
sensors

Article

Maximum Relevance Minimum Redundancy Dropout with
Informative Kernel Determinantal Point Process

Mohsen Saffari 1,*, Mahdi Khodayar 2, Mohammad Saeed Ebrahimi Saadabadi 3, Ana F. Sequeira 4

and Jaime S. Cardoso 1

����������
�������

Citation: Saffari, M.; Khodayar, M.;

Ebrahimi Saadabadi, M.S.; Sequeira,

A.F.; Cardoso, J.S. Maximum

Relevance Minimum Redundancy

Dropout with Informative Kernel

Determinantal Point Process. Sensors

2021, 21, 1846. https://doi.org/

10.3390/s21051846

Academic Editor: Marcin Woźniak

Received: 9 February 2021

Accepted: 2 March 2021

Published: 6 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 INESC TEC and Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
jaime.cardoso@inesctec.pt

2 Department of Computer Science, University of Tulsa, Tulsa, OK 74104, USA; mahdi-khodayar@utulsa.edu
3 Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16315-1355, Iran;

msedebrahimi@email.kntu.ac.ir
4 INESC TEC, 4200-465 Porto, Portugal; ana.f.sequeira@inesctec.pt
* Correspondence: mohsen.saffari@inesctec.pt

Abstract: In recent years, deep neural networks have shown significant progress in computer vision
due to their large generalization capacity; however, the overfitting problem ubiquitously threatens
the learning process of these highly nonlinear architectures. Dropout is a recent solution to mitigate
overfitting that has witnessed significant success in various classification applications. Recently, many
efforts have been made to improve the Standard dropout using an unsupervised merit-based semantic
selection of neurons in the latent space. However, these studies do not consider the task-relevant
information quality and quantity and the diversity of the latent kernels. To solve the challenge of
dropping less informative neurons in deep learning, we propose an efficient end-to-end dropout
algorithm that selects the most informative neurons with the highest correlation with the target
output considering the sparsity in its selection procedure. First, to promote activation diversity, we
devise an approach to select the most diverse set of neurons by making use of determinantal point
process (DPP) sampling. Furthermore, to incorporate task specificity into deep latent features, a
mutual information (MI)-based merit function is developed. Leveraging the proposed MI with DPP
sampling, we introduce the novel DPPMI dropout that adaptively adjusts the retention rate of neurons
based on their contribution to the neural network task. Empirical studies on real-world classification
benchmarks including, MNIST, SVHN, CIFAR10, CIFAR100, demonstrate the superiority of our
proposed method over recent state-of-the-art dropout algorithms in the literature.

Keywords: deep learning; regularization methods; dropout; determinantal point process; informa-
tion theory; image classification

1. Introduction

Recently, in a wide range of machine learning (ML) studies, neural networks (NNs)
play a decisive role as powerful statistical pattern-recognition models inspired by the
structure of human brain. During recent decades, a wide variety of NNs have been
proposed for computer vision applications. Specifically, the emergence of deep neural
architectures has opened new research gates for the sake of achieving the utmost goal of
ML, i.e., providing large generalization capacities and avoiding overfitting on the training
datasets. Shallow and Deep NNs are widely employed for many aspects of contemporary
applications such as fingerprint presentation attack detection [1], sequential modelling of
multi-scale energy time series [2] and mobile robot motion control [3] etc. due to large
computational power, handling uncertainty factors, and efficient implementation.

Deep NNs have a large parameter space corresponding to a vast number of their
tunable variables (e.g., memory vector of long short-term units [4] and filtering variables in
convolutional NNs). Hence, these models are prone to overfitting due to unnecessarily large

Sensors 2021, 21, 1846. https://doi.org/10.3390/s21051846 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21051846
https://doi.org/10.3390/s21051846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051846
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1846?type=check_update&version=1

Sensors 2021, 21, 1846 2 of 21

decision boundary nonlinearity. This issue is considered a crucial challenge for deep learning
algorithms during the last decade. The existing literature presents several regularization
methodologies to overcome this issue. There are generally two classes of approaches for
regularization: (1) Starting from the objective function and redesigning this function in a way
to avoid large changes during parameter updates, e.g., L2 weight decay [5], decorrelating
representation [6], correlational neural networks [7], etc.; (2) Implementing the corresponding
regularization strategy via mathematical analysis of the coadaptation/distribution between
neural units and/or weights. e.g., batch normalization (BN) [8] gradient augmentation [9]
and dropout [10].

Among regularization techniques, dropout has shown more applications due to
thinner and sparser sub-network resulting from a probabilistic removal of a subset of
neurons from the original network. In contrast to recent applications of the dropout
technique that discard the extracted kernels in an identical and independent manner [11,12],
this paper defines a novel value metric by proposing semantic merit functions (MFs)
to remove from the neural network neurons with low contributions. To highlight the
performance of each latent neuron, we present algorithms to drop out kernels irrelevant to
the underlying task that lie in the dense layers of the deep structure. First, a semantic layer-
wise strategy is devised that works based on the mutual information (MI) within kernels
and NN target vectors. This method not only mathematically determines output-relevant
hidden units to improve the quantity of information, but also determines the subset of
hidden units that share less information between each other which promotes the quality
of information. Furthermore, we study the integration of the determinantal point process
(DPP) [13] to extract the most diverse information in the underlying neural network’s latent
space. In addition, we develop a new variation of the presented algorithm to leverage the
information obtained from our MI-based technique into the DPP dropout. In this context,
we design the dynamic dropout strategy, i.e., DPPMI dropout, which computes diverse
and relevant potential representations for a specific ML task using deep structures. We
evaluate our work on different, widely used benchmarks in the area of image classification.

Our main contributions are listed as follows:

1. A novel dropout method, mutual information-based dropout i.e., MI dropout, is pre-
sented to optimize the number of latent units in a deep neural architecture using
mutual information within the units as well as the task-specific target vector.

2. We develop a new variation of our work using the Determinantal Point Process to
extract the most diverse data representations that lie in the latent space of the under-
lying deep neural network. Furthermore, the integration of MI and DPP is studied
which results in extracting high-quality and informative latent representations.

3. An experimental study in image classification tasks, such as digit recognition and
small images multi-target detection, demonstrates the superiority of the proposed
approaches over state-of-art dropout techniques.

This manuscript is organized as the following: Section 2 presents the related works
in the area of dropout regularization. Section 3 presents the proposed algorithm using
MI and its variations that leverages DPP. To justify the merit of this research, Section 4
evaluate the presented algorithms on image classification tasks. Finally, Section 5 discusses
the conclusions and future works.

2. Related Works

Recently, dropout has shown a better efficiency compared to other regularization
methods. This category of regularizers temporarily removes task-irrelevant units from
the NN architecture, along with all their incoming and outgoing connections [10]. The
Standard dropout removes each computational latent unit using a fixed removal probability
p independent of the rest of latent units. In recent studies, a variety of methods such as
Standout [14], Guided dropout [15], Adversarial dropout [16], Automatic dropout [17],
and Targeted dropout [18] etc. are proposed to achieve a more semantic dropout mecha-
nism. Generally, dropout methods randomly modify latent unit parameters during the

Sensors 2021, 21, 1846 3 of 21

training procedure. An early standard dropout variation is the DropConnect [19] that sets
a subset of weights and biases to zero rather than working with the neurons’ outputs. Also,
Goodfellow et al. proposed maxout [20] to facilitate dropout optimization, which leads
to better classification accuracy. Another adaptive generalization of standard dropout is
the evolutionary dropout [21], which computes the dropout sampling probabilities using
second-order statistics of neural activations in mini-batches of samples.

Recently, Dodballapur et al. proposed Automatic dropout [17], a simple but effective
dropout approach. Automatic dropout is quite similar to standard dropout, and it deter-
mines the p parameter based on the clusters of activation functions in a layer. Controlled
dropout [22] is a more memory efficient and faster version of standard dropout that the
authors have suggested to gather and relocate non-zero weights in a new memory. Guided
dropout [15] and Concrete dropout [23] are two efficient approaches that seek to find the p
parameter by minimizing a defined objective function. By making use of the MI concept,
Chen et al. [24], proposed DropMI method that selects most relevant neurons to the target
vector. In their work, using a fixed threshold value they generate a binary mask to remove
less important features from NN.

Although the classic approaches generally focus on neuron removal in dense layers,
several studies aim to provide sparse CNN structures. In this line of research, Cutout [25]
is presented as a generalization of classic dropout for Convolutional NNs (CNNs). Unlike
previous works that apply dropout in the feature extraction level, Cutout randomly masks
out square regions on the input samples. A similar method is proposed by Ghiasi et al. [26]
to simultaneously drop the contiguous regions of a collection of feature maps. Also, the
Stochastic Depth (SD) [27] and Swapout [28] are two training procedures designed for
very deep CNNs [29]. SD randomly drops a subset of layers on the training phase while
Swapout combines dropout with SD to obtain each output independently by reporting the
sum of a randomly selected subset of current and all previous layers’ outputs for that unit.

Recently, dropout has been considered for model compression. Gomez et al. pro-
posed Targeted dropout [18] in which, first, a magnitude-based strategy determined the
least relevant units, then dropout is applied to this subset of units. Salehnejad suggests
exploiting Ising energy for the determination of irrelevant units [30]. Based on the infor-
mation bottleneck principle, Achille proposed Information dropout [31], in which a more
disentangled representations is computed by injecting multiplicative noise in the activation
maps. Moreover, Wang et al. proposed Fast dropout [32] that interprets dropout methods
from the Bayesian perspective and reaches the same validation performance with a smaller
computation burden. Also, in [33], the β-dropout seeks to unify discrete and continuous
dropouts. The authors indicated that adjusting the shape parameter β, β-dropout can yield
Bernoulli dropout, Uniform dropout, and approximate Gaussian dropout. In addition,
Zoneout [34] is a generalization of dropout for Recurrent Neural Networks (RNNs). In
contrast to the classic perspective, which sets units’ activations to zero, Zoneout maintains a
random selection nature by randomly swapping units’ activations in the temporal domain,
and it merely considers stand-alone latent feature maps. Motivated by these drawbacks,
this work proposes new dropout strategies that retain the latent kernels in the model by
evaluating of kernels’ performance in NN’s training phase. Moreover, in contrast to [24]
which only rates the neurons based on their relevance to the target vector, the proposed
approaches not only consider the extracted information among kernels in the latent space
but also determine the importance of each kernel with respect to the underlying task. Every
unit in the model conveys some information between input and output layers. If we could
measure the value of information and find out the content of the information for every unit,
we could select the units more wisely, preserve the more informative units, and eliminate
specific unimportant units during the dropout. To the best of our knowledge, this is the
first work that rigorously takes into account both the quality and quantity of information,
leveraging the information theory and determinantal point process tools.

Sensors 2021, 21, 1846 4 of 21

3. Method

Let us define a multilayer neural network with L hidden computational layers with
indices l ∈ {1, 2, . . . , L}. W l and bl are the weight matrix and bias vector of the lth layer
with input vector Il and output vector Ol , respectively. The feed-forward propagation step
of this NN is written as:

Il+1
i = W l+1

i Ol
i + bl+1

i (1)

Ol+1
i = fi

(
Il+1
i

)
(2)

where f (•) is the activation function for the ith hidden unit.
In the Standard dropout method, each unit is retained with a fixed probability p inde-

pendently of other units, where p is chosen using a validation set or can simply be set to
0.5. The dropout method considers a binary mask Ml

i with similar dimensions as Ol . The
binary entries of the mask may follow a particular distribution (e.g., Bernoulli or Gaussian).
Formally, Equation (1) is reformulated by:

Õl
i = Ml

i �Ol
i (3)

Il+1
i = W l+1

i Õl
i + bl+1

i (4)

where � represents the element-wise multiplication. Although assuming random binary
masks is straightforward, it may ignore crucial task-specific information. Therefore, in the
following sections, alternative approaches are proposed to overcome this issue.

3.1. Approach 1: Mutual Information (MI) Dropout

Neural network layers map the input data X to a latent representation, Z, which has
some desirable properties for the predefined network’s task. One of the crucial deep struc-
tures’ tasks is feature extraction, i.e., mapping the input to the latent space. Although each
dimension of this latent space conveys some information to the output layer, usually, not
all this information is necessary for a specific target of the NN’s task. In other words, some
of the latent space’s dimensions are irrelevant to the target variable, and this irrelevant
information could cause a disturbance in the prediction of the target variable [35]. There-
fore, to prevent squandering computational resources and aggravation of the structure’s
performance, the more relevant features must be considered in the latent space.

MI evaluates the relationship between two random variables, X and Y, from the
entropy’s perspective. Entropy is a criterion for measuring the amount of uncertainty in a
random variable. High entropy shows that each event has about the same likelihood of
occurrence, while low entropy means different occurrence probabilities. Let HP[X] denote
the entropy of a continuous variable X with instances x following probability density
function (pdf) P. The differential entropy of X is computed by:

HP(X) = −
∫ +∞

−∞
P(x)log2P(x)dx (5)

Entropy is interpreted as the expected value of the negative logarithm of the proba-
bility distribution. The joint entropy of two variables X and Y, with a joint pdf P(X, Y), is
defined by:

HP(x, y) = −
∫ +∞

−∞

∫ +∞

−∞
P(X, Y)log2P(X, Y) dx dy (6)

Based on the definition and considering (5) and (6) the MI between X and Y is
calculated by:

MI(X, Y) =
∫ +∞

−∞

∫ +∞

−∞
P(X, Y)log2

(
P(X, Y)

P(X)× P(Y)

)
dx dy (7)

MI(X, Y) = H(X) + H(Y)− H(X, Y) (8)

Sensors 2021, 21, 1846 5 of 21

Based on (7), I is zero when X and Y are statistically independent, i.e., P(X, Y) =
P(X)× P(Y).

Suppose a NN with N training samples, {(X1, Y1), (X2, Y2), . . . , (XN , YN)}, we define
the activation matrix for all M hidden units of lth layer at each training step as:

Ol =

 ol
11 ol

12 · · · ol
1N

...
. . .

...
ol

M1 ol
M2 · · · ol

MN

 ∈ RM×N (9)

where ol
m,n , with m ∈ {1, 2, . . . , M} and n ∈ {1, 2, . . . , N} denotes the activation of mth

neuron in layer l for the nth training sample. Therefore, each row of the matrix Ol ∈ RM×N

is the activation vector for a hidden neuron at each training step, we show this vector as ol
m.

The proposed approach, MI dropout, maintains a set of selected neurons, initialized
as the empty set that are the most relevant set of kernels to the specified task. A two-fold
function determines the task relevance of the latent units. In the first part, the MI between
the hidden units’ activation and the target vector is calculated. The second part scores
the hidden units by computing the MI between the remaining and the currently selected
units. The higher relevancy between a neuron’s activation and target vectors, and the lower
correlation with selected neurons, leads to a stronger chance for selection by MI dropout,
i.e., the lower chance of removal. By combining these two parts in (10), we encourage the
model to select units that are highly relevant to the target vector. These units have a low
nonlinear correlation with each other. Given (7) and (8), our MI dropout merit function for
neuron i at layer l is defined by:

MFol
i
= MI

(
ol

i , Y
)
− κ

|S|

|S|

∑
j=1

MI
(

ol
i , Sj

)
(10)

where Y is the neuron’s activation vector, S denotes the set of selected latent neurons,
|S| is the total number of selected neurons, and κ is a trade-off coefficient to define the
trade-off between the quantity and quality of the information in the selection procedure.
This coefficient is determined by the validation procedure. Please note that a higher
merit function shows a lower chance of removal for a neuron. Figure 1 illustrates the
pipeline of the MI dropout method. As shown in this figure, in each iteration, MI dropout
evaluates all unselected neurons and the most valuable neuron (with the highest task-
specific information computed in (10)) that is illustrated in red is added to the set of
selected neurons.

Figure 1. Applying MI dropout to the lth dense hidden layer.

The training flow of deep neural networks considering the MI dropout method is
provided in Algorithm 1. The main goal is to select the neurons at layer l based on their
performance on the whole set of training samples.

Sensors 2021, 21, 1846 6 of 21

Algorithm 1: MI Dropout

1 Input: Input Matrix X, Target Matrix Y, IP Coefficient ξ, Trade-Off Coefficient κ
2 for Each epoch do
3 Forward propagation(Obtaining Ol)
4 Set S = ∅
5 for All kernels in Ol do
6 Obtain MFol

i
= I(Ol , Y)

7 δ← ξ ×∑ MFol
i

8 IVS← 0
9 while IVS ≤ δ do

10 for All kernels in Ol do
11 SumMI = 0;
12 for All Selected kernels (S) do
13 SumMI = SumMI + I(Ol , S)

14 MF = I(Ol , Y)− κ
|S|SumMI (Equation (10))

15 Add associated kernel with MFMax to S
16 Delete associated kernel with MFMax from Ol

17 Updating IVS (Equation(11))

18 Ol ← S
19 Obtaining NN’s output
20 Calculating NN’s Error function
21 Updating tunable parameters via gradient descent

Initially, the set of selected kernels, S, is empty. Similar to other training algorithms,
feed-forward propagation gives us the activation maps of all neurons in layer l for all
training samples denoted by Ol . In the next step, we determine each neuron’s importance
considering matrix Ol in a while loop. The loop is terminated when the information
volume (IV) for the subset S becomes more than a partition of all neurons’ IV. This part of
information is determined by the information partitioning (IP) coefficient ξ. In this context,
the information volume for each set is the sum of MI values between activation functions
and output vectors. More formally, this value is obtained by:

IVS = ∑
s

I(S, Y) (11)

3.2. Approach 2: Determinantal Point Process (DPP) Dropout

In addition to Algorithm 1, we devise DPP dropout that works based on the Determi-
nantal Point Process [13] to select the most diverse set of latent kernels. Promoting diversity
leads to maintaining informative neurons while reducing the size of each latent layer.

A random point process P on a discrete base set Y = {1, . . . , N} is a probability
measure of all subsets of Y , denoted by 2Y . Let S be a positive semi-definite N × N matrix
with columns and rows indexed by the elements of Y . P is a determinantal point process
if, for a random subset Y drawn according to P , we have:

∀A ⊆ Y : P(A ⊆ Y) = det(SA) (12)

Sensors 2021, 21, 1846 7 of 21

Here, S must be real positive semi-definite S � I; that is, all eigenvalues of S are in
the range [0, 1]. Since S denotes a probabilistic measure, all its principal minors must be
non-negative. One can view S as a marginal kernel because it contains all the information
needed to compute the probability of any subset A being selected in Y. SA represents
the |A| × |A| submatrix of S indexed by the elements of A; that is, SA ≡ S[i,j∈A] and by
convention det(S = 1).

Based on (12), the marginal probability for a subset with one and two items can be
calculated by (13) and (14), respectively,

P({ei} ∈ Y) = Sii (13)

P
(
{ei, ej} ∈ Y

)
= SiiSjj − S2

ij (14)

Equation (14) shows that the off-diagonal elements determine the negative correlations
between pairs of elements; in other words, large values of Sij imply that elements i and j
tend not to co-occur.

To model real data, we restrict DPPs by focusing on L-ensembles. An L-ensemble is
a probability measure on 2Y defined via a positive semi-definite matrix L indexed by the
elements of Y such that:

PL(A) =
det(LA)

det(I + L)
(15)

where LA is a principal minor of matrix L regarding the elements in set A, and I is a
N × N identity matrix. Using matrix decomposition, one can view Lij as a Gram matrix
with elements Lij = qiφ

T
i φjqj, where qi ∈ R+ represent the intrinsic quality of item i, and

sij = φT
i φj denotes the similarity between two items qi and qj where φT

i φj ∈ [−1, 1]. Please
note that L-ensemble is a DPP with marginal kernel K defined by:

K = L(L + I)−1 = I − (L + I)−1 (16)

Also, we compute the eigen decomposition of L using ∑N
n=1 λnvnvT

n ; Hence, the
marginal kernel K can be computed using a simple rescaling of eigenvalues:

K =
N

∑
n=1

λn

λn + 1
vnvT

n (17)

Using (17) the number of objects in set Y is distributed as the number of successes in N
Bernoulli trials, where trial n succeeds with probability λn

λn+1 . More formally, the expected
cardinality of Y is,

E[|Y|] =
N

∑
n=1

λn

λn + 1
= tr(K) (18)

If we consider the neurons’ activation vectors in a layer of a deep structure as a set
of discrete items, one can select the most diverse subset of kernels. From this point of
view, DPP dropout promotes both quality and diversity of the kernels in the hidden layer
of a deep NN to choose the best items that are dissimilar to each other. The selection of
the hidden neurons using this approach, gives us a diverse (dissimilar) and task-relevant
(high quality) subset of kernels.

Let us denote the total number of training samples by N while Nl is the number of
neurons in layer l, ol

ij is the output of i-th neuron in layer l on the j-th input sample, and

Ol
i =

(
ol

i1, ol
i2 . . . , ol

iN

)
is the activation vector of the i-th neuron in layer l obtained by

feeding the entire training dataset. To construct the matrix LDPP in (15), we make use of a

Sensors 2021, 21, 1846 8 of 21

Gaussian kernel which provides a good trade-off between the simplicity and precision of
classification tasks:

LDPP
ij = exp

(
− α

Ntrain

∥∥∥ol
i − ol

j

∥∥∥2
)
+ εI, 1 ≤ i, j ≤ Kl (19)

where Kl is the total number of neurons in layer l, and α determines the bandwidth of the
Gaussian kernel. In this paper, we set α by evaluation of the results on a validation set.
Please note that the matrix LDPP must be positive semi-definite. To ensure this, we add a
diagonal matrix, εI to (19) with distribution rate ε = 0.01.

Algorithm 2 is the pseudocode of the proposed DPP dropout. As with the MI dropout,
we initially determine the output matrix of the lth layer, i.e., Ol . Then DPP dropout
finds a diverse subset of these kernels, and finally, using error backpropagation, the NN
parameters for the selected kernels are updated. The DPP dropout consists of two main
phases. First, depending on the eigenvalues of the kernel matrix LDPP, a random subset
of eigenvectors V is selected. In the second phase, based on the selected eigenvectors,
a sample set S is produced in a probabilistic fashion with probability P(i). At each iteration
of the second loop, S’s cardinality increases by one; however, the dimension of V is reduced
by one. In Algorithm 2, the vector ei is a binary vector that is all zeros except for a one at
the ith position.

Algorithm 2: DPP Dropout

1 Input: Input Matrix X, Target Matrix Y, Bandwidth Parameter of LDPP α
2 for Epochs do
3 Forward propagation(Obtaining Ol)

4 Obtain eigen decomposition {(vn, λn)}N
n=1 of LDPP (Equation (19))

5 J ← ∅
6 for n ∈ [1, N] do
7 J ← J ∪ {n}with prob. λn

λn+1

8 V ← {vn}n∈J
9 S← ∅

10 while |V| > 0 do
11 Choose ith kernel from Ol set with P(i) = 1

|V| ∑v∈V
(
vTei

)2

12 S← S ∪ ith kernel
13 V ← V⊥, an orthonormal basis for a subspace of V orthogonal to ei

14 Ol ← S
15 Obtaining NN’s output
16 Calculating NN’s Error function
17 Updating tunable parameters via gradient descent

3.3. Approach 3: Determinantal Point Process Mutual Information (DPPMI) Dropout

As shown in Sections 3.1 and 3.2, one can select the most informative set of hidden
neurons, as well as the most diverse subset of kernels to cover the latent space with lower
number of dimensions. Subsequently, integrating MI approach into DPP sampling gives us
the most informative and diverse subset.

Figure 2 illustrates the proposed DPPMI dropout. As depicted in this figure, the goal
is to find a diverse subset of neurons in the lth layer in which negligible information is
shared among neurons due to their high diversity. In addition, the selected kernels are

Sensors 2021, 21, 1846 9 of 21

highly related to the output target as a result of leveraging the MI metric. In this approach,
we define a new kernel matrix L:

LDPPMI
ij = exp

−
 α

Ntrain

∥∥∥ol
i − ol

j

∥∥∥2
+

β

MI
(

Ol
i , Ol

j

)
+ ε

 (20)

where α and β hyper-parameters determined by a validation set. Considering the fact
that ∀i, j i 6= j MI(Ol

i , Ol
j) ≥ 0 and ∀i, MI(Ol

i , Ol
i) 6= 0, the defined kernel function in (20)

is certainly positive semi-definite; therefore, we do not need to add a diagonal matrix to
LDPPMI . However, a small value ε > 0 must be added to MI

(
Ol

i , Ol
j

)
to avoid increasing

β

MI
(

Ol
i ,O

l
j

)
+ε

. In contrast to Algorithm 2 that selects the kernels based on the eigenvalues

of matrix L, the proposed DPPMI dropout selects kernels using a rank criterion that
considers both eigenvalues and the MI among kernels and the output vector. The rank is
computed by:

Rank(n) = γλn + (1− γ)MI(Ol
i , Y) (21)

where λn is the nth eigenvalue of matrix LDPPMI and γ is a hyper-parameter that reflects
the contribution rate for each term in (21).

Figure 2. DPPMI dropout. Each point illustrates an extracted hidden kernel in the training set.

Algorithm 3 shows the details of the DPPMI dropout approach. The proposed DPPMI
dropout selects a diverse subset of kernels that are most relevant to the underlying clas-
sification task. Our proposed approach constructs LDPPMI considering both Euclidean
similarity and MI of latent kernels, and selects the kernels based on the eigenvalues of
LDPPMI as well as the MI between each kernel with ground truth label vector.

Sensors 2021, 21, 1846 10 of 21

Algorithm 3: DPPMI Dropout

1 Input: Input Matrix X, Target Matrix Y, Bandwidth Parameters of LDPPMI 〈α, β〉,
Contribution Factor γ

2 for Epochs do
3 Forward propagation(Obtaining Ol)

4 Obtain eigen decomposition {(vn, λn)}N
n=1 of LDPPMI (Equation (20))

5 for n ∈ [1, N] do
6 Rank(n) = γλn + (1− γ)MI(Ol

i , Y)

7 J ← ∅
8 for n ∈ [1, N] do
9 J ← J ∪ {n}with prob. Rank(n)

∑N
n=1 Rank(n)

10 V ← {vn}n∈J
11 S← ∅
12 while |V| > 0 do
13 Choose ith kernel from Ol set with P(i) = 1

|V| ∑v∈V
(
vTei

)2

14 S← S ∪ ith kernel
15 V ← V⊥, an orthonormal basis for a subspace of V orthogonal to ei

16 Ol ← S
17 Obtaining NN’s output
18 Calculating NN’s Error function
19 Updating tunable parameters via gradient descent

3.4. Inference Procedure

As shown in Algorithms 1–3, we merely apply dropout during the training stage of
neural network. Similar to [10], here, we compensate the effect of dropout by using a single
neural network at test time without dropout. The weights of this neural network are scaled-
down versions of the trained weights. Although Standard dropout assumes a constant
downscaling rate for all neurons, our approach defines a unique rate corresponding to
each neuron. We determine the rate of each neuron by counting the number of times it is
retained during the training phase. Formally, the downscaling rate for the ith neuron at
layer l is obtained by:

pnl
i
=

Nri

E
(22)

where Nri is the number of times neuron i at layer l is retained while E is the number of
total training epochs.

4. Experimental Results and Discussion

In this section, we evaluate the performance of our proposed methodologies: DPP
dropout, MI dropout, and DPPMI dropout detailed in Sections 3.1–3.3 on widely used
datasets for image classification tasks. Moreover, the proposed approaches are compared
with several mainstream dropout techniques in terms of classification accuracy.

4.1. Datasets

We evaluate the models’ performance on large-scale image datasets: MNIST [36],
SVHN [37], CIFAR10 and CIFAR100 [38]. The MNIST consists of 70,000 grey-scale images
of handwritten digits (from 0 to 9), with resolution 28× 28. We used 60,000 samples of im-
ages for training and the remaining testing. The SVHN includes real-world 32 × 32 RGB
images of digits. The training and testing phases use 73,257 and 26,023 digits, respec-
tively. Two well-known object recognition datasets, CIFAR10 and CIFAR100, consist of
32× 32 tiny RGB images in 10 and 100 different categories. For both datasets 50,000 train-

Sensors 2021, 21, 1846 11 of 21

ing and 10,000 testing images are considered. Figure 3 shows several samples of the
underlying datasets.

Figure 3. Example images from (a) MNIST, (b) SVHN, (c) CIFAR10, (d) CIFAR100 datasets. Only
random samples of five classes are shown, and each row corresponds to a different category.

4.2. Implementation Details

For the MNIST and SVHN dataset, we construct a model consisting of two hidden
layers with 750 and 350 hidden units and rectified linear unit (ReLU) activation functions.
For MNIST the model includes 784 and for the greyscale SVHN the model consists of
1024 input and 10 output nodes with ReLU and SoftMax activation functions, respectively.
For more challenging datasets, CFAR10, and CIFAR100, the pre-trained VGG16 [39] and
ResNet50 [40] are employed for feature extraction. The extracted features from VGG16 and
ResNet50 are fed to two subsequent fully connected layers with 700 and 350 hidden units.
We initialize the tunable parameters using the Xavier method [41]. To train our models, we
make use of a cross entropy loss function using a 200-epoch stochastic mini-batch gradient
descent method with a batch size of 128, a fixed learning rate of 0.001, a momentum value
of 0.9, and a weight decay equal to 5× 10−4.

In all the implemented models, we applied the dropout layers after the first dense
layer. For MI calculation among kernels, we exploit the open-source non-parametric
entropy estimation toolbox [42] and to implement the DPP method, we exploit the toolbox
from [43].

To analyze the contribution of our hyper-parameters, i.e., κ in (10), α in (19), and
〈α, β, γ〉 in (20) and (21), on the accuracy of proposed algorithms, we show the validation
accuracy of their different configurations. For each setting of our search space, the model is
trained on the training set and evaluated on the validation set. The configuration with the
highest validation accuracy is chosen as the optimal model and further evaluated on the
testing set. The validation search space for different parameter configurations is defined by
κ ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5} α ∈ {1, 5, 10, 15, 20, 25, 30, 35, 40, 45}, β = 1

2i where i ∈
[1, 11] and 0 ≤ γ ≤ 1. Figures 4–6 show the average validation accuracy for all considered
configurations of hyper-parameters in (10), (19), (20) and (21) on the CIFAR10 dataset. As
shown in Figures 4–6, the optimal configurations of hyper-parameters for MI dropout, DPP
dropout and DPPMI dropout are κ = 1.5, α = 20, and 〈α, β, γ〉 =

〈
15, 1

8 , 0.6
〉

, respectively.

Sensors 2021, 21, 1846 12 of 21

Figure 4. Validation accuracy of MI dropout model with different configurations of defined hyper-
parameter κ in (10) on the CIFAR10 dataset.

Figure 5. Validation accuracy of DPP dropout model with different configurations of defined hyper-
parameter α in (19) on the CIFAR10 dataset.

Figure 6. Validation accuracy of DPPMI dropout with different configurations of defined hyper-
parameters in (20) and (21).

To verify the effectiveness of our proposed algorithms, we compare our approaches
with recent dropout techniques, including the Automatic dropout [17], Controlled
dropout [22], DropMI dropout [24], Guided dropout [15], Concrete dropout [23], and
Targeted dropout [18], as well as the Standard dropout [10]. All the experiments are carried
out using GPU-based Tensorflow [44] on Python 3. The simulations are processed in a
system with a 10-core CPU with Intel core-i7 Processors, an NVidia Quadro RTX 6000 GPU,
and a 256-GB RAM.

Sensors 2021, 21, 1846 13 of 21

4.3. Numerical Results

Table 1 compares the proposed approaches’ classification performance with the re-
ferred state-of-the-art algorithms on four benchmark datasets. In line with the observations
in [40,45], our results on CIFAR10 and CIFAR100 datasets verify the superiority of the
ResNet50 over the VGG16 feature extractor backbones. Also, the obtained results verify
the capability of dropout methods in overfitting mitigation [10]. For example, by compar-
ing the results of Standard dropout and No dropout, one can observe that with VGG16
feature extractor on CIFAR10 and CIFAR100 datasets, Standard dropout increases the test
classification accuracy 5.15% and 3.97%, respectively. From comparing the obtained result
between Standard dropout and Automatic dropout, we found that Automatic dropout
works slightly better than the Standard dropout; for example, on the SVHN dataset, the Au-
tomatic dropout enhanced by 1.11%. The results show the same behavior in slightly better
performance of Automatic dropout over Standard dropout for CIFAR10 and CIFAR100 (e.g.,
with ResNet50 backbone 0.79% and 0.33% improvements, respectively). The reason for this
observation is the existing similarity between Automatic dropout and Standard dropout.
Like Standard dropout, in Automatic dropout, the p coefficient is considered randomly
from a Gaussian probability distribution, N , but each cluster of activation functions has its
own p. Similar to [22], the obtained results verify that Controlled dropout gained a little
improvement compared to Standard dropout (e.g., with VGG16 feature extractor 0.71%
and 0.62% on CIFAR10 and CIFAR100, respectively) in the neural network’s performance,
despite having lower memory usage.

Table 1. Classification accuracies (%) on the digit recognition (MNIST and SVHN) and object recognition (CIFAR10 and
CIFAR100) tasks. Please note that the best test results are marked in bold fonts and the best results among the underlying
baselines are marked by underline, respectively.

Model

MNIST SVHN CIFAR10 CIFAR100

784-750-350-10 1024-750-350-10 VGG16/ResNet50 VGG16/ResNet50

Train Test Train Test Train Test Train Test

No dropout 99.21 97.03 87.46 60.59 90.47/91.52 58.87/60.11 77.10/79.36 36.28/38.92
Standard dropout (p = 0.5) [10] 99.14 98.25 80.66 64.10 86.59/88.63 64.02/66.10 62.65/64.73 40.25/42.36

Automatic dropout [17] 99.12 98.26 79.88 65.21 86.12/87.31 63.79/66.89 62.40/64.19 40.43/42.69
Controlled dropout [22] 98.98 98.28 76.61 64.91 87.26/88.88 64.73/67.04 62.12/63.36 40.87/43.17

DropMI dropout [24] 99.09 98.27 79.12 68.81 85.46/87.29 69.33/71.21 61.44/63.69 45.05/47.23
Guided dropout [15] 99.01 98.29 79.41 65.24 85.01/87.10 66.11/68.32 63.78/65.92 43.09/45.87

Concrete dropout [23] 99.11 98.31 79.72 67.41 85.52/87.74 66.91/69.01 61.13/63.15 44.17/46.51
Targeted dropout [18] 99.17 98.33 80.01 69.09 86.21/88.44 68.95/70.32 61.84/63.36 44.61/47.11

DPP dropout 99.14 98.24 80.43 66.15 85.11/87.26 66.92/68.25 62.91/64.82 43.01/44.11
MI dropout 99.01 98.72 78.47 70.11 85.42/86.61 70.91/73.02 61.23/63.40 47.11/49.52

DPPMI dropout 99.04 98.78 79.29 71.33 86.23/88.64 72.12/74.56 62.43/64.78 48.04/50.36

According to Table 1, Guided dropout achieves higher performance across all datasets
than Standard dropout, Automatic dropout, and Controlled dropout. For example, one
can observe that with the VGG16 backbone, Guided dropout’s test accuracy on CIFAR10
and CIFAR100 are 66.11% and 43.09%, respectively, while these values for Controlled
dropout are 64.73% and 40.87. This enhancement in the classification accuracy is because,
in contrast to previous methodologies that generally determine the p parameter randomly,
Guided dropout seeks to optimize the p parameter; hence, picking the neurons in a more
informative manner.

Concrete dropout achieves higher performance than the Standard dropout, Automatic
dropout, and Controlled dropout. For instance, compared to the Controlled dropout on the
SVHN and CIFAR100 datasets with ReseNet feature extractor, Concrete dropout obtains
2.5% and 3.34% improvements, respectively. This is because Concrete dropout finds an
optimized rate for p and the model’s tunable weights with respect to the defined variational
interpretation-based objective function. Moreover, one can observe the small improvement

Sensors 2021, 21, 1846 14 of 21

of the results by Concrete dropout over Guided dropout. With ResNet50 feature extractor
on CIFAR10 and CIFAR100, the Concrete dropout test accuracies are 69.01% and 46.51%,
while these values for Guided dropout are 68.32% and 45.87%, respectively. The reason
for this improvement in the results is that Concrete dropout considers the unique and
more advanced objective function; however, Guided dropout simply finds the neurons’
contribution based on the model’s error.

In contrast to previous approaches that deal with all NN’s neurons, by applying the
dropout on the portion of neurons with low-importance connections, i.e., neurons with
small ‖W‖, Targeted dropout with 98.33% and 69.09% test accuracies achieves the best
results among referred baselines on MNIST and SVHN datasets, respectively. However,
for more complex datasets, CIFAR10 and CIFAR100, DropMI with 71.21% and 47.23% on
ResNet50 backbone, gains the highest accuracy in comparison with other dropout algo-
rithms. Generally speaking, the obtained results show a similar performance of Targeted
dropout and DropMI dropout. The reason for the superiority of DropMI dropout over
Targeted dropout on CIFAR10 and CIFAR100 is that Targeted dropout does not consider
conveying information from latent kernels to the output, while DropMI determines the
important kernels by computing the MI between kernels and the target vector. This infor-
mation volume plays a critical role in solving the more challenging tasks such as colored
image recognition, i.e., CIFAR10 and CIFAR100.

As shown in Table 1, the proposed DPP dropout method in Section 3.2 that selects
the diverse set of latent kernels has a better performance compared to No dropout. For
example, notice the 5.56% and 8.05% improvement on the test accuracy of No dropout by
DPP dropout on SVHN and CIFAR10 (with VGG16 backbone) datasets, respectively. This
superiority concludes that the concept of diversity in selecting kernels must be considered in
the deep latent space. Moreover, DPP dropout shows a higher test accuracy in comparison
to the Standard dropout with 2.15% and 2.75% improvements on CIFAR10 and CIFAR100
respectively using ResNet50 feature extractor. The reason for this observation sheds light
on the difference between random sampling and DPP sampling. However, since the DPP
dropout keeps the kernels merely based on the concept of diversity in the kernel space and
does not consider the importance of the kernels to the underlying task, it shows a lower
test accuracy than other baselines across all datasets.

As reported in Table 1, the proposed MI dropout with VGG16 achieves the test
classification accuracy of 70.91% and 47.11% on CIFAR10 and CIFAR100, respectively.
The proposed MI dropout outperforms the best mentioned dropout method on CIFAR10
and CIFAR100 (with VGG16 backbone), i.e., DropMI dropout, by 1.58% and 2.06%. This
is because, in contrast to DropMI, which merely selects the kernels that include high
MI with the target vector, the proposed MI dropout minimizes the shared information
between selected kernels, and chooses highly relevant task-specific kernels. This superiority
concludes that some kernels in the latent space of deep NNs convey similar information
to their subsequent layer. Hence, choosing the set of kernels with high MI with target
vector and with low MI between each other can help mitigate overfitting, i.e., increasing
the test accuracy.

Furthermore, integrating MI into DPP dropout by defining a new kernel matrix
and selection probability rank helps DPPMI dropout to achieve a higher test accuracy
among DPP dropout, MI dropout, as well as the different referred baselines. Based on
Table 1, DPPMI dropout outperforms the best algorithms among baselines, i.e., Targeted
dropout on digit recognition and DropMI on colored object recognition. The proposed
DPPMI improves the accuracy of Targeted dropout by 0.45% and 2.24% on MNIST and
SVHN datasets; also, it outperforms DropMI with ResNet50 backbone by 3.35% and 3.13%
on CIFAR10 and CIFAR100. This observation is because the DPPMI dropout considers
the diverse and most relevant kernels set to the underlying task. By comparing the
obtained results among DPPMI dropout, DPP dropout, and MI dropout algorithms, one
can notice that DPPMI dropout shows better performance compared to MI dropout. For
instance, DPPMI dropout method with VGG16 feature extractor yields 1.21% and 0.93%

Sensors 2021, 21, 1846 15 of 21

improvements compared to MI dropout on CIFAR10 and CIFAR100, respectively, while
in the same comparison between DPPMI dropout and DPP dropout, one can observe
5.20% and 5.03% improvement in test accuracy of DPP dropout by DPPMI dropout. This
observation concludes that the concept of quality and quantity of information is more
critical than selected kernels’ diversity.

4.4. DPPMI Dropout as Model Compression

Our proposed approaches aim to avoid randomness in dropout selections and retain
the neurons based on their performance in the training phase. Figure 7 visualizes the
neuron activations in the first dense hidden layer of a network trained on the CIFAR10
dataset. Each row of the visualized matrices in Figure 7 represents the dense layer’s
activation map for the entire training phase. The dark pixels show the inactive neurons,
and the bright ones show the active neurons in the model. In this figure, we notice the
difference in activated neurons in Standard dropout and DPP dropout. As expected, the
selection in the Standard dropout is random; thus, this method gives a noisy activation
map. However, DPP dropout selects the set of neurons based on the diversity criterion.
Therefore, in this method, some neurons gained a higher probability rate compared to
other neurons.

Figure 7. Activation maps of the first dense layer in (a) Standard dropout; (b) DPP dropout;
(c) MI dropout; (d) DPPMI dropout. Yellow and purple pixels depict active and inactive
neurons, respectively.

From the comparison corresponding to the activation maps of DPP dropout and MI
dropout, one can see that MI dropout is choosing a lower number of neurons in each
training epoch. At initial steps, MI dropout determines and retains the more informative
neurons and updates their corresponding weights. Since MI dropout only trains the
corresponding weights of the informative kernels, the probability of selecting these kernels
will increase at each training step. Obviously, some neurons contribute (are active) in the
underlying task for almost every training epoch; thus, they earn a lower probability of
being removed. However, some neurons have less contribution in the model; hence, they
gain less probability. Please note that compared to other activation maps in Figure 7, in the
DPPMI dropout’s activation map, there are more activated units because it selects neurons
more strictly at each training epoch.

Based on the obtained masks in Figure 7 and using (19), we calculate the dropout
probability for every single neuron in the model. Figure 8 compares the histogram of the

Sensors 2021, 21, 1846 16 of 21

neurons’ probability for standard Gaussian dropout and the proposed approaches. One
can observe that DPPMI dropout determines the most active neurons, i.e., the neurons
that gain p > 0.9, as well as the least active neurons, i.e., the neurons that earn p < 0.1,
in the highest and lowest probability regions of the histograms in Figure 8, respectively.
Considering this rate of contribution gives us a better sight for pruning the model. More
concretely, in the case of model compression, we can prune the model by removing the set
of neurons with a lower p < η; however, it should be emphasized that determining the
threshold rate, η, depends on the dataset and the underlying task.

Figure 8. Assigned probabilities to neurons on different approaches.

4.5. Discussion on Overfitting Prevention

To investigate the capability of overfitting prevention for the proposed dropout methods,
similarly to [45], we conduct two experiments. Deep neural networks encounter the over-
fitting issue due to having a large parameter space and a relatively low number of training
examples. As mentioned in Section 4.2, we extract the features using the VGG16 [39] baseline.
The deep visual features are fed to dense layers. In the first experiments, we increase the
model’s parameters by adding some hidden fully connected layers. Thus, in each step of this
experiment, we consider 2, 4, and 8 dense layers and each layer consists of 800 neurons.

Table 2 shows the numerical results of these experiments on the CIFAR10 dataset.
Comparing this table’s columns, we notice that with the increase of model’s depth, the
performance generally drops for all algorithms. When we compare the first and the third
columns of the model on No dropout row, we see that the performance drops by 16.14%.
However, this value for other baselines such as Guided dropout and Controlled dropout is
less than 11%. This shows the importance of dropout methods to help avoid overfitting
while providing high generalization capacity in very deep neural architectures. A similar
analysis for the proposed DPPMI dropout and the best baseline on CIFAR10 dataset,
DropMI dropout, shows that the performance declines by 6.96% and 8.30%, respectively.

In the second experiment, during the training phase, we decrease the number of
training samples uniformly for each class of the CIFAR10 dataset, while the number of
hidden layers is fixed as explained in Section 4.2. In this experiment, we defined a coefficient
ε that represents the relative number of training samples compared to the original size of
the training data. For example, when ε = 0.6, for each class of the CIFAR10, we randomly
choose 50,000 × 0.6 = 30,000 samples for the model’s training while the number of testing
samples remains the same as the original dataset.

Sensors 2021, 21, 1846 17 of 21

Table 2. Test accuracies of dense neural networks on CIFAR10 benchmark. The models’ structures
are illustrated by (number of hidden layers × number of hidden units). The best test results are
marked in bold fonts.

Model Dense Dense Dense
(2 × 800) (4 × 800) (8 × 800)

No Dropout 57.06% 51.94% 40.92%
Standard dropout (p = 0.5) [10] 62.61% 58.99% 51.68%

Automatic dropout [17] 62.77% 59.04% 51.98%
Controlled dropout [22] 63.04% 59.39% 52.47%

DropMI dropout [24] 68.96% 65.52% 60.66%
Guided dropout [15] 65.94% 62.74% 56.55%

Concrete dropout [23] 65.10% 61.78% 55.65%
Targeted dropout [18] 68.06% 65.13% 59.18%

DPP dropout 65.85% 62.32% 56.21%
MI dropout 70.13% 67.81% 62.71%

DPPMI dropout 71.49% 69.43% 64.53%

Table 3 shows the results of this experiment. According to this table, with the decrease
in ε, the test classification accuracy of the underlying model with different dropout ap-
proaches drops dramatically as expected. The gap between ε = 0.6 and ε = 0.2 columns
for No dropout and Standard dropout is 19.06% and 12.97%, respectively. Hence, similar to
the first experiment’s results, the obtained results in the second experiment reveal the role
of dropout layer in model’s generalization enhancement. As shown in the table, the DPPMI
dropout achieves the best performance on the three cases with different εs. In the table, we
compare the results of the best baseline, i.e., DropMI dropout, and the proposed DPPMI
dropout. The gap between the results of DropMI dropout for ε = 0.6 and ε = 0.2 is 10.02%,
while the same metric for DPPMI dropout is 8.81%. Moreover, a similar analysis shows
that the existing gap for MI dropout is 9.82%; therefore, the DPPMI dropout makes almost
1% improvement in the model’s generalization compared to proposed MI dropout. As a
result, the designed experiments strongly conclude that with the increment of model pa-
rameters and the shrinkage of the training dataset, the proposed DPPMI dropout approach
outperforms all recent benchmarks.

Table 3. The results of test accuracies regarding different training set sizes on CIFAR10 benchmark.
The parameter ε determines the portion of training sample number per class from original dataset.
The best test results are marked in bold fonts.

Model ε = 0.6 ε = 0.4 ε = 0.2

No Dropout 56.09% 51.08% 40.03%
Standard dropout (p = 0.5) [10] 62.07% 58.21% 49.10%

Automatic dropout [17] 61.92% 58.46% 49.38%
Controlled dropout [22] 62.88% 59.35% 50.39%

DropMI dropout [24] 68.12% 65.24% 58.10%
Guided dropout [15] 65.34% 62.09% 54.28%

Concrete dropout [23] 65.50% 62.19% 54.10%
Targeted dropout [18] 67.52% 64.51% 57.41%

DPP dropout 65.21% 61.52% 52.51%
MI dropout 69.81% 66.91% 59.99%

DPPMI dropout 71.21% 69.07% 62.40%

4.6. Empirical Time Complexity Analysis

Figure 9 illustrates the average running time per training epoch for the presented DPP
dropout, MI dropout, as well as the DPPMI dropout with the recent benchmarks. The
reported times are recorded for the CIFAR100 dataset using our computer architecture
described in Section 4.2. As shown in this figure, the Standard dropout and Controlled
dropout increase the epoch time of No dropout approach by 0.37 and 1.3 s. Also, DropMI

Sensors 2021, 21, 1846 18 of 21

dropout increases the training time by 1.68 s in comparison with Standard dropout, since
DropMI calculates the MI value of all kernels with target vector in each training epoch.
The Concrete and Guided dropout algorithms show 4.33 and 2.54 s higher running time
than Standard dropout due to solving an optimization problem for adjusting suitable
p parameter in dropout. As shown in this figure, the presented algorithms have a reliable
empirical complexity with a small increase compared to the Automatic dropout and
Targeted dropout, and a slight decline compared with recent state-of-the-art benchmarks
such as Guided dropout and Concrete dropout. Our observation clearly justifies the use of
our method in classification applications as it provides a significant accuracy improvement
with a reasonable computational burden.

Figure 9. Comparison of the elapsed time per epoch for different methods.

4.7. Comparison with Batch Normalization

Batch Normalization (BN) [8] is another regularization method that aims to change
the distributions of internal neurons of a deep model in training phase to reduce internal
covariate shift. Whitening (normalizing to obtain zero mean and unit variance [46]) of
the inputs of each layer is the fundamental idea of BN to achieve the fixed distributions
of inputs that would diminish the ill effects of the internal covariate shift and accelerate
convergence of deep neural architectures [8]. Numerous recent studies have shown that
combining dropout algorithms with BN needs caution since it leads to inconsistencies in
internal variance of units which causes high classification error rates during both train and
test stages [47–49].

In this section, we investigate the relationship between the proposed dropout algo-
rithms and the BN method on training deep learning models. The experiment is carried
out on SVHN and CIFAR10 datasets, and the classification baselines for these two datasets
is considered similar to the explained baseline in Section 4.2. In this experiment, we exploit
ResNet50 to extract the features from CIFAR10, also the regularization methods are only
applied on the dense layers in the baseline. To see the effect of variance shift between train-
ing and testing datasets, we consider two sets of configurations between the dropout and
BN layers: (A) dropout After BN layer (B) dropout Before BN layer. All the experimental
settings, i.e., number of epochs, learning rate, weight initialization, batch size, etc. are
considered similar to the settings in Section 4.2.

Table 4 compares the train/test accuracies obtained after training models with the
incorporation of BN into the proposed dropout algorithms as well as the Standard dropout.

Sensors 2021, 21, 1846 19 of 21

By comparing the obtained results of Tables 1 and 4, one can observe that the BN and Stan-
dard dropout show similar performance in terms of train and test accuracies in the training
of the deep NNs. As shown in Table 4, the (A) configuration shows significantly better
results compare to (B), especially in the test phase. This concludes that combining these
two methods, i.e., dropout and BN, does not necessarily lead to the better generalization;
hence, the results verify that the covariate shift happens when there exists a BN layer after
the dropout layer [47,50]. The whitening effect of the BN layer on the latent kernels would
lead to a more uniform latent space, thus, selecting the diverse group of features would be
easier for our DPP procedure. As a result, the accuracies shown in Table 4 have consistent
improvements when adding the BN layer before the dropout.

Table 4. Comparisons of train/test accuracies for various benchmarks using batch normalization
and dropout algorithms. (A) and (B) denote dropout layer After and Before BN layer, respectively.

Model
SVHN CIFAR10

Train Test Train Test

No dropout + BN 79.22% 63.93% 88.24% 65.16%
Standard dropout + BN (A) 83.29% 67.36% 90.61% 69.07%

DPP dropout + BN (A) 83.09% 67.91% 89.93% 70.11%
MI dropout + BN (A) 80.11% 72.32% 89.21% 75.15%

DPPMI dropout + BN (A) 81.46% 74.20% 90.32% 77.19%
Standard dropout + BN (B) 79.10% 62.22% 86.84% 61.36%

DPP dropout + BN (B) 80.72% 63.09% 85.97% 64.26%
MI dropout + BN (B) 77.36% 67.75% 86.98% 69.36%

DPPMI dropout + BN (B) 79.29% 68.66% 87.79% 71.42%

5. Conclusions

This paper presents a novel dropout strategy that semantically selects the neurons to
be dropped in the latent layer of deep neural architecture. First, we assess the performance
of each individual neuron in a training step, and afterward, we construct a binary mask that
eliminates irrelevant neurons based on the concepts of quality and quantity as well as the
diversity of the selected kernels. By integrating the mutual information and determinan-
tal point process sampling, the proposed DPPMI dropout algorithm can activate hidden
neurons that are highly correlated with the underlying neural network’s classification task.
Numerical results on various classification benchmark datasets such as MNIST, SVHN,
CIFAR10, and CIFAR100 verify that the proposed method can boost the generalization of
the deep neural network and improve the classification accuracy of the model. Compared
to state-of-the-art dropout methods, such as Guided dropout and Targeted dropout, the
proposed work enhances the test classification accuracy by 4.95% and 3.43%, while main-
taining a similar time complexity in the CIFAR100 dataset. Future works include designing
a global search methodology for the automatic determination of hyper-parameters in the
algorithms. Furthermore, the proposed work will be extended to improve convolutional
neural architectures and recurrent structures.

Author Contributions: In this research, M.S., M.K. and J.S.C. are contributed to the conceptualization
task. M.S. and M.S.E.S. carried out the software experiments and investigation on the results. M.S.
took the lead in writing the manuscript, A.F.S., J.S.C. and M.K. are contributed to review and edit the
original draft. All authors provided critical feedback and helped shape the research, analysis, and
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially financed by the ERDF—European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020
Programme and by National Funds through the Portuguese funding agency, FCT—Fundação para a
Ciência e a Tecnologia within project “POCI-01-0145-FEDER-028857”.

Institutional Review Board Statement: Not applicable.

Sensors 2021, 21, 1846 20 of 21

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pereira, J.A. Sequeira, A.F.; Pernes, D.; Cardoso, J.S. A robust fingerprint presentation attack detection method against unseen

attacks through adversarial learning. In Proceedings of the 2020 International Conference of the Biometrics Special Interest Group
(BIOSIG), Darmstadt, Germany, 16–18 September 2020; pp. 1–5

2. Khodayar, M.; Wang, J. Probabilistic Time-Varying Parameter Identification for Load Modeling: A Deep Generative Approach.
IEEE Trans. Ind. Inform. 2020, 17, 1625–1636. [CrossRef]

3. Noormohammadi-Asl, A.; Saffari, M.; Teshnehlab, M. Neural control of mobile robot motion based on feedback error learning
and mimetic structure. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8 May 2018;
pp. 778–783.

4. Khodayar, M.; Wang, J. Spatio-temporal graph deep neural network for short-term wind speed forecasting IEEE Trans. Sustain.
Energy 2018, 10, 670–681.

5. Moody, J.; Hanson, S.; Krogh, A.; Hertz, J.A. A simple weight decay can improve generalization. Adv. Neural Inf. Process. Syst.
1995, 4, 950–957.

6. Cogswell, M.; Ahmed, F.; Girshick, R.; Zitnick, L.; Batra, D. Reducing overfitting in deep networks by decorrelating representations.
arXiv 2015, arXiv:1511.06068.

7. Chandar, S.; Khapra, M.M.; Larochelle, H.; Ravindran, B. Correlational neural networks. Neural Comput. 2016, 28, 257–285.
[CrossRef] [PubMed]

8. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning (PMLR), Lille, France, 6–11 July 2015; pp. 448–456.

9. Yang, T.; Zhu, S.; Chen, C. Gradaug: A new regularization method for deep neural networks. arXiv 2020, arXiv:2006.07989.
10. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
11. Vivek, B.; Babu, R.V. Single-step adversarial training with dropout scheduling. In Proceedings of the 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 947–956.
12. Mirzadeh, S.I.; Farajtabar, M.; Ghasemzadeh, H. Dropout as an implicit gating mechanism for continual learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020;
pp. 232–233.

13. Kulesza, A.; Taskar, B. Determinantal point processes for machine learning. arXiv 2012, arXiv:1207.6083.
14. Ba, L. Adaptive Dropout for Training Deep Neural Networks. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2013.
15. Keshari, R.; Singh, R.; Vatsa, M. Guided dropout. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI,

USA, 27 January–2 February 2019; Volume 33, pp. 4065–4072.
16. Saito, K.; Ushiku, Y.; Harada, T.; Saenko, K. Adversarial dropout regularization. arXiv 2017, arXiv:1711.01575.
17. Dodballapur, V.; Calisa, R.; Song, Y.; Cai, W. Automatic Dropout for Deep Neural Networks. In Proceedings of the International

Conference on Neural Information Processing, Bangkok, Thailand, 18–22 November 2020; pp. 185–196.
18. Gomez, A.N.; Zhang, I.; Kamalakara, S.R.; Madaan, D.; Swersky, K.; Gal, Y.; Hinton, G.E. Learning sparse networks using

targeted dropout. arXiv 2019, arXiv:1905.13678.
19. Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; Fergus, R. Regularization of neural networks using dropconnect. In Proceedings of the

International Conference on Machine Learning (PMLR), Scottsdale, AZ, USA, 17–19 June 2013; pp. 1058–1066.
20. Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout networks. In Proceedings of the International

Conference on Machine Learning (PMLR), Scottsdale, AZ, USA, 17–19 June 2013; pp. 1319–1327.
21. Li, Z.; Gong, B.; Yang, T. Improved dropout for shallow and deep learning. arXiv 2016, arXiv:1602.02220.
22. Ko, B.; Kim, H.G.; Oh, K.J.; Choi, H.J. Controlled dropout: A different approach to using dropout on deep neural network.

In Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Korea,
13–16 February 2017; pp. 358–362.

23. Gal, Y.; Hron, J.; Kendall, A. Concrete dropout. arXiv 2017, arXiv:1705.07832.
24. Chen, J.; Wu, Z.; Zhang, J.; Li, F. Mutual information-based dropout: Learning deep relevant feature representation architectures.

Neurocomputing 2019, 361, 173–184. [CrossRef]
25. DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552.
26. Ghiasi, G.; Lin, T.Y.; Le, Q.V. Dropblock: A regularization method for convolutional networks. arXiv 2018, arXiv:1810.12890.
27. Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K.Q. Deep networks with stochastic depth. In Proceedings of the European

Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 646–661.
28. Singh, S.; Hoiem, D.; Forsyth, D. Swapout: Learning an ensemble of deep architectures. arXiv 2016, arXiv:1605.06465.
29. Khodayar, M.; Wang, J.; Wang, Z. Energy disaggregation via deep temporal dictionary learning. IEEE Trans. Neural Netw. Learn.

Syst. 2019, 31, 1696–1709. [CrossRef] [PubMed]

http://doi.org/10.1109/TII.2020.2971014
http://dx.doi.org/10.1162/NECO_a_00801
http://www.ncbi.nlm.nih.gov/pubmed/26654210
http://dx.doi.org/10.1016/j.neucom.2019.04.090
http://dx.doi.org/10.1109/TNNLS.2019.2921952
http://www.ncbi.nlm.nih.gov/pubmed/31295127

Sensors 2021, 21, 1846 21 of 21

30. Salehinejad, H.; Valaee, S. Ising-dropout: A regularization method for training and compression of deep neural networks.
In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK,
12–17 May 2019; pp. 3602–3606.

31. Achille, A.; Soatto, S. Information dropout: Learning optimal representations through noisy computation. IEEE Trans. Pattern
Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]

32. Wang, S.; Manning, C. Fast dropout training. In Proceedings of the International Conference on Machine Learning (PMLR),
Scottsdale, AZ, USA, 17–19 June 2013; pp. 118–126.

33. Liu, L.; Luo, Y.; Shen, X.; Sun, M.; Li, B. Beta-Dropout: A Unified Dropout. IEEE Access 2019, 7, 36140–36153. [CrossRef]
34. Krueger, D.; Maharaj, T.; Kramár, J.; Pezeshki, M.; Ballas, N.; Ke, N.R.; Goyal, A.; Bengio, Y.; Courville, A.; Pal, C. Zoneout:

Regularizing rnns by randomly preserving hidden activations. arXiv 2016, arXiv:1606.01305.
35. Yuan, X.; Huang, B.; Wang, Y.; Yang, C.; Gui, W. Deep learning-based feature representation and its application for soft sensor

modeling with variable-wise weighted SAE. IEEE Trans. Ind. Inform. 2018, 14, 3235–3243. [CrossRef]
36. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
37. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with unsupervised feature learning.

In NIPS Workshop on Deep Learning and Unsupervised Feature Learning; 2011. Available online: https://www.researchgate.net/
publication/266031774_Reading_Digits_in_Natural_Images_with_Unsupervised_Feature_Learning (accessed on 2 March 2021).

38. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Technical Report. 2009. Available
online: https://scholar.google.com/scholar?as_q=Learning+multiple+layers+of+features+from+tiny+images&as_occt=title&
hl=en&as_sdt=0%2C31 (accessed on 2 March 2021).

39. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
41. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics (JMLR Workshop and Conference Proceedings), Sardinia, Italy,
13–15 May 2010; pp. 249–256.

42. Ver Steeg, G. Non-Parametric Entropy Estimation Toolbox (Npeet). Technical Report. 2000. Available online: https://www.isi.
edu/~gregv/npeet.html (accessed on 2 March 2021).

43. Gautier, G.; Polito, G.; Bardenet, R.; Valko, M. DPPy: DPP Sampling with Python. J. Mach. Learn. Res. 2019, 20, 1–7.
44. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.
45. Xie, J.; Ma, Z.; Zhang, G.; Xue, J.H.; Tan, Z.H.; Guo, J. Advanced Dropout: A Model-free Methodology for Bayesian Dropout

Optimization. arXiv 2020, arXiv:2010.05244.
46. Khodayar, M.; Khodayar, M.E.; Jalali, S.M.J. Deep learning for pattern recognition of photovoltaic energy generation. Electr. J.

2021, 34, 106882. [CrossRef]
47. Li, X.; Chen, S.; Hu, X.; Yang, J. Understanding the disharmony between dropout and batch normalization by variance shift.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June
2019; pp. 2682–2690.

48. Garbin, C.; Zhu, X.; Marques, O. Dropout vs. batch normalization: An empirical study of their impact to deep learning. Multimed.
Tools Appl. 2020, 79, 12777–12815. [CrossRef]

49. Luo, P.; Wang, X.; Shao, W.; Peng, Z. Towards understanding regularization in batch normalization. arXiv 2018, arXiv:1809.00846.
50. Chen, G.; Chen, P.; Shi, Y.; Hsieh, C.Y.; Liao, B.; Zhang, S. Rethinking the usage of batch normalization and dropout in the training

of deep neural networks. arXiv 2019, arXiv:1905.05928.

http://dx.doi.org/10.1109/TPAMI.2017.2784440
http://www.ncbi.nlm.nih.gov/pubmed/29994167
http://dx.doi.org/10.1109/ACCESS.2019.2904881
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1109/5.726791
https://www.researchgate.net/publication/266031774_Reading_Digits_in_Natural_Images_with_Unsupervised_Feature_Learning
https://www.researchgate.net/publication/266031774_Reading_Digits_in_Natural_Images_with_Unsupervised_Feature_Learning
https://scholar.google.com/scholar?as_q=Learning+multiple+layers+of+features+from+tiny+images&as_occt=title&hl=en&as_sdt=0%2C31
https://scholar.google.com/scholar?as_q=Learning+multiple+layers+of+features+from+tiny+images&as_occt=title&hl=en&as_sdt=0%2C31
https://www.isi.edu/~gregv/npeet.html
https://www.isi.edu/~gregv/npeet.html
http://dx.doi.org/10.1016/j.tej.2020.106882
http://dx.doi.org/10.1007/s11042-019-08453-9

	Introduction
	Related Works
	Method
	Approach 1: Mutual Information (MI) Dropout
	Approach 2: Determinantal Point Process (DPP) Dropout
	Approach 3: Determinantal Point Process Mutual Information (DPPMI) Dropout
	Inference Procedure

	Experimental Results and Discussion
	Datasets
	Implementation Details
	Numerical Results
	DPPMI Dropout as Model Compression
	Discussion on Overfitting Prevention
	Empirical Time Complexity Analysis
	Comparison with Batch Normalization

	Conclusions
	References

