning based disturbance classification.

At time step t, the current feedback beam vector and its historic states are combined
as the input time series data X = {xt+1−T , xt+2−T , · · · , xt} ∈ R4×T . T is the length of the
time series. The raw data X are firstly normalized so that the mean and standard deviation
of {xt+1−T , xt+2−T , · · · , xt} are zero and one, respectively, to minimize the influence on the
amplitude variation and keep the relative temporal pattern. The normalized X is fed to the
deep neural network to extract high-level features o, which can be realized based on the
RNN. Then, the multi-dimensional feature vector o is fed to a two-layer fully connected
network (FCN), and the output is the 5-dimensional activation vector s = {s1, s2, · · · , s5},
as given by,

s = w2 · [tanh(w1 · ot + b1)] + b2 (13)

where wi and bi (i = 1, 2) are the weights and biases of the two layers of the FCN.
Then, the index c corresponding to the maximum activation value sc (c = 1, 2, · · · , 5)

is regarded as the identified disturbance class, namely,
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c = arg max
c

(sc) (14)

In this work, both LSTM and the GRU are studied for feature extraction, as introduced
in the following subsections.

RNN Based Feature Extraction

The Recurrent Neural Network (RNN) is preferred to handle the sequence input. It
processes an input sequence in a recurrent manner. The samples in the time series are input
to the RNN sequentially, and each time, the RNN unit receives both the new sample and
the historical state of the last time step. Finally, the whole time series is processed, and
the feature is propagated over time. A two-layer RNN is illustrated in Figure 4a. xt and
ot respectively represent the input vector and output vector at time t. ht

(n) represents the
hidden state of the RNN unit in the layer n (n = 1, 2) at time t. The standard RNN faces
the problems of vanishing or exploding gradients during training. Therefore, we adopt the
advanced RNN variants, namely LSTM and GRU.

(a)

(b) (c)

Figure 4. Architecture of the two-layer recurrent neural network. (a) Two-layer RNN, whose RNN
unit can be realized by LSTM or the Grated Recurrent Unit (GRU). (b) LSTM unit. (c) GRU.

The LSTM unit [11] solves the long-term dependency problem with three gates: forget
gate, input gate, and output gate, as shown in Figure 4b. The three gates mainly determine
the status of the unit by the following equations.

ft = σ(w f · [ht−1, xt] + b f ) (15)

it = σ(wi · [ht−1, xt] + bi) (16)

c̃t = tanh( wc · [ht−1, xt] + bc) (17)

ct = ft ∗ ct−1 + it ∗ c̃t (18)

st = σ(ws · [ht−1, xt] + bs) (19)

ht = st ∗ tanh(ct) (20)

where ft, it, and st represent the features of the forget gate, input gate, and output gate,
respectively. c̃t is the candidate feature. ct and ht are the cell unit state and hidden feature
propagated temporally over the RNN units. w and b are the weights and biases.
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The GRU [12] is composed of a reset gate and update gate, as shown in Figure 4c. The
computation of the GRU is given by,

zt = σ(wz · [ht−1, xt] + bz) (21)

rt = σ(wz · [ht−1, xt] + br) (22)

st = tanh(ws · [ht−1 ∗ rt, xt] + bs) (23)

ht = (1− zt) ∗ ht−1 + zt ∗ st (24)

where xt, ht, zt, and rt respectively represent the input vector, output vector, update gate
vector, and reset gate state. w and b are the weights and biases.

5. Experimental Results and Discussions
5.1. Kinematic Model Calibration Based on Active Motion

The four sine signals with different frequencies and amplitude, as shown in Figure 5a,
are sent to the four step-motors of the FSMs, respectively. Thus, the four step-motors
change the beam pointing actively. The resulting laser positions on the PSDs are measured
and recorded as shown in Figure 5b. Using the least squares method, the kinematic model
is obtained as:

J =


−0.0752637 0.00641021 0.105804 0.0092901
0.0162511 0.0539132 −0.0312554 0.0939795
−0.0271299 −0.00583653 −0.0244506 −0.00735259
−0.0106072 0.0293533 0.0144381 −0.0282633

 (25)

(a) (b)

Figure 5. Active motion based data collection for kinematic calibration. (a) Motor steps by active
motions. (b) Measured positions by active motions.

Root mean squared error (RMSE) between the actual beam vector observed by the
PSDs and the beam vector estimated by the Jacobian matrix is calculated to evaluate the
calibration accuracy.

RMSE =

√
∑T

t=1 (x̂t − xt)2

T
(26)

where x̂t and xt respectively represent the measured groundtruth beam vector and esti-
mated output beam vector at time t. T represents the entire training sample time. The four
values of the RMSE are 11.502,21.198,4.691, and 6.279. Therefore, the proposed calibration
method provides an adequate accuracy and can be finished in just a few seconds.
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5.2. Disturbance Type Classification
5.2.1. Data Collection

In the disturbance classification experiments, the five types of disturbances were used,
which include inherent drift, air disturbance, transmission medium variation, mechanical
motion, and elastic deformation. Experiments were conducted in a laboratory at 30%
humidity and 22 ◦C. The disturbance was generated using a transparent box in the laser
optical path, as shown in Figure 6. (1) The inherent drift produced by the laser itself was
simulated without any external disturbances. (2) The bottom of the box was filled with hot
water containing a constant-temperature heater, so that air disturbance in the glass box was
generated. (3) A transparent plastic board with uneven thickness was mounted on the side
wall of the box, and the box was moved randomly by a motorized platform, so that the
transmission medium’s thickness was disturbed and the transmission medium variation
produced. (4) The transparent box was moved by a motorized platform periodically, and
mechanical motion disturbance was produced. (5) The transparent box was pressed by a
motorized structure with a slightly varying period and amplitude, so elastic deformation
was generated. The sampling frequency was 50 Hz. Thus, the five time series were collected,
whose lengths were 8099, 8246, 8091, 8482, and 8219, respectively. The samples Xt were
obtained from the raw time series with a time step interval of 10. For each time series, the
first 70% of the samples were used for training the model, and the remaining 30% of the
samples were used for testing classification accuracy. Finally, two-thousand eight-hundred
ten training samples and 1206 testing samples were obtained and normalized.

Laser

Input Plane M1

M2

Drive and control unit

PSD1

PSD2

Output Plane

Motorized platform

Transparent plastic board

Figure 6. The photograph of the experimental setup.

5.2.2. Model Training

The aforementioned GRU based and LSTM based models were trained to classify the
disturbance type. The training loss function was the standard multi-class cross-entropy
loss. The training optimizer was the Adam optimizer [14]. The learning rate, epoch, and
batch size were 0.001, 100, and 32, respectively. An Intel i7-8700K CPU and an NVIDIA
RTX2080ti GPU were used as the deep learning environment. The disturbance classification
model was implemented with the Pytorch library. Because the model’s performance was
related to the number of neurons in the RNN, more neurons provided better discriminative
ability, but led to a longer computation. To investigate the influence of different neuron
numbers, we trained the deep learning models with different settings. The hidden neuron
numbers of the GRU and LSTM were set to 64, 128, 256, and 512, respectively.

5.2.3. Classification Evaluation

The classification accuracy metric is the percentage of the number of correctly classified
samples among all the testing samples. The accuracy and runtime are reported in Table 1.
The accuracy of the GRU-512 model was the best, and the runtime satisfied the real-time
requirement. The classification results of GRU-512 are visualized in Figure 7, which shows
that only a few samples were misclassified.
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Table 1. Accuracy and training time of the model.

Model Neuron Number Accuracy (%) Time (ms)

GRU 64 92.7 4.2
GRU 128 92.5 4.7
GRU 256 93.9 4.8
GRU 512 94.9 10.1
LSTM 64 92.1 4.4
LSTM 128 91.6 4.5
LSTM 256 91.6 5.0
LSTM 512 91.8 11.3

Mechanical vibration Air disturbance Elastic deformation Inherent drift Transmission medium variation

Train samples Test samples

x 2
x 2

x 2
x 2

x 2

Figure 7. The visualization of the disturbance type classification results of GRU−512. The five
rows show the time series under the five different disturbance types, respectively. The dashed line
indicates that each time series is divided into a training part and a testing part. The five colors
correspond to the five disturbance types. There exists a color inconstancy in the testing part because
of the classification errors.

5.3. Beam Pointing Control with Disturbance Source Classification

Here, we investigate the effectiveness of the beam pointing control system and the
influence of using disturbance type classification. Five groups of the target locking experi-
ments were conducted in the disturbances of inherent drifts, air disturbance, transmission
medium variations, mechanical motions, and elastic deformations. In each group, three
experiments were conducted, which used a disabled controller, a controller with a fixed
parameter setting, and a controller with a parameter setting selection. The fixed parameter
setting was obtained under the basic disturbance of the inherent drifts. The parameter
selection means that beforehand, the five optimal controller parameter settings were tuned
under the five disturbance types, respectively, and then, the matched parameter setting
was select according to the disturbance type identified by the proposed method when
the controller was running. Figure 8 shows the 2D beam pointing (θx, θy) distributions in
the presence of five disturbance types, where θx and θy respectively represent the beam
pointing in the horizontal direction and in the vertical direction. Figure 8 shows that the
beam pointing drifts obviously without any control. Beam pointing drift can be reduced
using control with fixed parameter setting under some types of disturbance, while beam
pointing can not be effectively reduced under some types of disturbance. It is clear that
beam pointing drift can be effectively reduced by using the control with the parameter
setting selection. Table 2 shows the beam pointing instability under the five disturbance
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types in the three experiments. A, B, and C represent the experiment of no control, control
with a fixed parameter setting, and control with parameter setting selection, respectively.
‖θ‖2 is the total RMSE of the horizontal and vertical directions. Beam pointing drift can
be effectively reduced with the RMSE under 10 µrad under the four types of disturbance.
In addition, the RMSE of beam pointing drift using the proposed method can be reduced
to 26.81 µrad from 208.2 µrad under transmission medium variation. From the experi-
ment results, it is shown that the proposed control method can adapt to different types of
disturbances. Moreover, the proposed RNN based classification model can identify the
disturbance type and then select the best matched control parameter setting automatically.
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Figure 8. 2D beam pointing distributions in the presence of five disturbance types. (a) Inherent
drift. (b) Air disturbance. (c) Transmission medium variation. (d) Mechanical vibration. (e) Elastic
deformation. The three colors correspond to different control methods.

5.4. Discussions

Compared with the kinematic model based on the beam delivery matrix, the kinematic
model based on the Jacobian matrix is not only adaptive to the changes of the beam path,
but also can be conveniently calibrated by action motions. From the results shown in
Section 5.1, it can be seen that the calibration result is adequately accurate. In order
to get the kinematic model, it just takes a few seconds using the proposed calibration
methods. A classical laser beam control system with fixed control parameters can always
perform well when encountering various disturbances. Thus, it is urgent to analyze the
characteristics of disturbances and classify the types. To observe the beam pointing drifts
under different types of disturbances, we captured the beam pointing drift data under five
types of disturbances, which were generated by a transparent box. From the beam pointing
drift data, a temporal signal can be obtained by the type of disturbance. As the recurrent
neural network is good at time series classification, we propose a disturbance classification
method based on the RNN. From the classification results in Section 5.2, the GRU network
with 512 hidden neuron numbers has the highest accuracy, and its runtime is 10.1ms,
which can satisfy the real-time requirement. Then, we chose the GRU-512 classification
model for the laser beam control system. Five groups of target locking experiments were
conducted in the mentioned disturbances. The experiments of no control, control with
a fixed parameter setting, and control with parameter setting selection were carried out
to observe the control performance. Compared with the classical control method with a
fixed parameter setting, the RMSE of beam pointing drift can be reduced by 87.12% by
the proposed control method. From the experimental results in Section 5.3, the control
method with disturbance classification adapts to different types of disturbances. However,
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some issues should be considered in future work. First, in a practical sense, laser beam
control will not experience these five listed disturbances alone. More disturbances need to
be studied in future work, so the beam stabilization pointing system can be more universal
under various disturbances.Secondly, the proposed beam pointing stabilization methods
mainly deal with disturbances under 10Hz because of the limited sampling frequency and
hardware bandwidth, so it is necessary to build a high-bandwidth control system with
high real-time performance when the frequency of the pulsed laser or disturbances is high.
Finally, we will study reinforcement learning by combining classification with parameter
adjustment to optimize the control parameters in real-time control.

Table 2. Beam pointing instability under five disturbance types (RMSE).

Disturbance Type Experiment ‖θ‖2 θx(µrad) θy(µrad)

Inherent drift
A 21.41 2.75 21.23
B 3.28 2.12 2.43
C 3.28 2.12 2.43

Air disturbance
A 11.61 7.46 8.89
B 11.94 10.03 6.47
C 3.28 2.12 2.43

Transmission medium variation
A 208.20 142.22 152.05
B 46.46 29.44 35.94
C 26.81 16.05 21.47

Mechanical vibration
A 19.04 2.60 18.86
B 21.30 13.01 16.86
C 7.58 4.34 6.21

Elastic deformation
A 33.56 4.42 33.27
B 15.15 7.39 13.23
C 8.71 3.77 7.85

6. Conclusions

In this paper, a beam pointing control system is developed with two FSMs and two
PSDs, which can regulate both the position and angle of a laser beam. The kinematic
model of the optical path is analyzed by the beam delivery matrix. A Jacobian matrix
feedback controller is proposed, which is adaptive to the optical path using the active
motion based self-calibration. To realize the intelligent identification of the disturbance
type, a generic data-driven disturbance classification method is proposed by using an RNN.
The trained RNN model can classify the disturbance type in real time, and the controller’s
parameter setting can be better selected. As the experimental results show, beam pointing
drift can be effectively reduced with the RMSE under 10 µrad under the four types of
disturbances. In addition, the RMSE of beam pointing drift using the proposed method can
be reduced to 26.81 µrad from 208.2 µrad under transmission medium variation. Thanks
to the classification of the disturbance type, the control accuracy can be improved when
facing various disturbance types.
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