
sensors

Article

Advanced Network Sampling with Heterogeneous
Multiple Chains

Jaekoo Lee 1 , MyungKeun Yoon 1 and Song Noh 2,*

����������
�������

Citation: Lee, J.; Yoon, M.; Noh, S.

Advanced Network Sampling with

Heterogeneous Multiple Chains.

Sensors 2021, 21, 1905. https://

doi.org/10.3390/s21051905

Academic Editor: Giorgio Terracina

Received: 26 January 2021

Accepted: 3 March 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Computer Science, Kookmin University, Seoul 02707, Korea; jaekoo@kookmin.ac.kr (J.L.);
mkyoon@kookmin.ac.kr (M.Y.)

2 Department of Information and Telecommunication Engineering, Incheon National University,
Incheon 22012, Korea

* Correspondence: songnoh@inu.ac.kr

Abstract: Recently, researchers have paid attention to many types of huge networks such as the
Internet of Things, sensor networks, social networks, and traffic networks because of their untapped
potential for theoretical and practical outcomes. A major obstacle in studying large-scale networks
is that their size tends to increase exponentially. In addition, access to large network databases is
limited for security or physical connection reasons. In this paper, we propose a novel sampling
method that works effectively for large-scale networks. The proposed approach makes multiple
heterogeneous Markov chains by adjusting random-walk traits on the given network to explore
the target space efficiently. This approach provides better unbiased sampling results with reduced
asymptotic variance within reasonable execution time than previous random-walk-based sampling
approaches. We perform various experiments on large networks databases obtained from synthesis
to real–world applications. The results demonstrate that the proposed method outperforms existing
network sampling methods.

Keywords: internet of things; sensor networks; social network services; Network (Graph) Theory;
big data; large-scale network; Network (Graph) Sampling Methods; data privacy

1. Introduction

The relationship between elements in a database can be intuitively abstracted using a
network-based structure, and research on networks has found practical applications that
predominantly use this structure. Examples of large networks become more common in the
real world: Facebook has 2.7 billion users [1], internet of things (IoT) is estimated to have 26
billion installed units by 2020, sensor networks are densely spread around the globe [2,3],
metabolic networks in physiology are extremely complex [4], and Internet web pages also
form a very large network [5]. Recently, network-based analysis of these databases has
become increasingly important.

Network or graph analysis in biotechnology has enabled the identification of metabolic
pathways [4] and new protein complexes by uncovering the various relationships among
different elements [6]. Studies of social networks have shed light on how information
spreads among users [7]. Electric power grids can be abstracted as a network to identify
abnormal power states [8]. As the IoT and sensor networks become increasingly pervasive
in our live, network analysis has been applied to mitigate emerging security issues [9].
In addition, in healthcare field, a network can analyze the spread of disease such as
MERS and COVID-19 [10]. As mentioned above, study on networks has found practical
applications in everyday life.

Networks or graphs requested for analysis have become larger and more complex and,
subsequently, computationally quite expensive to process. Generally, network analysis
algorithms have high computational complexities. For example, the time complexities for
community detection using the Girvan–Newman algorithm [11], Eigenvector computation
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notably used for PageRank [12], and the graphlet counting algorithm for size k [13] are
O(|e|2|n|), O(|n|3), and O(|n|k), respectively, where |n| and |e| represent the numbers of
nodes and edges of a given network, respectively. If the amounts of nodes and edges are in
billions, the space and time complexities are overwhelming for most computing machine
in a research environment.

There are two complementary approaches to handle the database with extremely large
network-structured data: The network can be analyzed using parallel processing methods,
as in Pregel [14], GraphLab [15], and GraphX [16], or samples are taken from the network
so that the analysis is possible on a machine with modest computing power. This paper
presents a new sampling method and its algorithm on network.

From a common statistical point of view, inference from samples provides a fairly
reasonable estimation of an entire population if many objects are selected randomly and
uniformly, sufficient to represent the population. The proposed network sampling method
aims to achieve unbiased samples in the overall distribution of properties on a given
database. General sampling methods cannot be applied directly to sample a network
because its statistical properties are interwoven with nodes and their links. Under nature
of a network, the goal of sampling a network is to find the subset of the original network
while preserving statistical properties.

The proposed network sampling method exploits the concept of a non-reversible
random walk with an adjustment parameter, which is inspired by the momentum of hybrid
Monte Carlo (HMC) [17]. The method makes heterogeneous multiple Markov chains
by adjusted route traits on a network to avoid random behaviors. Experimental results
demonstrated that the proposed method produces significantly improved sampling results
over existing network sampling algorithms. In addition, the proposed method can keep
lower asymptotic variance than typical random-walk-based sampling methods.

Our contributions can be summarized as follows:

• We propose the concept of a network sampling method with heterogeneous multiple
Markov chains, which can traverse the entire target space on a database with network-
structured data.

• We apply advanced non-reversible random walk on edge space as an augmented state
to obtain better unbiased sampling results.

• Experiments on synthetic or real–world databases with scale–free network properties
demonstrate that the proposed method can preserve the statistical characteristics of
the original network-structured data.

In this paper, we propose a network graph sampling method that works effectively
for large-scale networks, even given limitations to accessing network database for secu-
rity reasons.

The organization of this paper is as follows: Section 1 treats the introduction along
with a brief sketch of the proposed method. In Section 2, studies related to the proposed
method are summarized as background. Section 3 presents the overview and detailed
explanations of our proposed method in relation to the existing work discussed. Section 4
reports experimental results of the proposed sampling method applied to various datasets
and discusses implications of the proposed method. Section 5 concludes the proposed
method. The symbols used in this paper are listed in Table 1.
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Table 1. Notations.

Notation Definition

g graph or network
n node
|n| number of nodes

e, eij edge, edge between node i and node j
|e| number of edges

d(i) degree of node i
c(i) neighbors of node i

s sample set
|s| size of total sample set
w weight vector
|w| length of weight vector
cbsi ith chain block subset of total sample
|cbs| number of chain block

N original state-space
E augmented state-space
x original state (variable)
x′ augmented state (variable)

mcbsi
momentum of ith chain block

µm mean of the momentum distribution
σ2

m variance of the momentum distribution
Pr probability
q proposal probability distribution
a acceptance probability
π stationary distribution
P transition matrix with elements pij
pij transition probability from state xt = i to state xt+1 = j, Pr(xt+1 = j|xt = i)
P′ transition matrix of augmented state-space

2. Related Work

To facilitate understanding of the proposed approach, in this section, we review well-
known general sampling methods. We then present a brief overview of the theoretical
properties of random-walk-based network sampling methods to explain how sampling
can be performed on databases with network-based structure data.

2.1. Network (Graph) Sampling

In general, sampling methods are used to approximate the (usually intractable) integral
or summation involved in the estimation of a distribution. Representative sampling exam-
ples include Monte Carlo (MC) sampling, importance sampling (IS), Metropolis–Hastings
(MH) sampling [18], Markov chain Monte Carlo (MCMC) sampling [19], and hybrid Monte
Carlo (HMC) sampling [17].

HMC adopts the concept of Hamiltonian dynamics (the hybrid Monte Carlo is thus
also called the Hamiltonian Monte Carlo) in physics to the probability state-space to avoid
random-walk behaviors that are exhibited by other sampling algorithms. The HMC uses
momentum m as an auxiliary variable and its related gradient information to facilitate
finding regions with higher probabilities when traversing the state-space for the original
variable x. The HMC goes through two stages to extract samples. First, candidates for
the next state are proposed through discrete approximation to Hamiltonian dynamics
such as leapfrog, which generates multiple Markov chains. Next, the MH algorithm is
performed for the proposed candidates, which are either accepted or rejected, to remove
any bias associated with the discretization. This allows the Markov chain to explore the
target distribution much more efficiently by avoiding random-walk behaviors, resulting
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in faster convergence[17–19]. A detailed account of the HMC can be found in previous
studies[17–19].

Figure 1a depicts a toy example of several trajectories in a given state-space for a
one-dimensional Gaussian distribution as the target distribution. With the heterogeneous
multiple chains produced by the hybrid Monte Carlo (HMC), the gradient information by
auxiliary variable space makes exploring on the space efficient and effective. The HMC
makes several Markov chain trajectories in the extended space to avoid random-walk
behavior. As seen in Figure 1b, we found inspiration for generating heterogeneous multiple
Markov chains with transition traits within a network sampling from the HMC. This
inspiration alleviates random-walk behaviors while extracting samples by creating various
heterogeneous chain paths on the target space of a network.
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Original variable space

Sampled state

State on Markov Chain

Random walk path with momentum 1 on 𝑐𝑏1 Sampled nodes

Random walk path with momentum 2 on 𝑐𝑏2
Random walk path with momentum 3 on 𝑐𝑏3 Not sampled nodes

To make

Heterogeneous multiple chains,

adopt

Adjusting random walk 

+

Metropolis-Hastings algorithm

(a) Concept of hybrid Monte Carlo (b) Concept of proposed sampler inspired by the HMC 

Figure 1. Diagrammatic explanation of what inspired the proposed network sampling method with heterogeneous multiple
chains (best viewed in color).

General sampling methods have greatly influenced research on sampling large-scale
networks. Representative network sampling algorithms are listed in Table 2. The main
purpose of network sampling is to obtain a subset of the original network such that the
statistical properties (characteristics) of the original network are well preserved without
incurring excessive computational costs. Properties are the essential factors in network
analysis. If a network sampling successfully preserves such properties in the extracted
samples, there would be a significant reduction in computational cost compared to ana-
lyzing the original network directly. In previous network sampling studies, the quality of
preserving properties was quantified by a smaller gap between the estimated distribution
from the samples and the target distribution on the database.

Table 2. Representative network sampling algorithms.

Access Types Sampling Approaches Algorithms

Full

Node Random Node Sampling (RNS) [20,21]
Random Degree Node Sampling (RDNS) [21]

Edge Edge Random Edge Sampling (RES) [20,21]

Node-Edge Random Node-Edge Sampling (RNES) [21]

Full or

Traversal

Breadth First Sampling (BFS) [22]

Restricted

Depth First Sampling (DFS) [22]
Snowball Sampling (SBS) [23]
Forest Fire Sampling (FFS) [21]

Random Walk

Basic Random-Walk Sampling (RWS) [21]
Re-Weighted Random-Walk Sampling (RWRWS) [24,25]
Metropolis–Hastings Random-Walk Sampling (MHRWS) [24,25]
Metropolis–Hastings Random-Walk with Delay acceptance Sampling (MHDAS) [26,27]
Random Walk with Restart Sampling (RWRS) [21]
Random Walk with Random Jump Sampling (RWRJS) [21,28]

Stream Online Random Reservoir Sampling (RRS) [29]
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2.2. Sampling under Restricted Access

In the real world, the most frequently analyzed large network-structured databases
are derived from social networking services, sensor networks, and Internet—the API
(application programming interface) or SDK (software development kit) of which allows
only limited access to nodes and edges. Under preserving the statistical characteristics of
the original network as the goal of network sampling, the proposed network sampling
method is applied to extremely large databases with restricted access. In evaluating the
proposed method, we assume that the database allows restricted access.

Well-known network sampling under restricted access includes traversal-based and
random-walk-based sampling. These sampling methods are similar in that both extract
samples by exploring the nodes on the original network in sequence; however, the existence
of definite rules for selecting traversed nodes distinguishes traversal-based and random-
walk-based sampling.

Common random walk on an undirected network produces finite, irreducible, and
reversible Markov chains. The chain {xt ∈ N}t≥0 is irreducible because it is possible to
transition between nodes as states and is reversible since a probability distribution π exists
for all of states that satisfy π · pij = π · Pr(xt+1 = j|xt = i) = π · Pr(xt+1 = i|xt = j) =
π · pji, which is also known as a detailed balance condition [30]. The chain is expressed
as consecutive states with stationary distribution π = [d(i)/2|e|, i ∈ N] and transition
matrix P = [pij; i, j ∈ N] [25]. In other words, a reversible Markov chain on a network
obtained through a common random-walk results in an invariant distribution biased
toward high-degree nodes. The properties of reversible Markov chains guarantee the
irreducible condition for finite state spaces and invariant distributions.

The reversible Markov chain by random walk is used for typical network samplings
such as the re-weighted random-walk sampling (RWRWS) in the importance sampling
(IS) [24,25] and the Metropolis–Hastings random-walk sampling (MHRWS) derived from
the Markov chain Monte Carlo (MCMC) sampling [24,25,30].

The Metropolis–Hastings (MH) algorithm is applied to both MCMC simulation for
general sampling and MHRWS in the network to produce samplings [20,25]. To achieve
the target distribution from samples in the network, the MH algorithm repeatedly decides
whether to accept or reject a transition from the current node i to an adjacent node j.
The proposal probability that affects the decision of the next node is defined as qij =
1/d(i), if (i, j) ∈ E. This is equivalent to the transition probability of commonly used
random-walk algorithms for networks. The transition probability from node i to node j
(i 6= j) on a network through the MH algorithm is defined as pij = min{1/d(i), 1/d(j)} =
min{1, d(i)/d(j)}, if (i, j) ∈ E or pij = 0, if (i, j) /∈ E. The probability of no transition from
node i is defined as pii = 1−∑j 6=i pij. It is possible to produce unbiased graph sampling
if the MH algorithm produces P, by which π generates a reversible Markov chain [20,25].
Network sampling through MHRWS requires only nodes that are connected to the current
node rather than the entire network, so it can generate an unbiased sampling for networks
with restricted node access [25].

Existing random-walk-based algorithms have been proposed to achieve better unbi-
ased samples than traversal-based algorithms. However, estimation performance of these
random-walk-based algorithms tends to degrade with high variance due to local region
trapping and slow diffusion derived from random-walk behavior [27,31].

3. Proposed Method

The proposed method began with a simple question: is it possible to obtain better-
quality samples from a large-scale network using random-walk-based algorithm while
minimizing the drawbacks of random walk (e.g., slow diffusion over the space)? We
propose a new network sampling method by imitating the concepts of the HMC [17],
which offers better sampling results by avoiding random-walk behavior. The proposed
method provides improved network sampling results by producing heterogenous multiple
Markov chain paths to traverse efficiently the space. Under restricted access, the proposed
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method also achieves better unbiased sampling results than those obtained by common
reversible random walk.

Figure 2 shows the overall process of the proposed sampling method for estimation on
a large-scale network. A key point of our work pertains to the highlighted region in gray.
The proposed method produces multiple heterogenous Markov chains, which was inspired
by HMC to avoid random-walk behavior. These chains are based on non-reversible random
walk with different traits by adjusting an auxiliary value, similar to the movement of HMC.
In addition, the diversified chains are diffused over the network by avoiding random-walk
behavior.
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methods on graphs
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Figure 2. Overview of proposed method (best viewed in color).

To generate multiple heterogenous Markov chains, the newly defined momentum in
the proposed method determines the movement trend between nodes while adjusting the
random-walk behavior. The optimal momentum is derived from the characteristics of a
scale–free network [32–34].

As shown in Figure 2, the proposed method consists of two major steps. First, the chain
splitter seeks seed nodes for multiple heterogenous Markov chains and sets appropriate
sample sizes for each chain. After the chain splitter step, the Metropolis–Hastings advanced
non-reversible walk with momentum (MHANWM) generates each chain from the seed
node with advanced non-reversible random walk with momentum parameters. This
equates to dividing the entire unknown network into several chain blocks (cbs). Please
note that each of cbs has a different trajectory of sequential node traversal.

3.1. Chain Splitter

A chain {xt ∈ N}t≥0, where N is the set of nodes as the original state-space, comprises
consecutively visited nodes through random transition in a network. Let the previous,
current, and next states be xt−1, xt, and xt+1, respectively. By determining xt+1 with xt and
xt−1, we can obtain a non-reversible Markov chain by avoiding backtracking. The proposed
method based on a non-reversible Markov chain for reduced asymptotic variance and
better convergence to a stationary distribution than a reversible chain [35,36].

In a network, the chain obtained by non-reversible random walk fails to meet the
irreducibility of the Markov chain for N due to its dependency on previous nodes. However,
the chain retains irreducibility on the augmented state-space E, which is made after folding
the original state [30]. It is possible to easily convert the original state (x) to augmented
state (x′) in the Markov chain using E = {eij; i, j ∈ N subject to Pr(eij) > 0} ⊆ N × N
(where |E| < ∞ and eij 6= eji). The augmented states exploit x′t = (xt−1, xt) = eij ∈ E for
t ≥ 1. Augmenting the original state-space of a network such that the previous two nodes
are seen through their edge maintains irreducibility. On the non-reversible chain {x′t ∈ E},
for a stationary distribution that is identical to the reversible chain, the asymptotic variance
is less than that of its reversible chain [27,36].
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With transition matrix P = [pij] in the original state-space N, an irreducible and
reversible Markov chain {xt} can be transformed to a non-reversible Markov chain {x′t} in
the augmented state-space E derived without backtracking. In the augmented state-space
E, an irreducible and non-reversible chain {x′t} from the transition matrix P′ = [p(eij, ekl)]
has a unique stationary distribution of π′(eij) = π(i)pij, eij ∈ E.

The proposed method uses non-reversible random walk controlled from a momentum.
The proposed method is designed to generate heterogenous multiple Markov chains with
non-reversible random walk and the MH algorithm. It produces improved quality of
samples compared to those produced by existing sampling methods on network-structured
data under restricted access. It also incurs modest computational cost.

The chain splitter prepares sequential sampling on the network by setting seed nodes
to initiate cbs with appropriate block sizes in the network. This step can be considered
either sequential or parallel. In both methods, the first chain (cbs0) is generated by non-
backtracking random-walk, which tends to spread among nodes without revisiting the
previous node in the network. This means that the first chain starts from an arbitrary node
with irreducible and non-reversible chain {x′t} and satisfies the following non-backtracking
random-walk conditions.

∀eij, ejk ∈ E with i 6= k (d(j) ≥ 2), p(eij, ejk) = 1/(d(j)− 1) > 1/d(j) = pjk, implying
that p(eij, eji) = 0. Here, for any node j with d(j) = 1, p(eij, eji) = 0.

After the first chain, a sequential manner can easily be considered a concatenation of
various cbsz, z ≥ 0 with their corresponding mcbsz . Therefore, the seed node for cbsz can
be considered by the last sampled node in the previous cbsz−1, except for the seed node in
the first chain that was selected randomly. This approach is easy to implement; however, it
performs not much worse than the parallel method.

In the parallel method, which was used in our experiments, the obtained first chain can
be explored across the entire network. From the first chain, several hub nodes are selected
as seed nodes to start the next cbs. Here, if z ≥ 1 for cbsz, other chains begin at the marked
hub nodes of cbs0 in parallel. It is also applicable to simple parallel implementations.

After this step, the entire network for sampling can be prepared for partitioning
with several seed nodes of cbs such that multiple heterogeneous Markov chains can be
generated evenly in the network. This ensures that the nodes sampled with various cbs
are sufficiently covered by the original network from scattered the seed nodes. Sampled
nodes can successfully capture the statistical features of the entire network. The advanced
non-reversible random-walk begins from the spread seed nodes.

3.2. MHANWM (Metropolis–Hastings Advanced Non-Reversible Walk with Momentum)

With the preparation for cbs0, the MHANWM performs practical sampling for the
number of preassigned samples for each cbsz (z ≥ 1) with its mcbsz , which is a traversal
control parameter in random walk on a given network to produce various heterogenous
Markov chains. During sampling within cbsz, its mcbsz is maintained to ensure the congru-
ent traversal characteristics of the chain. In addition, different momentum parameters are
applied to each cbsz for variability in the non-reversible random walk.

The characteristic of movement between nodes in each cbsz is defined as follows. Let
the previous, current, and next nodes be i, j, and k, respectively, and assume that traversal is
sequential with a specific momentum parameter mcbsz for network sampling. The transition
probability from node j to node k can be defined by the sum of the following two terms.

The first term refers to the transition probability to the next node k when the newly
candidate node is not the previous node i. Here, k ∈ c(j) is proposed with 1/d(j) where
xt = j 6= i 6= k. Following the MH algorithm, a transition to the candidate node is either
accepted with probability a(j, k) = (d(j)/d(k))mcbsz or rejected with probability 1− a(j, k),
which means xt+1 = j. Thus, the probability of an accepted transition to node k or xt+1 = k
(when k 6= i) is defined as pjk = qjk · a(j, k).
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The second term indicates the transition probability with mitigated non-backtracking
by momentum as a constraint parameter when the candidate node is node k. This is
expressed as follows.

Pr(xt+1 = k|xt = j, xt−1 = i) =
{d(j)/d(k)}mcbsz

d(j)
+ pji · q(eij, ejk) · a(eij, ejk, mcbsz) (1)

where

q(eij, ejk) = 1/(d(j)− 1) with i 6= k and d(j) ≤ 2 (2)

a(eij, ejk, mcbsz) = min
{

1,
min(1/d(j)2, 1/d(k)2)

min(1/d(j)2, 1/d(i)2)

}mcbsz

(3)

and mcbsz lies between 0 and 1. Here, candidate nodes are adjusted to reduce bias with
d(j)(mcbsz−1). For the momentum, we obtained an empirical mcbsz from experiments on syn-
thetic and real–world network datasets of scale–free network [32–34] to produce multiple
heterogeneous chains using advanced non-reversible random walk.

If the candidate node for next node k is the previous node i, the transition is delayed,
and another candidate node is proposed with the transition probability to avoid backtrack-
ing. The transition to the re-selected new node is accepted with the following probability:

a(eij, ejk, mcbsz) = min

{
1, min

{
1,
(

d(j)
d(l)

)2
}
·max

{
1,
(

d(k)
d(j)

)2
}}mcbsz

(4)

which is specified from Equation (3).
Thus, the transition from node j to node k 6= i in the proposed method has probability

{d(j)/d(k)}mcbsz /d(j) + pji · q(eij, ejk) · a(eij, ejk, mcbsz), which is greater than the probability
in the existing common reversible random-walk method.

By repeating the process of accepting and rejecting candidate nodes with the proba-
bility defined above, the accepted nodes construct chains with a heterogeneous moving
pattern that is adjusted by various mcbsz . Due to the diverse trajectories of these chains,
they have less correlation, and the samples obtained on the chains can be spread evenly.
This approach addresses slow diffusion, local region trapping, and local looping issues by
efficiently and effectively traversing the network.

The proposed method guarantees better sampling results than those obtained by
common reversible random walk. These samples also approach a stationary distribution
more quickly due to the non-reversible Markov chain property [35]; thus, the burn–in
period is shorter than that in common random-walk-based methods.

Algorithm 1 is the pseudocode for the proposed method. Here, in Lines 1–3, the size
of cbs is allocated, and a chain is created by walking among nodes repeatedly with the
proposed transition probability is the chain splitter step. In Lines 5–22, the MHANWM
step is performed on each cbsz with different mcbsz to select a newly sampled node, and
Line 23 re-weights the sampled node.
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Algorithm 1: Network sampling at xt

/* See Table 1 for definitions. */
Data: g, |s|, |cbs|, µmcbsz

, σ2
mcbsz

Result: s, w
1 initialization (pick randomly initial node)
2 while size of current completed samples ≤ |s| do
3 while the number of completely sampled cbs ≤ (|s|/|cbs|) do
4 generate m from N(µmcbsz

= 0.05, σ2
mcbsz

= 0.02)
/* set momentum from the empirical results */

5 while the number of samples in cbsz ≤ |cbsz| do
6 select node k uniformly at random from c(j)

/* assume previous node i, current node j and next node k, (i 6= j) */

7 if generate α from Uni f (0, 1) ≤ min(1, (d(j)/d(k))mcbsz ) then
/* if accepted in MH algorithm */

8 if node k = node i and d(j) > 1 then
/* if (node j 6= lea f node)∩(node k = i) */

9 re-selected new node l from c(j) except previous node i
uniformly at random

10 if generate β from Uni f (0, 1) ≤
min(1, min(1, ( d(j)

d(l) )
2)max(1, ( d(k)

d(j) )
2))mcbsz then

/* delay acceptance of node k */

11 node i← node j
12 node j← node l
13 else

/* accept node k */

14 node i← node j
15 node j← node k

16 else
/* if (node j = lea f node)∪(node k 6= i) */

17 node i← node j
18 node j← node k

19 else
/* if rejected in MH algorithm */

20 node i← node i
21 node j← node j

22 add node j to s as new sample node
23 add d(j)(mcbsz−1) to w

4. Experimental Evaluation

This section reports the experimental results of applying the proposed network sam-
pling method to synthetic and real–world network databases, which were well-known
publicly available datasets [37,38]. In the experiments, we attempted to identify network
characteristics according to the proposed method. The parameters of the proposed method
were tuned experimentally on given networks.

These experiments were performed under the assumption of limited access on database
at one time. For input, we used huge synthetic networks and eight different, large-scale
real–world network databases from social networks, traffic networks, and collaboration
networks. The databases are detailed in Table 3 and Figure 3. We performed all experiments
on a single machine with a 3.2 GHz CPU and 16 GB RAM.
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Table 3. Real–world network datasets used in our experiments.

|n| |e| |n| in LWCC ACC |triangles| max
(u,v)

d(u, v)

AstroPh 18, 772 198, 110 17, 903(0.954) 0.6306 1, 351, 441 14
Enron 36, 692 183, 831 33, 696(0.918) 0.4970 727, 044 11
DBLP 317, 080 1, 049, 866 317, 080(1.000) 0.6324 2, 224, 385 21

Petster 623, 766 15, 699, 276 601, 213(0.964) 0.0284 656, 390, 451 15
YouTube 1, 134, 890 2, 987, 624 1, 134, 890(1.000) 0.0808 3, 056, 386 20

RoadNet-TX 1, 379, 917 1, 921, 660 1, 351, 137(0.979) 0.0470 82, 869 1054
RoadNet-CA 1, 965, 206 2, 766, 607 1, 957, 027(0.996) 0.0464 120, 676 849

LiveJournal 3, 997, 962 34, 681, 189 3, 997, 962(1.000) 0.2843 177, 820, 130 17

LWCC: largest weakly connected component; ACC: average clustering coefficient; max
(u,v)

d(u, v): diameter (longest shortest path between u and v). AstroPh:

collaboration network of Arxiv astrophysics; Enron: email communication network from Enron; DBLP: DBLP collaboration network; Petster: family links

from dog and cat social website; YouTube: YouTube online social network; RoadNet-TX: road network in Texas; RoadNet-CA: road network in California;

LiveJournal: LiveJournal online social network.
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Figure 3. Degree distributions of real–world datasets.

4.1. Evaluation Methodology

There is a wide variety of measurement methods for the quality of network sampling.
Here, we compared the qualities of the sampled nodes regarding the primary network
characteristics for preserving the statistical features. This evaluation method is widely
used in the literature [20,21,27,31,39]. We evaluated the performance of network sampling
methods by comparing the estimated distribution produced by samples and the original
distribution on the statistical characteristics [20,21,27,31,39].

Well-known measuring methods for the distance between the estimated distribution
from the samples and original distribution are the normalized root mean square error,
which is defined as

√
E{(x̂− x)2}/x, where x̂(t) is the estimated value from the sample

and x is a real value [40]. Similarly, the total variance distance (TVD) [41], is defined as
(1/2)∑x∈N |Pr(x̂)− Pr(x)|. In addition, the Kolmogorov–Smirnov D-statistic (KSD) [42]
test quantifies the distance between the empirical distribution function of the sample and
the cumulative distribution of the reference distribution. We used both metrics in our
experiments.

4.2. Experimental Results

Many real–world networks or graphs have been reported to be scale–free network [32–34].
A scale–free network follows a power-law degree distribution. This means that there are
many nodes with only a few links and a few nodes with many links as a hub. The prob-
ability distribution function P(k) of degree k of a scale–free network is described by
P(k) ∼ C · k−γ where C is constant, which is determined by the normalization condition,
and γ called the scale–free exponent parameter whose value is typically in the range
1 < γ < 4, although occasionally it may lie outside these bounds [32–34].
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Therefore, we performed the first experiment on synthetic databases with the property
of scale–free network to identify optimal parameter values. To evaluate random-walk’s
behavior on a scale–free network, we generated huge synthetic networks with a common
scale of γ and repeated experiments by changing parameters on various γ. In this experi-
ment, the Barabási-Albert model [32], a well-known scale–free network generating model,
was used to generate huge synthesized networks.

As shown in Figure 4, the momentum value was varied to demonstrate how TVD
scores are affected by momentum. In repeated experiments, the γ of P(k) C · k−γ for
scale–free network was varied from 1 to 4. Boxplots are used to show the average and
deviation. The boxplots empirically demonstrate that the proposed method obtained
optimal sampling quality on synthetic scale–free networks with typical range of γ. Each
minimum average TVD score is indicated with an arrow for each experiment. The proposed
method minimized the TVD value when m was around 0.05 in the synthesized networks.
We performed same experiment with real–world scale–free network databases.
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Figure 4. Results of sampling with various momentum parameters on huge synthetic scale–free networks with γ. (a) Syn-
thetic networks with |n| = 50, 000, 000 (b) |n| = 100, 000, 000.

Similar to the experiments on synthetic databases, we also monitored sampling perfor-
mance to confirm a common characteristic of the proposed sampling method on real–world
networks with power-law degree distribution. Figure 5 shows the performance of the pro-
posed network sampling method while m was varied on real–world databases. The chart
shows network sampling quality based on variations in momentum for different databases.

In experiments on real–world databases, the sampling ratios (=|s|/|n|) were set to 1%,
3%, 5%, 10%, 15%, and 20%. Other parameters were set as follows: |cbs| = 1, while momen-
tum was varied to control non-backtracking random walk. The TVD scores approached
the minimum values where µm was the optimal parameter value on scale–free networks.

The results indicate that the minimum TVD score was obtained with m = 0.05,
where the quality of sampling would be best. As a result, we empirically confined m ∼
N(0.05, 0.02) as the optimal momentum on scale–free networks.

We also analyzed the performance of burn–in period, which is an indirect indicator
of how quickly and successfully the proposed method can reach a stationary distribution.
The details of this experiment are shown in Figure 6. In this experiment, the sample size
and proportion of the burn–in period for each network database was varied. As can be
seen, the sampling results obtained by the proposed method have little influence on the
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TVD scores while the burn–in periods vary. This implies that the proposed algorithm
provides a stability of network sampling.

500

340

320

200

260

150

190

110

160

90

130

80

450

150

280

100

220

70

180

50

160

40

140

40

0 0.5
momentum

0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

ratio 1% ratio 3% ratio 5% ratio 10% ratio 15% ratio 20%

TV
D

 (x
 1

0-3
)

11

5

60

27

47

23

34

16

28

13

13

8

140

50

85

29

65

20

18

5

50

13

32

11

55

15

34

8

25

6

19

5

15

4

13

3

80

30

76

25

62

22

55

18

51

17

50

15

110

40

85

30

77

28

65

25

60

25

55

20

38

20

28

10

17

9

13

7

10

5

9

5

Yo
ut

ub
e

As
tro

Ph
D

BL
P

En
ro

n
Pe

ts
te

r
R

oa
dN

et
-T

X
R

oa
dN

et
-C

A
Li

ve
Jo

ur
na

l

Figure 5. Sampling results obtained with various momentum parameters on real–world network databases.
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In the following, we compare the sampling quality for the well-known traversal-
based algorithm (i.e., FFS [21]) and random-walk-based algorithms (i.e., RWRWS [24,25],
MHRWS [24,25], and MHDAS [26,27]) to the proposed method. Figures 7 and 8 compare
the proposed algorithm to state of the art network sampling methods.

In Figures 7, the proposed method used m ∼ N(0.05, 0.02) and |cbs| = 5. The other
conditions were equal for all compared sampling methods (the FFS, RWRWS, MHRWS,
MHDAS, and proposed method). For each network database, the sampling ratio was
varied; and the obtained TVD and KDS results are shown for each sampling method.
The proposed method obtained the lowest TVD and KDS scores for all sizes of samples,
indicating it provides superior performance.

As shown, the proposed network sampling method obtained the lowest TVD and
KDS scores under equal conditions. Thus, we conclude that the proposed method demon-
strates superior network sampling performance with unbiased sampling on real–world
network databases.
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4.3. Discussion

The sequential version of the proposed network sampling method has a time com-
plexity of O(|s|) and space complexity of O(|s|+ |w|), where |s| and |w| are the size of
the sample and its weight vector, respectively. As shown in Figure 9, the time costs of the
sequential version of the proposed method are moderate, even for large network databases
obtained from real applications. The run time is shown as the average of the time of 2000
independent sampling tests on each network database.
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To handle extremely large network databases with limited access effectively, we can
easily extend the proposed method by generating multiple cbs in parallel, as outlined in
Algorithm 2. First, cbs0 is processed as in Algorithm 1 with mcbs0 = 0. Then, differing from
Algorithm 1, as many as the hub nodes |cbs| − 1 are selected in the descending order of
d(i) from the generated cbs0. Finally, other cbs (cbsz, z > 0) begin simultaneously from
each hub as a seed node to realize parallelized sampling. From a scalability perspective,
the proposed method can be also executed on existing distributed systems to analyze of
huge networks.
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Algorithm 2: Parallelization

Data: g, |s|, |cbs|, µmcbsi
, σ2

mcbsi
Result: s, w

1 initialization (pick randomly initial node)
2 while size of current completed samples ≤ |s| do
3 while the number of completely sampled cbs ≤ (|s|/|cbs|) do
4 generate m from N(µmcbsi

, σ2
mcbsi

), (0 < m < 1)

5 if current cbs = cbs0 then
6 do same as Lines 5–23 in Algorithm 1 store |cbs| − 1 hub nodes

(largest degree nodes) from s
7 else
8 simultaneously start other chain blocks from stored nodes at cbs0 and

do same as Lines 5–23 in Algorithm 1

5. Conclusions

In this paper, we have proposed a network sampling method for databases with huge
scale–free networks with improved performance on restricted access. The proposed method
begins with the concept of reducing random-walk behaviors of network sampling methods
by imitating multiple chains of the HMC. The proposed method adopts a momentum
parameter on non-reversible random walk for a variety of state-space traversals. Multiple
heterogenous Markov chains generated by the proposed method have optimized character-
istics for a scale–free network. As a result, the proposed method produces effective and
efficient sampling from a network database. In experiments with synthetic and real–world
network databases, we observed and verified that the proposed method produces better
unbiased samples in reasonable execution time than existing methods. In addition, the
sequential and parallel versions of the proposed method can be implemented easily and
are applicable to large network databases from a diverse range of practical applications
such as the Internet of Things, sensor networks, social networks, and traffic networks.
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