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Abstract: Kernel fuzzy c-means (KFCM) is a significantly improved version of fuzzy c-means (FCM)
for processing linearly inseparable datasets. However, for fuzzification parameter m = 1, the problem
of KFCM (kernel fuzzy c-means) cannot be solved by Lagrangian optimization. To solve this problem,
an equivalent model, called kernel probabilistic k-means (KPKM), is proposed here. The novel
model relates KFCM to kernel k-means (KKM) in a unified mathematic framework. Moreover,
the proposed KPKM can be addressed by the active gradient projection (AGP) method, which is a
nonlinear programming technique with constraints of linear equalities and linear inequalities. To
accelerate the AGP method, a fast AGP (FAGP) algorithm was designed. The proposed FAGP uses
a maximum-step strategy to estimate the step length, and uses an iterative method to update the
projection matrix. Experiments demonstrated the effectiveness of the proposed method through a
performance comparison of KPKM with KFCM, KKM, FCM and k-means. Experiments showed that
the proposed KPKM is able to find nonlinearly separable structures in synthetic datasets. Ten real
UCI datasets were used in this study, and KPKM had better clustering performance on at least six
datsets. The proposed fast AGP requires less running time than the original AGP, and it reduced
running time by 76–95% on real datasets.

Keywords: fuzzy c-means; kernel probabilistic k-means; nonlinear programming; fast active gradient
projection

1. Introduction

Clustering is an important unsupervised method, and the purpose of clustering is
to divide a dataset into multiple clusters (or classes) with high intra-cluster similarity
and low inter-cluster similarity. There have been many clustering algorithms, such as
k-means (KM) and its variants [1–16]. Others are based on minimal spanning trees [17–19],
density analysis [20–25], spectral analysis [26,27], subspace clustering [28,29], etc.

Generally, k-means minimizes the sum of squared Euclidean distances between each
sample point and its nearest clustering center [1]. One variant of k-means is kernel k-
means (KKM) [30–33], which is able to find nonlinearly separable structures by using
the kernel function method. Another variant of k-means is fuzzy c-means (FCM) [2],
which determines partitions by computing the membership degree of each data point to
each cluster. The higher the membership degree, the greater the possibility of the data
point belonging to the cluster. Although FCM is more flexible in applications [11–16], it
is primarily suitable for linearly separable datasets. Kernel fuzzy c-means (KFCM) [34]
is a significantly improved version of fuzzy c-means for clustering linearly inseparable
datasets. However, the problem of KFCM with fuzzification parameter m = 1 cannot be
solved by existing methods.

To solve the special case of KFCM for m = 1, a novel model called kernel proba-
bilistic k-means (KPKM) is proposed. In fact, KPKM is a nonlinear programming model
constrained on linear equalities and linear inequalities, and it is equivalent to KFCM at
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m = 1. In theory, the proposed KPKM can be solved by the active gradient projection (AGP)
method [35,36]. Since the AGP method may take too much time on large datasets, we
further propose a fast AGP (FAGP) algorithm to solve KPKM more efficiently. Moreover,
we report experiments demonstrating its effectiveness compared with KFCM, KKM, FCM,
and KM.

The paper is organized as follows: Section 2 reviews previous work. The KPKM
algorithm is proposed in Section 3. Section 4 proposes a solution for KPKM. Section 5
presents descriptions and analyses of experiments. Conclusions and future work are
mentioned in Section 6.

2. Background and Related Work

There has been a lot of work related to this paper, mainly including k-means, fuzzy
c-means, kernel k-means and kernel fuzzy c-means.

K-means minimizes the sum of squared Euclidean distances between each sample
point and its nearest cluster center. K-means first chooses initial clustering centers randomly
or manually, and then partitions a dataset into several clusters (a data point belongs to the
cluster whose clustering center is nearest to the data point), and computes the mean of a
cluster as the clustering center. K-means repeatedly updates clustering centers and clusters
until convergence. FCM has the same ideal as k-means. FCM introduces a membership
degree wij and a fuzzy coefficient m into the objective function. The higher wij is, the
greater possibility of the i-th data point belonging to the j-th cluster. K-means and FCM
belong to partition-based clustering algorithms, and partition-based clustering algorithms
usually are not able to cluster linearly inseparable datasets. Kernel method maps a linearly
inseparable dataset into a linearly separable space, so kernel k-means (and FCM) using a
kernel function can cluster linearly inseparable datasets.

2.1. K-Means and Fuzzy C-Means

Let X =
{

xi|xi ∈ RD, 1 ≤ i ≤ L
}

represent a dataset. K-means divides it into k clusters.

If ωj denotes the j-th cluster, we have X =
K⋃

j=1
ωj and ∀1 ≤ i 6= j ≤ K, ωi

⋂
ωj = ∅. Using

Lj =
∣∣ωj
∣∣ to stand for the number of elements in ωj with the center of cj, k-means can be

described as minimizing the following objective function:

J =
K

∑
i=1

∑
xi∈ωj

∥∥xi − cj
∥∥2 (1)

where
cj =

1
Lj

∑
xi∈ωj

xi. (2)

Let L =
K
∑

j=1
Lj. By using c instead of k and assigning membership degree wij to the

i-th data point in the j-th cluster for 1 ≤ i ≤ L and 1 ≤ j ≤ C, the fuzzy c-means clustering
model can be formulated as follows:

min J =
C

∑
j=1

L

∑
i=1

wm
ij

∥∥xi − cj
∥∥2

s.t.
C

∑
j=1

wij = 1, wij ≥ 0

(3)
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where m > 1, wij and cj are computed alternately below [2].

wij =

∥∥xi − cj
∥∥− 2

m−1

C
∑

k=1
‖xi − ck‖−

2
m−1

cj =

L
∑

i=1
wm

ij
xi

L
∑

i=1
wm

ij

. (4)

2.2. Kernel K-Means and Kernel Fuzzy C-Means

To improve performance of k-means and fuzzy c-means in linearly inseparable
datasets, we may develop their kernel versions by choosing a feature mapping ϕ(·) :
RD → H from data points to kernel Hilbert space [37]. Though ϕ is usually unknown, it
must satisfy

K(x, y) = (ϕ(x))T ϕ(y) (5)

where K(x, y) is a kernel function. Commonly used kernel functions are presented in
Table 1.

Table 1. Commonly used kernel functions.

Name Code

Linear kernel K(x, y) = 〈x, y〉
Laplace Radial Basis Function kernel Klap(x, y) = exp(−σ‖x− y‖)

Gaussian Radial Basis Function kernel Kgau(x, y) = exp
(
− ‖x−y‖2

2σ2

)
Polynomial kernel Kpol(x, y) = (x · y + β)α

Sigmoid kernel Ktan(x, y) = tanh(αx · y + β)

In Table 1, 〈x, y〉 = x · y denotes the inner product of x and y, and σ, α, β are parame-
ters of the kernel. The objective function of kernel k-means is defined as

Jk =
K

∑
j=1

∑
xi∈ωj

∥∥ϕ(xi)− cj
∥∥2 (6)

where
cj =

1
Lj

∑
xi∈ωj

ϕ(xi). (7)

Using (5) and (7), we have

∥∥ϕ(xi)− cj
∥∥2

= K(xi, xi)−
2
Lj

L

∑
xk∈ωj

K(xk, xi) +
1(

Lj
)2

L

∑
xl∈ωj

L

∑
xh∈ωj

K(xl , xh). (8)

Let wij represent the membership degree of the i-th point belonging to the j-th class.
Likewise, we can define the kernel FCM clustering model as follows.

min J f (W) =
C

∑
j=1

L

∑
i=1

wm
ij
∥∥ϕ(xi)− cj

∥∥2

s.t.
C

∑
j=1

wij = 1, wij ≥ 0, m > 1

(9)
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where

cj =

L
∑

l=1
wm

lj ϕ(xl)

L
∑

l=1
wm

lj

, (10)

∥∥∥ϕ(xi)− cj

∥∥∥2
= K(xi, xi)−

2
L
∑

l=1
wm

lj

L

∑
k=1

wm
kjK(xk, xi) +

1(
L
∑

l=1
wm

lj

)2

L

∑
l=1

L

∑
h=1

wm
lj wm

hjK(xl , xh). (11)

The membership degree is computed via

wij =

(∥∥ϕ(xi)− cj
∥∥2
)− 1

m−1

C
∑

k=1

(
‖ϕ(xi)− ck‖2

)− 1
m−1

. (12)

3. Kernel Probabilistic K-Means

In this section, the kernel probabilistic k-means (KPKM) are proposed.
We first review the problem. When m = 1, the KFCM model gets into a special

case, namely,

min J f (W) =
K

∑
j=1

L

∑
i=1

wij
∥∥ϕ(xi)− cj

∥∥2

s.t.
K

∑
j=1

wij = 1, wij ≥ 0

(13)

where

cj =

L
∑

l=1
wl j ϕ(xl)

L
∑

l=1
wl j

, (14)

∥∥∥ϕ(xi)− cj

∥∥∥2
= K(xi, xi)−

2
L
∑

l=1
wl j

L

∑
k=1

wkjK(xk, xi) +
1(

L
∑

l=1
wl j

)2

L

∑
l=1

L

∑
h=1

wl jwhjK(xl , xh). (15)

This special case cannot be solved by Lagrangian optimization for m > 1, because (12)
cannot be computed when m = 1 (when m = 1, 1

m−1 = 1
0 cannot be computed).

In this paper, we use the optimization methods to solve this problem, but the partial
derivative of (13) with respect to wij is

∥∥ϕ(xi)− cj
∥∥2, and it does not contain wij.

In order to solve the problem, we introduce (14) into (13), and redefine the member
degrees wij as probability pij for 1 ≤ i ≤ L and 1 ≤ j ≤ K. Finally, we have

J(P) =
K

∑
j=1

L

∑
i=1

pij

∥∥∥∥∥ϕ(xi)−
∑L

l=1 pl j ϕ(xl)

∑L
l=1 pl j

∥∥∥∥∥
2

s.t. ∑K
j=1 pij = 1, pij ≥ 0

(16)

where probability vector

P = {p11, . . . , p1K, p21, . . . p2K, . . . , pLK}T.

(16) is the proposed kernel probabilistic k-means.
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The proposed KPKM is a soft clustering method. The pij(0 ≤ pij ≤ 1) is the probability
of the i-th data point belonging to the j-th cluster. The higher pij is, the greater possibility of
the i-th data point belonging to the j-th cluster. In KKM, the membership degree has only
two values (0 and 1). In the proposed KPKM, wij ∈ [0, 1] (although final wij = 0 or 1).

4. A Fast Solution to KPKM

KPKM is a nonlinear programming problem with linear equalities and linear inequali-
ties constraints, and it is able to be solved by active gradient projection [35,36] theoretically.
In this section, on the basis of AGP, we first calculate the gradient of of the objection
function of KPKM, and then design a fast AGP algorithm to solve the KPKM model.

The fast AGP has two advantages: iteratively updating the projection matrix and
estimating the maximum step length.

4.1. Gradient Calculation

For convenience, we define Fkj as

Fkj =

∥∥∥∥∥∥∥∥∥ϕ(xk)−

L
∑

l=1
pl j ϕ(xl)

L
∑

l=1
pl j

∥∥∥∥∥∥∥∥∥
2

. (17)

Using the chain rule on (16), we obtain

∂J
∂pij

=
L

∑
k=1

pkj
∂Fkj

∂pij
+ Fij. (18)

According to (17), we can further derive

∂Fkj

∂pij
=

−2

∑L
i=1 pij

(
K(xk, xi)−

∑L
l=1 pl jK(xk, xl)

∑L
i=1 pij

−
∑L

l=1 pl jK(xi, xl)

∑L
i=1 pij

+
∑L

l=1 ∑L
h=1 pl j phjK(xl , xh)(

∑L
i=1 pij

)2

. (19)

By substituting (19) into (18), we finally get

∂J
∂pij

=K(xi, xi)+
1(

∑L
l=1 plj

)2

L

∑
l=1

L

∑
h=1

plj phjK(xl , xh)−
2

∑L
l=1 pl j

L

∑
k=1

pkjK(xk, xi). (20)

and the gradient

∇J =
[

∂J
∂p11

· · · ∂J
∂p1K

· · · ∂J
∂pLj

· · · ∂J
∂pLK

]T
. (21)

4.2. Fast AGP

In the constraints of KPKM, there are L linear equalities and K×L linear inequalities,

∀1 ≤ i ≤ L,
K

∑
j=1

pij = 1, (22)

∀1 ≤ i ≤ L, 1 ≤ j ≤ K, pij ≥ 0. (23)

Let φ = K × L. Let Iφ×φ be the identity matrix of size φ× φ. Define two matrices,
inequality matrix A and equality matrix E, where

A = Iφ×φ, (24)
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E=



1 . . . 1︸ ︷︷ ︸
K

0 . . . 0 0 . . . 0

0 . . . 0︸ ︷︷ ︸
K

1 . . . 1︸ ︷︷ ︸
K

0 . . . 0

. . .
0 . . . 0 0 . . . 0 1 . . . 1︸ ︷︷ ︸

K


L×φ

. (25)

Note that each row of A corresponds to one and only one inequality in (23), and
each row of E corresponds to one and only one equality in (22). Accordingly, the KPKM’s
constraints can be simply expressed as

AP ≥ 0, EP = 1 (26)

where 1 = [1, . . . , 1]TL×1. Let P(0) stand for a randomly initialized probability vector, and
P(k) for the probability vector at iteration k. The rows of inequality matrix A can be broken
into two groups: one is active; the other is inactive. The active group is composed of all
inequalities that must work exactly as an equality at P(k), whereas the inactive group is
composed of the left inequalities. If A(k)

1 and A(k)
2 respectively denote the active group and

the inactive group, we have
A(k)

1 P(k) = 0, (27)

A(k)
2 P(k) > 0. (28)

At iteration k, the active matrix N(k) is defined as

N(k) =

[
A(k)

1

E

]
. (29)

When N = N(k) is not a square matrix, we can construct its projection matrix G(k)

and the corresponding orthogonal projection matrix Q(k) as follows:

G(k) = NT(NNT)−1N, (30)

Q(k) = I −G(k). (31)

Suppose that n from A(k−1)
2 is the active row vector at iteration k, satisfying nTP(k−1) > 0

and nTP(k) = 0. According to matrix theory [38], we can more efficiently compute G(k)

and Q(k) by

G(k) = G(k−1) + Q(k−1)nT
〈

Q(k−1)nT, Q(k−1)nT
〉−1

nQ(k−1). (32)

Furthermore, we can compute the projected gradient by

d(k) = −Q(k)∇J(P(k)). (33)

Using d(k), we update the probability vector P(k+1) as

P(k+1) = P(k) + t(k)d(k) (34)

where t(k) is the step length. Usually, t(k) is chosen as a small number. For fast convergence,
we estimate the maximum step length as follows.

t(k) = t(k)
max. (35)
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(1) Let p(k+1)
ij = p(k)ij + tijd

(k)
ij = 0 for p(k)ij > 0;

(2) Compute tij = −p(k)ij

/
d(k)ij for p(k)ij > 0 and d(k)ij < 0;

(3) t(k)
max = min

{
tij
}

.

As shown in Figure 1, maximum step length is compared with small step length.

Figure 1. Maximum step length and small step length.

When N = N(k) is a square matrix, it must be invertible. In this case, we actually have
G(k) = NT(NNT)−1N = ILK×LK, and Q(k) = 0. Thus, d(k) = −Q(k)∇J(P(k)) = 0 is not a
feasible descent direction. A new descent direction can be computed as follows:

(1) Compute a new vector,

q(k) = (NNT)−1N∇J =
(

NT
)−1
∇J. (36)

(2) Break q(k) into two parts q(k)
1 and q(k)

2 , namely,

q(k) =

[ (
q(k)

1

)T (
q(k)

2

)T
]T

(37)

where the size of q(k)
1 is the number of rows of A(k)

1 , and that of q(k)
2 is the number of

rows of E.

(3) If q(k)
1 ≥ 0, stop. Otherwise, choose any element from q(k)

1 that is less than 0 and

delete the corresponding row of A(k)
1 ; then use (29)–(31) and (33) to compute d(k).

The above fast AGP solution to KPKM is outlined in Algorithm 1. Compared with the
original AGP, the fast AGP has two advantages: iteratively updating the projection matrix
(shown in (32)) and estimating the maximum step length (shown in (35)).

4.3. Analysis of Complexity

In this section, the computational complexities for the traditional AGP algorithm
and the proposed FAGP algorithm are analyzed. Let TA represent the iteration number
of AGP. Let TF represent the iteration number of FAGP. In computations of all matrices,
the computational complexity of the projection matrix G is the highest. In the AGP
algorithm, computing G via (30) requires O(K3L3), so the total computational complexity
for AGP algorithm is O(TAK3L3). In the FAGP algorithm, G is computed via (32), and
it does not require to compute the inverse of matrices (i.e., (NNT)−1), and computing G
via (32) requires O(K3L2), so the total computational complexity for FAGP algorithm (i.e.,
Algorithm 1) is O(TFK3L2).
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Algorithm 1 Fast active gradient projection (FAGP).

Input: X and K
Do:

(1) Let k = 0, N = N(0) = E,G(0) = NT(NNT)−1N,
initialize P(0), go to (4);

(2) Find n ∈ A(k−1)
2 meeting nTP(k−1) > 0 and nTP(k) = 0;

(3) Compute G(k) by (32);
(4) Compute Q(k) by (31), and d(k) by (33);
(5) Compute t(k) by (35), and P(k+1) by (34);
(6) Let k = k + 1, if G(k) 6= ILK×LK, go to (2);
(7) Construct N = N(k) by (29), and by (36);
(8) Break into q(k)

1 and q(k)
2 by (37);

(9) If all elements of q(k)
1 are more than 0, stop;

(10) Choose any element less than 0 from q(k)
1 ,

and delete the corresponding row of A(k)
1 ;

(11) Reconstruct N = N(k) by (29);
(12) Compute G(k) by (30), and Q(k) by (31);
(13) Computed(k) by (33), and t(k) by (35);
(14) Compute P(k+1) by (34);
(15) Let k = k + 1, and go to (7).

Output: the probability vector P

5. Experimental Results

In order to evaluate performance of the proposed KPKM model (equivalent to KFCM
at m = 1) solved by the FAGP algorithm, we have conducted a lot of experiments on one
synthetic dataset, ten UCI datasets (http://archive.ics.uci.edu/ml (accessed on 8 March
2021)) and the MNIST dataset (http://yann.lecun.com/exdb/mnist/ (accessed on 8 March
2021)). These datasets are detailed in Sections 5.1–5.3. In Section 5.1, we use a synthetic
dataset to compare KPKM using a Gaussian kernel with KPKM using a linear kernel. In
Sections 5.2 and 5.3, we compare the proposed KPKM with KFCM, KKM, FCM, and KM
to evaluate the performance of KPKM solved by the proposed fast AGP. Moreover, the
Sections 5.4 and 5.5 evaluate the descent stability and convergence speed of the proposed
FAGP, respectively. In the experiments, we implemented our own MATLAB code for
KPKM, KFCM, and KKM with two build-in functions, sparse and full, employed for matrix
optimization. Moreover, we called MATLAB’s build-in functions fcm and kmeans for FCM
and KM, respectively.

All experiments were carried out on a PC with an Intel(R) Core(TM) i7-4790 CPU at
3.60 GHz, 8.00 G RAM, running Windows 7 and MATLAB 2015a.

5.1. The Experiment on the Synthetic Dataset

In this experiment, we analyzed the influences of the Gaussian radial basis function
kernel and the linear kernel on KPKM when clustering one synthetic dataset, which is
shown in Figure 2. The synthetic dataset contained 300 points, with 100 and 200 being
from two linearly inseparable classes, disc and ring, respectively. The result is displayed in
Figure 3. Obviously, Gaussian radial basis function KPKM can cluster perfectly, whereas
linear KPKM cannot.

http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist/
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Figure 2. The synthetic dataset, which is composed of two linearly inseparable classes: disc and ring.

(a) (b)

Figure 3. The results of the synthetic dataset clustered by Gaussian radial basis function kernel
probabilistic k-means (KPKM) (a) and linear KPKM (b).

5.2. Experiment on Ten UCI Datasets

In this experiment, we compare the clustering performance of KPKM with the perfor-
mances of KFCM, KKM, FCM, and KM in terms of three measures: normalized mutual
information (NMI), adjusted Rand index (ARI), and v-measure (VM) [39,40]. NMI is a
normalization of the mutual information score to scale the results between 0 (no mutual
information) and 1 (perfect correlation). The NMI is defined as

NMI(U, V) =
MI(U, V)

mean(H(U), H(V))
(38)

where H(U) is the entropy of U; MI is given by

MI(U, V) =
|U|

∑
i=1

|V|

∑
j=1

|Ui ∩Vj|
N

log
N|Ui ∩Vj|
|Ui||Vj|

(39)

where |Ui| is the number of the samples in cluster Ui. ARI is an adjusted similarity measure
between two clusters. The ARI is defined as

ARI =
RI− E(RI)

max(RI)− E(RI)
(40)

where RI is the ratio of data points clustered correctly to all data points, and E(RI) is the
expectation of RI. VM is a harmonic mean between homogeneity and completeness, where
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homogeneity means that each cluster is a subset of a single class, and completeness means
that each class is a subset of a single cluster. The VM is defined as

VM =
(1 + β)× homogeneity× completeness
(β× homogeneity + completeness)

(41)

The higher the NMI, ARI and VM, the better the performance.
We describe the ten UCI datasets represented in Table 2 by name, code, number of

instances, number of classes and number of dimensions. A set of experiential parameters
was selected. We set m = 2 for KFCM, and m = 1.3 for FCM. With the Gaussian radial
basis function kernel, we also selected appropriate σ (shown in Table 3), and report the
clustering results in Table 4. The better results in each case is highlighted in bold. (The
performance of many a method depends on parameters [41]. By experiments we found that
for different algorithms with the same kernel function, the most appropriate parameters are
usually different, so we used different settings to make the methods have the best clustering
performances they could. We also tried to select the most appropriate parameter by using
our experience.) We ran every algorithm 10 times, and average results were calculated.

From Table 4, we can see that

(1) For NMI, KPKM had the best clustering results on nine datasets, so the clustering
performance of KPKM was the best for NMI.

(2) For ARI, KPKM had the best clustering results on six datasets. KFCM, KKM, FCM, and
KM performed the best on 2, 1, 0, and 1 datasets, respectively, so KPKM performed
the best for ARI.

(3) For VM, KPKM, KFCM, KKM, FCM, and KM had the best clustering results on 7, 0,
2, 1, and 0 datasets, respectively. Thus, KPKM had the best clustering performance
for VM.

Overall, KPKM is better than the other models.

Table 2. The ten UCI datasets used.

Name Code Instances Classes Dimensions

Iris R1 150 3 4
Seeds R2 210 3 7

Segmentation R3 210 7 19
Glass R4 214 6 9

Ionosphere R5 351 2 33
Dermatology R6 358 6 34
Breast-cancer R7 683 2 9

Natural R8 2000 9 294
Yeast R9 2426 3 24

Waveform R10 5000 3 21

Table 3. Parameter σ selected for kernel clustering methods.

Dataset KPKM KFCM KKM

R1 1.08 1.22 0.9
R2 1.9 2 2
R3 510 530 540
R4 510 100 510
R5 1.5 1 1.3
R6 3.3 2 18
R7 12 10 15
R8 3 0.9 2.7
R9 15 10 25

R10 10 15 13
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Table 4. Comparisons of KPKM with kernel fuzzy c-means (KFCM), kernel k-means (KKM), fuzzy c-
means (FCM), and k-means (KM) on ten UCI datasets (DS) in terms of normalized mutual information
(NMI), adjusted Rand index (ARI), and v-measure (VM).

DS Method KPKM KFCM KKM FCM KM

R1
NMI 0.8146 0.7900 0.7820 0.6723 0.6733
ARI 0.8119 0.8015 0.7590 0.5763 0.5779
VM 0.8146 0.7900 0.7820 0.7081 0.7149

R2
NMI 0.7073 0.6949 0.7038 0.6949 0.7025
ARI 0.7141 0.7166 0.7231 0.7166 0.7135
VM 0.7073 0.6949 0.7038 0.6949 0.6999

R3
NMI 0.5555 0.5503 0.5154 0.4678 0.5132
ARI 0.3909 0.4141 0.3429 0.3172 0.3313
VM 0.5553 0.5503 0.5139 0.5729 0.5252

R4
NMI 0.4436 0.3594 0.3943 0.3489 0.4178
ARI 0.2796 0.2137 0.2542 0.2126 0.2551
VM 0.4424 0.3593 0.3934 0.3807 0.3857

R5
NMI 0.2476 0.2390 0.2715 0.1299 0.1349
ARI 0.1747 0.1098 0.1657 0.1727 0.1777
VM 0.2476 0.2390 0.2715 0.1298 0.1348

R6
NMI 0.2919 0.2068 0.2778 0.1046 0.1032
ARI 0.1795 0.1388 0.1698 0.0261 0.0266
VM 0.2919 0.2065 0.2776 0.1095 0.1056

R7
NMI 0.7903 0.7825 0.7741 0.7478 0.7478
ARI 0.8796 0.8741 0.8674 0.8464 0.8464
VM 0.7903 0.7825 0.7741 0.7478 0.7478

R8
NMI 0.0531 0.0326 0.0556 0.0521 0.0536
ARI 0.0253 0.0303 0.0283 0.0273 0.0261
VM 0.0525 0.0312 0.0550 0.0495 0.0529

R9
NMI 0.0052 0.0031 0.0050 0.0043 0.0050
ARI 0.0118 0.0084 0.0118 0.0109 0.0117
VM 0.0052 0.0031 0.0050 0.0045 0.0045

R10
NMI 0.3654 0.3162 0.3637 0.3606 0.3622
ARI 0.2546 0.2377 0.2541 0.2529 0.2536
VM 0.3654 0.3162 0.3637 0.3559 0.3622

5.3. Experiment on the MNIST Dataset

In this experiment, we used the MNIST dataset to compare KPKM with KFCM and
KKM when clustering digital images. The MNIST dataset was composed of handwritten
digits, with 60,000 examples for training and 10,000 examples for testing. All digits were
size-normalized and centered in fixed-size images. To evaluate the clustering performances
of KPKM, KFCM, and KKM, we randomly chose 1000 training examples; 100 are shown in
Figure 4.

Moreover, we defined a CWSS kernel based on complex wavelet structural similarity
(CWSS) [42]. CWSS may be regarded as a coefficient that does not change the structural
content of an image. By using CWSS(x, y) to denote the similarity between two images x
and y, we can express the CWSS kernel as

Kcwss(x, y) = exp
(
−1− CWSS(x, y)

2σ2

)
(42)
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where σ = 5 is set for KFCM, and σ = 1 for both KPKM and KKM. Additionally, m = 1.3 is
set for KFCM. We present the results in Table 5, with the examples of Figure 4 correspond-
ingly being displayed in Figure 5. From Table 5, we can see that KPKM outperformed
KFCM and KKM in terms of NMI, ARI, and VM. From Figure 5, we can observe that both
KPKM and KKM found ten clusters, whereas KFCM found only seven clusters, although
the number of clusters was set to ten.

Figure 4. One-hundred digital examples, 10 per class.

(a) (b) (c)

Figure 5. The results of the examples of Figure 2 clustered by KPKM (a), KFCM (b), and KKM (c).

Table 5. Comparisons of KPKM with KFCM and KKM on the MNIST dataset in terms of NMI, ARI,
and VM.

Measure KPKM KFCM KKM

NMI 0.6830 0.5438 0.6613
ARI 0.5685 0.4047 0.5256
VM 0.6829 0.5411 0.6613
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5.4. Experiment for Descent Stability

In this experiment, we used 10 UCI datasets to evaluate descent stability of FAGP.
AGP selects a small step length to converge. If AGP selects a large step length, the objective
function value may descend with oscillation, and even does not converge. FAGP iteratively
estimates a maximum step length at each iteration for speeding up its convergence. How-
ever, does it have any serious influence on the convergence? we ran the proposed FAGP on
10 UCI datasets to demonstrate the descent stability of FAGP. As shown in Figure 6, we can
see that FAGP descends stably without oscillation at each iteration.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6. Descent stability of FAGP on 6 UCI datasets: Ionosphere (a), Iris (b), Seeds (c), Glass (d), Segmentation (e),
Dermatology (f), Breast (g), Natural (h), Yeast (i), and Waveform (j). The x-axis shows the iteration number. The y-axis
shows the objective function value.

5.5. Convergence Speed Comparison between FAGP and AGP

In this experiment, we compared the convergence speeds of FAGP and AGP by using
running time on 10 UCI datasets. η is the ratio of FAGP’s running time to AGP’s. FAGP and
AGP used the same initializations in each case. The results are presented in Tables 6 and 7
(“–” means the running time was too long to obtain the final clustering results), and we
can observe the proposed FAGP ran faster than AGP on all the 6 datasets. For Iris and
Seeds datasets, FAGP used less than 10% of running time of AGP. FAGP also required
fewer iterations than AGP. For large datasets, the running time of AGP was too long, but
the proposed fast AGP could obtain the final clustering results.
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Table 6. Running time (s) comparison of FAGP and AGP.

DS FAGP AGP η

Ionosphere 0.719763 2.579700 27.90%
Iris 0.397728 9.410401 4.22%

Seeds 0.693613 8.650179 8.01%
Glass 3.482856 22.644511 15.38%

Segmentation 4.706316 19.125480 24.60%
Dermatology 10.659099 50.796225 20.98%

Breast 1.0153 6.1325 16.55 %
Natural 2309 – –

Yeast 197.37 – –
Waveform 213.64 – –

Table 7. Comparison of the numbers of iterations used by FAGP and AGP.

DS FAGP AGP

Ionosphere 354 975
Iris 357 6506

Seeds 423 4061
Glass 1123 5616

Segmentation 1275 3986
Dermatology 1768 6784

Breast 682 694
Natural 16,378 –

Yeast 5609 –
Waveform 9939 –

6. Conclusions

In this paper, a novel clustering model (i.e., KPKM) was proposed. The proposed
KPKM solves the problem of KFCM for m = 1, and this problem cannot be solved by
existing method. The traditional AGP method can solve the proposed KPKM, but the
efficiency of AGP is low. A fast AGP was proposed to speed up the AGP. The proposed
fast AGP uses a maximum step length strategy to reduce the iteration number and uses an
iterative method to update the projection matrix. The experimental results demonstrated
that the fast AGP is able to solve the KPKM and the fast AGP requires less running time
than AGP (the proposed FAGP requires 4.22–27.90% of the running time of AGP on real
UCI datasets). The convergence of the proposed method was also analyzed by experiments.
Additionally, in the experiments, the KPKM model could produce overall better clustering
results than the other models, including KFCM, KKM, FCM, and KM. The proposed KPKM
obtained the best clustering results on at least 6 real UCI datasets (a total of 10 real UCI
datasets were used).

As future work, the proposed KPKM using other kernels will be evaluated in a variety
of applications. For large datasets, the proposed method still has some disadvantages, so
the next project will include speeding up the AGP on large datasets.
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Abbreviations
The following abbreviations are used in this manuscript:

X dataset
xi i-th data points of X
ϕ(·) feature mapping from data points to kernel Hilbert space
Klap(·, ·) Laplace Radial Basis Function kernel
Kgau(·, ·) Gaussian Radial Basis Function kernel
Kpol(·, ·) polynomial kernel
Ktan(·, ·) sigmoid kernel
ωj j-th cluster
L number of elements in X
Lj number of elements in ωj
cj center of ωj
K and C number of clustering center
W membership degree matrix
wij membership degree to the i-th data point in the j-th cluster
A inequality matrix
E equality matrix
P probability matrix
I identity matrix
pij probability to the i-th data point in the j-th cluster
G projection matrix
Q orthogonal projection matrix
N active matrix
n row vector of N
d projected gradient
t step length
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