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Abstract: Near Infrared (800–2500 nm) spectroscopy has been extensively used in biomedical ap-
plications, as it offers rapid, in vivo, bed-side monitoring of important haemodynamic parameters,
which is especially important in critical care settings. However, the choice of NIR spectrometer needs
to be investigated for biomedical applications, as both the dual beam dispersive spectrophotomer
and the FTNIR spectrometer have their own advantages and disadvantages. In this study, predictive
analysis of lactate concentrations in whole blood were undertaken using multivariate techniques
on spectra obtained from the two spectrometer types simultaneously and results were compared.
Results showed significant improvement in predicting analyte concentration when analysis was
performed on full range spectral data. This is in comparison to analysis of limited spectral regions or
lactate signature peaks, which yielded poorer prediction models. Furthermore, for the same region,
FTNIR showed 10% better predictive capability than the dual beam dispersive NIR spectrometer.

Keywords: near infrared spectroscopy; dual beam dispersive NIR; FTNIR; lactate; aquaphotomics

1. Introduction

Near Infrared Spectroscopy, a type of molecular vibrational spectroscopy, has found
immense applications in healthcare monitoring because at the wavelength range of
800–1200 nm, electromagnetic radiation has the ability to penetrate tissue and be retrieved
in-vivo, making it an ideal non-invasive technique [1]. Another attractive feature of this
technique, especially for intensive care, is its ability to perform real time, bed side monitor-
ing using portable instruments [2]. These fundamental advantages of NIR spectroscopy
have stimulated research for decades and established numerous applications, especially
in extracting information such as, oxygenation level [3,4], glucose [5,6] and lactate [7]
concentrations in blood, one of the most complex of biological matrices. NIR spectra of
whole blood can now be acquired using a wide range of spectrometer types.

Spectrometers based on dispersive methods for acquiring NIR spectra have been
available since the 1940s; the first economical commercial dual beam spectrophotometer
(INFRACORD) was introduced by Perkin Elmer in 1957 [8]. It was not until 1969, however,
that the first FTIR instrument (Model FTS-14) was introduced commercially by Digilab
Inc. [9]. A dual beam dispersive spectrophotometer is more sensitive (with high Signal to
Noise Ratio), provides better stability (able to subtract out the background noise without
operator intervention), has a greater accuracy and better spectral resolution [10]. However,
there are three major advantages of FTNIR over the archetype dual beam instrument:

• Multiplexing: Interferometers, which are an integral part of the FTIR/FTNIR spec-
trometers, use a moving mirror which can scan the entire range of wavelengths at
once for spectra collection. This makes it faster than the dual beam spectrophotometer,
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which considers each wavelength, individually, in the spectral range for collection.
Each of the scans in FTIR/FTNIR can be summated for a better accuracy and signal
to noise ratio (SNR) (squareroot of the total spectra) for each spectrum, known as
Fellgett’s advantage [11]

• Throughput: A FTIR/FTNIR spectrometer has a higher throughput compared to the
dual beam spectrophotometer, owing to the avoidance of the slits or optical apertures
and the use of fewer mirrors in the instrument, which increases the total energy of the
incident light on a sample and reduces reflection losses. This increases SNR, and is
known as Jacquinot’s advantage [12].

• Precision: The use of laser light sources to control the speed of mirror movement and
instrument calibration makes FTIR/FTNIR capable of acquiring precise absorption
spectra, independent of time or any other external variables, such as, temperature and
vibrational variation [13,14].

From this, one instrument type could still be favoured over the other, but there have
been no studies yet to formally compare the two, in terms of instrument/technology capa-
bilities for biomedical applications in the NIR region. Similar studies has been performed
for other fields of science, mostly, food [13–19]. However, studies related to biomedical sci-
ences for the detection of biomarkers in blood has not been investigated previously. These
biomarkers act as a reflection of personal health, and lactate is a key indicator of metabolic
health for well bein [20] and haemodynamic shock states in critical care environments [21].
Elevated lactate levels or hyperlactaemia is an imperative biomarker for metabolic diseases
like diabetes, hypertension and cardiovascular disease [22]. Hence, for the first time, spec-
tra from whole blood sample solutions, (red cells, white cells, and platelets, suspended
in plasma) with varying lactate concentrations, were acquired simultaneously from two
representative instruments; the dual beam spectrophotometer, LAMBDA 1050 and the
FTNIR/IR, FrontierTM both from Perkin Elmer (Waltham, MA, USA). The spectra were
then analysed using the principles of Aquaphotomics and multivariate analysis techniques,
and were compared for different regions of the NIR spectral range. In the regions of the
NIR, where OH has a huge presence, Aquaphotomics principles were applied to under-
stand the changes in the spectra due to lactate concentration changes. Multivariate analysis
together with chemometric techniques have enabled decomposition and analysis of NIR
spectroscopic data by providing precise information between the variables/wavelengths
and observations/concentration, which is otherwise not possible, as spectral data consists
of a large volume of variables [23]. Partial Least Square Analysis followed by leave-one-out
cross validation has been used to investigate the signature wavelengths of lactate and the
entire ranges of the obtained NIR spectra. This study will demonstrate the capabilities and
differences of NIR dual beam and FTNIR spectroscopy coupled with multivariate analysis
for lactate concentration determination.

2. Reagents and Materials

Na-L-Lactate powder and isotonic buffer (PBS) (Analytical Grade) were obtained
from Thermo Fisher Scientific (Waltham, MA, USA) and a 600 mM stock solution of lactate
was prepared. Forty one sample solutions of varying lactate concentration, at intervals
of 0.5 mM), of 30 mL each were prepared by diluting the stock solution. All the solutions
were maintained at a room temperature of 24 ◦C at a pH 7.4.

Sheep whole blood in Alsever’s solution was acquired from TCS Biosciences Ltd.
(Buckingham, UK). Sheep blood was the preferred choice for this study because its lactate
concentrations provide a close match to normal and temporal changes in lactate levels in
human blood. The study was approved by the Senate Research Ethics Committee (SREC),
City, University of London (SREC 17-18 05 6ii 27.06.2018).

In total, 1 mL of lactate in PBS solutions was then mixed with 19 mL of sheep blood to
obtain 41 samples (for each set) of varying lactate concentrations of 20 mL each at 0.5 mM
concentration intervals. The initial lactate concentrations of the commercially acquired
sheep blood were 3.8–4.0 mM. This method of sample preparation was similar to a previous



Sensors 2021, 21, 1891 3 of 11

study [24]. The concentrations of lactate and the pH of the solution samples were measured
using an ABL 825 blood-gas analyser from Radiometer UK Limited (Crawley, UK). Lactate
measurement, here, is based on an electrochemical lactate biosensor that uses the enzyme
lactate oxidase to produce detectable H2O2; values were found to be 4.5 to 13.8 mM with
intervals of 0.5 mM and pH 7.1–7.4, respectively. These samples were then used directly in
the spectrometers without further treatment.

3. NIR Spectrometry
3.1. Dual Beam Dispersive NIR

The spectra of the prepared samples, were collected using a Lambda 1050 dual beam
spectrophotometer from Perkin Elmer Corp. (Waltham, MA, USA). A 100 mm InGaAs
integrating sphere detector set at 0 deg transmission mode was used as detector and spectra
were acquired in the wavelength range 870–2600 nm at 2 nm intervals. The integrating
sphere detector helped to achieve a homogenised/reduced scatter transmitted light through
the whole blood samples. The Gain and Response Times for the detector was maintained
at 0 and 0.2 s, while slit size was kept at 2 nm. These settings prevented the detectors
from oversaturation. Reference beam attenuation was set at 1%, and quartz cuvettes of
1 mm path length from Hellma Materials GmbH (Jena, Germany) were used. A Spectralon
Diffuse Reflectance Standard from Lapsphere (North Sutton, NH, USA) was also placed
at the aperture of the sphere detector for both baseline corrections and sample spectra
collections in order to close the sphere. Three spectra were collected from each sample,
which were then averaged to obtain a 41 spectra data-set. In this technique, one spectrum
is produced per scan and the time of acquisition was on average 5 min per spectrum.

3.2. FTNIR

Spectra from 900–3000 nm, were obtained using a FrontierTM FTIR/NIR spectrom-
eter, again from Perkin Elmer, (Waltham, MA, USA) for the same whole blood samples,
simultaneously to avoid the effects of any temporal sample change. Spectra were collected
at 0.8 nm data intervals, spectral resolution maintained at 2 cm−1 and the variable J-stop
(Jacquinot-stop) was kept at 3.16 mM at 3000 cm−1, for a better throughput.

Multiplexing of 20 scans per sample, with a scan speed of 0.2 cm s−1 was adopted,
in order to improve SNR. 70 µL of each sample was then pipetted directly onto the ZnSe
crystal surface of the Horizontal Attenuated Total Reflectance (HATR) accessory, from Pike
Technologies Inc., (Fitchburg, WI, USA). The specifications of the HATR accessory were:
a trough Zinc Selenide (ZnSe) crystal of 4 mM thickness, the length and refractive index
of which were 80 mM and 2.4, respectively. The crystal allowed 10 internal reflections
per measurement. The time of acquisition in this instrument was on average 5 min for all
20 scans.

Background scans with the empty crystal for ambient condition deductions were
taken after either 2 samples or every 20 min during spectra collection. Thus, a total of
41 spectra were obtained, which were then pre-processed and analysed.

3.3. Spectral Analysis

Spectra collection and visualisation was carried out using the software packages:

• UVWin Lab for LAMBDA 1050, from Perkin Elmer (Waltham, MA, USA) and
• Spectrum 10 for FrontierTM FTIR/NIR, from Perkin Elmer (Waltham, MA, USA).

Further pre-processing of the spectra was in MATLAB R2020b, MathWorksTM (Natick,
MA, USA). The following steps were performed on the spectra for both the data-sets
separately, in succession [25]:

• Spectral Difference: The spectrum of the first sample (4.2 mM concentration of lactate)
was subtracted from the rest of the spectra

• Linear Robust Multiplicative Scatter Correction (MSC) [26] was used for both the
data-sets
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• Savitzky-Golay (SG) [27] filter parameters (Polynomial Order, Derivative and Window
Length) for both the data-sets are mentioned in Table 1. These parameters (smoothing,
derivative, polynomial degree) were selected based on expert knowledge/rule of
thumb/visual investigation.

Table 1. Parameters for Savitzky-Golay (SG) Filter.

Data-Set Polynomial Order (PO) Derivative (D) Window Length (WL)

Dual Beam
Dispersive NIR 2 1 7

FTNIR 2 1 31

The spectra were then analysed using the principles of Aquaphotomics [28], Linear
Regression on observed peaks relevant to lactate [24] and Partial Least Square Regression
(PLSR) [29] for predictive modelling. All these models and analysis was investigated with
the help of algorithms developed in house in MATLAB.

These models were built up using Latent Variables (LVs), the optimum number of
which were calculated from Predicted Residual Sum of Squares (PRESS) results for both
the instrumental data-sets and considered as the saddle point [30]. The models were
then validated using the leave-one-out cross validation technique. In this process each
spectrum is left out and predicted using the N-1 (N = 41, in this case) spectra. This process
is repeated N times such that each spectrum is left out and predicted using the others
to obtain the calibration model. Using this process, predictions were compared with the
actual concentrations of lactate obtained using the blood-gas analyser, the gold standard for
lactate measurement. The Coefficient of Determination (R2), and the Root Mean Squared
Error of Cross Validation (RMSECV) the were finally used to determine accuracy of the
models and compared against each other.

4. Results and Discussion

In order to absorb infrared radiation, a molecule must have a non-zero dynamic
dipole moment. This favours vibrational transitions to the discrete energy states n = 0 to
n = ±1,±2,±3, . . . , where n is the principal quantum number. A transition in the rotational
quantum number of a molecule, J can also be induced simultaneously in the near infrared
region of the electromagnetic spectrum. Thus, the NIR absorption spectrum comprises of
various vibrational-rotational transition nodes. Besides these fundamental modes of vibra-
tion, peaks also arise from transition combinations (two or more fundamental vibrations
becoming excited simultaneously) and overtones (first overtone, n = 0 to n = 2 or second
overtone, n = 0 to n = 3, and so on) bands. These special vibration bands are only seen in
the NIR spectral region. However, in the spectra collected during this study, the peaks
arising from transitions of the lactate molecule were overshadowed by the overtones for
water -OH bonds, and therefore, spectra obtained using both types of instruments strongly
resembled typical NIR spectra of any aqueous solution [31]. The figures for both data-sets
are shown in Figure 1. Hence, in order to extract the peaks relevant to lactate, both spectral
data sets were divided into three regions, and are discussed below.

4.1. Spectral Regions with O-H Absorption Interference

The wavelengths of interest which depict all the -OH functional groups are: 970 nm
and 1820 nm (O-H stretch), 1450 nm, 1490 nm and 1540 nm (O-H stretch first overtone),
1960 nm (O-H stretch/O-H bend combination), 2070 nm (O-H combination) and 2100 nm
(O-H bend) [32]. Table 2 shows results of the linear regression, which was performed in
order to understand the effects of lactate concentration changes in absorbance at these
wavelengths of interest. The coefficients and standard errors (in parenthesis) are presented,
along with statistical significance marker p-values ≤ 0.05.
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Figure 1. Raw Spectra of the 41 samples (different concentrations) of lactate for (left) Lambda
1050 (dual beam dispersive NIR instrument) and (right) Frontier (FTNIR instrument). The different
coloured spectra depict the concentrations of lactate from 4.5 to 13.8 mM at 0.5 mM intervals.

Table 2. Linear Regression on observed peaks (nm) arising in the spectra due to O-H bonds. (coeffi-
cient and Standard errors in parenthesis. p-values depict statistical significance markers ≤ 0.05).

Wavelength (nm)/Data-Set Dual Beam
Dispersive NIR FTNIR

970 1.51 × 10−5 (9.15 × 10−6) −2.00 × 10−6 (1.43 × 10−6)
1450 −1.11 × 10−4 (4.17 × 10−5) 1 −1.72 × 10−7 (6.8 × 10−7)
1490 −1.16 × 10−5 (3.56 × 10−5) −1.28 × 10−6 (5.42 × 10−7) 1

1540 2.28 × 10−5 (1.17 × 10−5) −4.94 × 10−7 (5.26 × 10−7)
1820 3.73 × 10−5 (1.46 × 10−5) 1 1.33 × 10−7 (3.57 × 10−7)
1960 4.25 × 10−6 (4.42 × 10−6) −5.97 × 10−6 (3.03 × 10−6)
2070 2.77 × 10−5 (3.79 × 10−5) −1.72 × 10−6 (9.26 × 10−7)
2100 7.51 × 10−5 (3.41 × 10−5) 1 −1.62 × 10−6 (6.59 × 10−7) 1

1 p-values ≤ 0.05.

From Table 2, it can be seen that at these wavelengths, the absorption values are not
linearly correlated at a high level of statistical significance. For further understanding of
the effects of O-H in the spectra, this region was analysed using the principles of aquapho-
tomics [33]. This principle states that in an aqueous medium, water-light interaction, at the
NIR overtone regions of water could reveal indirect information that relate and are perti-
nent to the overall system. This is called the “water mirror approach” and utilizes the H
bonds of water that form covalent bonds with the analytes present in solution and which
are usually disturbed by minute perturbations in the system.

Aquagrams depicting activated Water Absorbance Spectral Patterns (WASPs) were
constructed using 12 Water Matrix Absorbance Coordinates (WAMACs) (1342 nm (1344 nm
for FTNIR), 1364 nm, 1374 nm (1372 nm for FTNIR), 1384 nm, 1412 nm, 1426 nm (1424 nm,
for FTNIR), 1440 nm, 1452 nm, 1460 nm, 1476 nm, 1488 nm and 1512 nm) in the first Water
Absorbance Bands (WABS) (1300–1600 nm). Figure 2, depicts the aquagrams for both the
NIR data sets.
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Figure 2. Aquagrams for lactate in whole blood samples in Water Absorbance Bands (WAB)
1300–1600 nm, showing Water Absorbance Spectral Pattern (WAPS) in the Water matrix co-ordinates
(WAMACS) of varying concentrations of lactate in PBS samples. The WAMACS: C1: 1342 (1344), C2:
1364, C3: 1374 (1372), C4: 1384, C5: 1412, C6: 1426 (1424), C7: 1440, C8: 1452, C9: 1460, C10: 1476, C11:
1488 and C12: 1512 nm depicts molecular conformations which arises due to water-NIR light-lactate
molecule interactions. The Aquagram on the left is constructed from the dual beam dispersive NIR
spectra data-set and the one on the right is constructed from FTNIR spectra data-set.

Visual inspection reveals that the aquagram obtained from the dual beam dispersive
NIR instrument was clearer with sharper lines and followed patterns towards particular
wavelengths, in comparison to FTNIR collected spectra. This may be due to the better SNR
instrument capabilities of the former type. It could also be seen that the WAMACs that
were activated for both the aquagrams were: 1412 nm (C5), 1426 nm (C6) and 1440 nm (C7),
which are smaller in wavelength. Previous studies have shown that the chemical/molecular
conformations that could be assigned to these WAMACs are the following : C5: water
with free hydroxyl OH− side groups, C6: H-OH bend (δ), C7: Water molecules with 1 H
bond [34,35]. This was apparent as the solutions had a substantial amount of water and
these free water molecules were highlighted by the shorter wavelength WAMACs [33].

Apart from these, a few longer wavelengths, 1476 nm, 1488 nm and 1512 nm, are seen
to be activated as well. These wavelengths could be assigned the following WAMACS
and chemical/molecular conformations: C10: Water molecules with 2 H bonds, C11: Water
molecules with 3 H bonds, C12: Strongly bound water. These water conformations in the
whole blood aqueous system may be the result of water-lactate molecular interactions and
the formation of ionic lactate complex clusters, as whole blood is a polar solvent that can
sustain ionic complexes [33]. It is also possible that bonded lactate structures in aqueous
solution were the result of lactate ions bound to plasma proteins [36] or to deoxy- and
oxyhaemoglobin [37]. Because of these bound complexes, the effects of concentration
change of different free analytes would not be seen in such an aqueous system [38]. Hence,
when PLS predictive models were built using this spectral region (1300–1600 nm), using 4
and 2 LVs for the dual beam dispersive NIR and FTNIR data-sets respectively; the R2 and
RMSECV values were 0.51, 0.54 and 1.28 mM and 1.83 mM respectively. Thus, confirming
that neither of these data-sets could be used for lactate concentration prediction in this
spectral region of the NIR.

4.2. Signature Wavelengths of Lactate

Previous studies have shown that the NIR spectral region is pH dependent and the
wavelengths that are pertinent to lactate concentration changes depend on the pH of the
solution in which they are measured [32,39]. Since, the pH calculated for these sample
solutions were between 7.1 and 7.4, the wavelengths of interest were: 1142 nm, 1232 nm,
1280 nm, 1330 nm, 1710 nm, 1750 nm, 1882 nm, 2204 nm, 2320 nm and 2340 nm [32].
Linear Regression on these wavelengths are shown in Table 3. Moreover, a few more
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wavelengths can be found in the literature where studies similar to this were performed
for lactate concentration measurements at similar pH: 923 nm and 1047 nm [40], 1675 nm,
1690 nm and 1730 nm [41], 2166 nm, 2254 nm and 2292 nm [42]. Linear regression on
these wavelengths was performed separately, shown in Table 4. (Since the spectra for the
Lambda 1050 and the Frontier FTIR/NIR was collected at 2 nm and 0.8 nm data intervals,
hence the wavelengths available closest were considered for analysis.)

Of all the wavelengths stated above, the ones which were statistically significant are:
1046 nm (p-values ≤ 0.00005), 1142 nm (p-values ≤ 0.00005), 1232 nm (p-values ≤ 0.00005),
1280 nm (p-values ≤ 0.05), 1330 nm (p-values ≤ 0.05), 1690 nm (p-values ≤ 0.00005),
1710 nm (p-values ≤ 0.005), 1750 nm (p-values ≤ 0.005), 2166 nm (p-values ≤ 0.05), 2320 nm
(p-values ≤ 0.00005) and 2340 nm (p-values ≤ 0.05). While for the FTNIR data set, none of
the wavelengths showed any linear statistical significance correlation. This might again
be due to better SNR of the dual beam dispersive compared to the FTNIR instrument for
each wavelength.

However, when these particular wavelengths were used for lactate concentration
prediction using partial least square algorithm, the R2 and RMSECV values were 0.68
and 1.45 mM respectively, for the dual beam dispersive data set (using 9 LVs). Similarly,
for the FTNIR data set(using 8 LVs), the R2 and the RMSECV values were 0.78 and 2.61 mM
respectively. These results show that using the wavelengths pertinent to lactate in the
NIR spectral region, the concentration of lactate can be predicted. The FTNIR instrument
gives better prediction results compared to the dispersive type. The reason behind the
improvement of results may be due to the use of multivariate chemometric techniques,
which is a better analysis tool for NIR spectra since band identification is a demanding
process in NIR spectroscopy due to the complexity of peaks that are often the result of
overtones and combination of -CH and -OH bands.

Table 3. Linear Regression on wavelengths pertinent to lactate in both the data-sets.

Wavelength (nm)/Data-Set Dual Beam
Dispersive NIR FTNIR

1142 1.08 × 10−4 (1.27 × 10−5) 3 −6.71 × 10−7 (1.01 × 10−6)
1232 −5.26 × 10−5 (9.28 × 10−6) 3 −7.30 × 10−7 (6.72 × 10−7)
1280 1.08 × 10−5 (4.85 × 10−6) 1 −5.72 × 10−7 (6.86 × 10−7)
1330 4.29 × 10−5 (1.69 × 10−5) 1 −5.84 × 10−7 (7.01 × 10−7)
1710 −5.34 × 10−5 (1.51 × 10−5) 2 3.64 × 10−7 (4.88 × 10−7)
1750 3.03 × 10−5 (1.09 × 10−5) 2 7.04 × 10−7 (4.62 × 10−7)
1882 −2.18 × 10−4 (0.09 × 10−4) 1.46 × 10−5 (7.50 × 10−6)
2204 2.19 × 10−5 (2.38 × 10−5) 3.12 × 10−7 (3.15 × 10−7)
2320 −1.26 × 10−4 (3.26 × 10−5) 3 8.18 × 10−7 (8.18 × 10−7)
2340 1.3833 × 10−4 (6.07 × 10−5) 1 2.41 × 10−6 (9.93 × 10−7)

1 p-values ≤ 0.05. 2 p-values ≤ 0.005. 3 p-values ≤ 0.00005.

Table 4. Linear Regression on wavelengths pertinent to lactate in both the data-sets.

Wavelength (nm)/Data-Set Dual Beam
Dispersive NIR FTNIR

922 1.354 × 10−5 (9.59 × 10−6) −3.42 × 10−6 (1.73 × 10−6)
1046 5.57 × 10−5 (1.52 × 10−5) −1.67 × 10−6 (1.30 × 10−6)
1674 −1.63 × 10−6 (2.84 × 10−5) 1.47 × 10−9 (5.47 × 10−7)
1690 3.72 × 10−5 (9.10 × 10−6) −1.05 × 10−8 (3.65 × 10−7)
1730 4.29 × 10−6 (1.10 × 10−5) −1.59 × 10−7 (5.44 × 10−7)
2166 −6.09 × 10−5 (2.66 × 10−5) −2.52 × 10−7 (2.96 × 10−7)
2254 3.72 × 10−5 (3.04 × 10−5) 5.85 × 10−7 (7.17 × 10−7)
2292 −3.36 × 10−5 (4.69 × 10−5) 1.77 × 10−6 (5.60 × 10−7)
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4.3. Full Spectral Regions for Predictive Modelling

Lastly, PLS predictive models were constructed for both the data sets using the full
NIR spectral region (800–2300 nm). The LVs used to create the simplest models for each
data set were 9 and 6 for the dual beam dispersive NIR data-set and the FTNIR data set,
respectively.

Cross-validation of these models was performed by leave-one-out on individual data-
sets, as shown in Figure 3. The coefficients of determination (R2) of each set, were 0.75 for
dual beam dispersive NIR and 0.85 for the FTNIR set. The RMSECV for the dual beam
dispersive NIR set was 1.23 mM and for the FTNIR set was 1.02 mM. Hence, it can be seen
that the FTNIR instrument is better than its counterpart in predicting lactate concentrations
when the full NIR spectral range is considered for prediction.
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Figure 3. Observed (known) lactate concentration versus the Predicted concentrations of forty-one
samples of lactate in whole blood. The correlation coefficient (R2) and the Root Mean Squared Error
of Cross Validation (RMSECV) for each set are also shown. (left) The Coefficient of Determination
(R2) and the Root Mean Squared Error of Cross Validation (RMSECV) for dual beam dispersive NIR
data-set are 0.75 and 1.23 mmols/L respectively; (right) The Coefficient of Determination (R2) and
the Root Mean Squared Error of Cross Validation (RMSECV) for FTNIR set are 0.85 and 1.02 mmols/L
respectively.

From the two sets of results presented here, it is evident that FTNIR is a better
instrument for the accurate determination/prediction of lactate concentrations. A few
possible advantages of the FTNIR over the dual beam dispersive NIR instrument are:
speed (spectra in an FTNIR can be obtained faster because the full range of wavelengths
are scanned at one step), better electronics in the instrument with fewer moving parts and
higher spectral resolution [13,14]. For the same reasons, the FTNIR instrument is believed
to have provided better results, as compared to its counterpart.

5. Conclusions

It is important to understand the instrument/technological capabilities of a dual
beam dispersive spectrophotometer, compared to an FTNIR spectrometer for biomedical
applications, as both of them have definite advantages. Hence, in this study, lactate
concentration changes into the different spectral regions within the NIR were studied. It
could be seen that for the regions of the NIR which are influenced by -OH absorption, lactate
could not be predicted with a high accuracy using either instrument. However, for lactate
predictive analysis using only the particular wavelengths which serve as ’signatures’ for
lactate in the NIR region at pH 7 and 7.4, the accuracy of prediction was increased by 17%
for the dual beam dispersive spectrophotometer and by 24% for the FTNIR spectrometer.
Finally, when the full range of NIR was taken into consideration, prediction capability
further increased by 7% for both the spectrometers. This might be because the NIR
spectrum as a whole provides a fingerprint of the molecular environment. Overall, lactate
concentration can be predicted with better accuracy using FTNIR compared with dual
beam dispersive spectrophotometer for all spectral regions.
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Technological advances for portable NIR instrumentation has gained focus recently, for ex-
ample, portable NIR spectrometers are now equipped with solid state imaging detectors in
compact integrating circuits (ICs), which can, for example, collect as many as 30,000 spectra per
second, thus massively improving speed of spectra acquisition [43,44]. For a portable FTNIR,
like the Neo-Spectra by Si-Ware Systems (Cairo, Egypt) and NANOQuest-2.5 by OceanOptics
(Largo, FL, USA) Micro Electromechanical Systems (MEMS)-based Michelson interferometers
are now made in a single chip, which has all the advantages of the FTNIR as compared to
its counterpart. Similar studies performed using such novel portable NIR spectrometers for
various biochemical applications will further help advance non-invasive instrumentation of the
clinical environment.
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